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This paper reports a detailed numerical investigation of the geometrical and
structural properties of three-dimensional heaps of particles. Our goal is the char-
acterization of very large heaps produced by ballistic deposition from extended
circular dropping areas. First, we provide an in-depth study of the formation of
monodisperse heaps of particles. We find very large heaps to contain three new
geometrical characteristics: they may display two external angles of repose, one
internal angle of repose, and four distinct packing fraction (density) regions. Such
features are found to be directly connected with the size of the dropping zone.We
derive a differential equation describing the boundary of an unexpected triangular
packing fraction zone formed under the dropping area. We investigate the impact
that noise during the deposition has on the final heap structure. In addition, we
perform two complementary experiments designed to test the robustness of the
novel features found. The first experiment considers changes due to polydisper-
sity. The second checks what happens when letting the extended dropping zone
to become a point-like source of particles, the more common type of source.
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1. Introduction

A classical problem in the field of granular matter is the investigation of the peculiarities

associated with both the genesis and the stability of heaps of particles. Heaps of particles are

studied intensively because of their great relevance for industrial applications and because,

from a theoretical point of view, such heaps are simple many-body systems well-suited to

develop and probe theories [1,2]. The formation of grain heaps is important to understand

theoretically and experimentally complex cooperative phenomena. One may easily list a

series of complex granular phenomena that have attracted recurring interest over the years,

e.g. studies addressing major effects like the characterization of the stress dip under the

pile [3–12], avalanching behavior [13–16], segregation by size [17–19], creep motion deep

in the pile [20] and the remarkable properties discovered in the growth of grain piles by

revolving rivers [21–26], and many others [27–32].
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Philosophical Magazine 4091

Figure 1. (colour online) Illustrative example of a typical heap obtained by dropping 12 × 106

particles sequentially from the top of a circular area source with radius r = 80 particles diameters.
The three distinct tangent lines help to identify the presence of two angles of repose. Lines on the
right side are tangent either to the top or to the bottom of the heap while the line on the left connects
top and bottom of the heap.

The majority of studies presently available mainly explores properties of two-

dimensional (2D) heaps of grains. For instance, a recent paper byRoul et al. [33] investigates

packing properties of 2D piles of grains using sophisticatedmolecular dynamic simulations.

Among other things, they reported the presence of a clear peak in the particle density around

themiddle of the heap arguing that local compactification and arching could perhaps explain

such differences. Variations in the angle of repose of 2D heaps were investigated as a

function of experimental parameters and deviations in the shape of the tail of 2D sandpiles

were discovered [34]. Experiments and theory concerning the pressure dip under 2D grain

piles along with some results for three-dimensional (3D) heaps were reported by Atman et

al. [11] who find that the controversial presence or absence of pressure dips to be closely

related to the preparation history of the pile, and call for more extensive systematic studies.

The influence of the geometry on the pressure distribution of granular heaps was considered

in an interesting work by Matuttis and Schinner [35].

The pile characteristics are basically determined by the forces that it experiences during

the deposition process. Since lateral forces constraining 2D piles are quite different from the

lateral forces acting in 3D piles, it seems natural to investigate systematically the structure

of three-dimensional packings, which are subjected to more complex lateral forces, to see

whether they contain hitherto unnoticed features. Despite the fact that static piles of granular

materials are classical examples of packings, to date there has been no systematic study of

spatially resolved packing properties of 3D heaps. By their own nature, three-dimensional

heaps require the deposition of a large number of particles, of the order of two to three

orders of magnitude more than those typically used in 2D scenarios.

The aim of the present paper is to report a study of the density distribution and the angle

of repose measured for very large 3D heaps of particles. As an example of the unexpected

results found, Figure 1 illustrates the existence of two angles of repose for a pile containing

12×106 particles.We report results obtained for heaps with up to 25×106 particles dropped

sequentially onto a horizontal plane from a homogeneous “rain” of particles emerging from
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(a)

(e) (f)

(b) (c) (d)

Figure 2. (colour online) Panels (a)–(d) illustrate the growth of a large three-dimensional heap
obtained by dropping particles sequentially from the top of a circular area source with radius r = 60
particle diameters. Note how the top flat horizontal surface shrinks as the growth proceeds. Panel
(e) shows the final heap. The line segment on the right of the inner triangle shows the prediction
obtained from Equation (9). The auxiliary straight line on the left heap boundary helps to visualize
the existence of two external angles of repose. (f) Schematic representation summarizing the main
geometric characteristics of large 3d heaps: the angles of repose α, β, γ h , where h is the elevation
height at which the angle is measured, and the four axially symmetric density zones A, B,C, D. The
small curvature of the inner triangle A was enhanced for clarity. In all cases investigated the curvature
can be well-approximated by a straight-line segment. All these characteristics depend on the size
(radius) of the rain of particles, indicated by the word “source”.

a circular area-source with adjustable radius. Our main aim is to determine bulk properties

such as density, contact numbers, repose angles, etc. Simulations of large three-dimensional

heaps are hardly feasible with a full molecular dynamics approach. However, there are

efficient alternative ways to investigate a number of effects for such heaps. For example,

simpler models normally used to describe ballistic deposition and related surface growth

problems can provide useful insight for specific problems as the ones considered here.

In this work we adopt the well-knownVisscher–Bolsterli (VB) algorithm [14,19,36–38]

to investigate structural properties of very large three-dimensional heaps of particles. The

VB algorithm was employed in pioneering work by Jullien and Meakin [19] to study size

segregation in 3D heaps contaning some 4 − 40 × 103 particles. As mentioned, here we

consider very large 3D heaps involving typically 10−25×106 particles, i.e. about 103 more

particles. In the VB algorithm, the particles are dropped one by one onto a growing deposit

(see Figure 2). Particles follow the path of steepest descent until they stop after reaching

either a local stable minimum or when touching the ground. After stopping, particles are

not allowed to move anymore so that many-particle effects like, e.g. avalanches, cannot
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Philosophical Magazine 4093

be simulated although a plethora of other effects are nicely reproduced [14,19,37,38].

The VB algorithm is realistic for sandpiles grown under certain well defined conditions:

When each particle follows the steepest descent path, that is, when effects of inertia are

negligible. This may be achieved experimentally by sedimenting particles in an (almost

density matched) viscous fluid.Alternatively, weakly adhesive particles would also perform

a creeping motion. The key advantage of the sequential VB algorithm is that it provides a

realistic framework to rapidly compute the path of steepest descent and, therefore, allows

us to investigate very large assemblies of particles, not accessible with other models. We

now describe our main findings.

The paper is organized as follows. In the first part (Sections 2–7) we studymonodisperse

heaps. In Section 2, we provide details of the deposition process and report themain findings

for monodisperse heaps.We report three new geometrical characteristics, namely, that large

heaps may have (i) two external angles of repose, (ii) an internal angle of repose, and (iii)

four distinct packing fraction (density) regions. Section 3 describes a simple numerical

experiment that we did in order to find out how noise affects the deposition process.

In Section 4, we investigated the contact number distribution. In Section 5, we derive a

differential equation whose solution provides a relation between the two new angles of

repose as a function of the height h of the heap. For reference, in Section 6 we analyze

two special cases of heaps: two-dimensional heaps, which can only display a single angle

of repose, and three-dimensional heaps with small number of particles. In Section 7, we

describe the characteristic of large heaps formed by deposition from a point, not from an

extended source. A preliminary report about some results concerning monodisperse heaps

was presented in Ref. [39]. In Section 8, we investigate the impact of polydispersivity on the

structure of large heaps. Finally, Section 9 summarizes our main observations and mentions

briefly some interesting open problems.

2. Packing densities and two angles of repose in monodisperse heaps

Panels (a)–(d) of Figure 2 show the growth-history of the packing fraction as a function of

the radial distance from the heap axis for a 3D heap made of N = 10× 106 particles when

deposited sequentially from random positions in the extended circular source area whose

diametral section is indicated by the solid black bar. In this and in subsequent figures, all sizes

are measured in adimensional units r/d , where d is the (arbitrary) diameter of the particles.

From panels (a)–(d) one sees how the inner triangular density cone gets formed when the

top flat horizontal surface gets smaller and smaller as the particle deposition proceeds. The

packing fraction displayed by the colors was obtained using cylindrical coordinates (r, z, φ)

coaxial with the heap. For masses mi with center of mass at ri we measured the density

ρ(r, z, φ) at r using the definition [40]

ρ(r ) ≡
∑

i

mi ϕ(r − ri ), (1)

where ϕ(r ) is a Gaussian coarse-graining function

ϕ(r ) =
1

π 3/2w3
e−(|r |/w)2 , w = 2R, (2)

and R is the particle radius. Then, by averaging ρ(r, z, φ) over φ we get the density

distribution ρ̄(r, z), the quantity that is color-coded in Figure 2.
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4094 N. Topic et al.

An interesting question is to understand how the packing fraction varies along large

heaps produced by deposition from extended area sources. This may be recognized both

fromdistribution of colors of the final heap depicted in Figure 2(e) and from the summarizing

sketch presented in Figure 2(f). Generically, we could distinguish up to four rather distinct

density (packing) regions: First, under the dropping zone we find a triangular region

indicated by the letter A. The lateral surface of this cone are slightly curved, as described by a

differential equation, Equation (9), below. Second, as area A growsmore andmore, particles

may eventually roll outside the circular “shadow” of the dropping area (source), forming

another packing zone that we denote by B. Since the VB algorithm requires particles to

roll maintaining always contact with the heap, in region B the particles are arranged more

regularly than in A, where the heap must grow on top of a randomly deposited initial layer,

not on a the more regular layer arising from “rolling” (i.e. not from random deposition).

Third, comes region C where we find an intermediary packing that is less regular than in

B but more regular than in A. Finally, near the axis of the heap over region A we find zone

D characterized by the highest density of the heap.

For the heap shown in Figure 2, containing N = 10 × 106 particles, we computed the

following densities well-inside each region: ρA = 0.5812 ± 0.0002, ρB = 0.5832 ±

0.0002, ρC = 0.5879 ± 0.0002, and 0.59 ± 0.02 < ρD < 0.63 ± 0.02. The relative

values of these densities is the same found for other heaps. If we approximate the boundaries

between regions by straight lines, then the corresponding angles of repose are found to be

α = (54.5 ± 0.5)◦, β = (57.5 ± 0.5)◦, and γ = (68 ± 0.4)◦, measured directly

from the final heap (Figure 2(e)). The origin of the differences in density are the distinct

sedimentation mechanism at work in each region.

The distinct density zones described above have some remarkable implications for the

geometrical characteristics of the heap, specially for the angle of repose. The most striking

implication is that, instead of the familiar single angle of repose, we find large three-

dimensional heaps to display a conspicuous pair of external angles of repose, in addition

to an internal angle of repose formed by the boundary between A and C in Figure 2(f). As

may be recognized with the help of the auxiliary straight line on the left side of the heap in

Figure 2(e), under the dropping area one finds a larger angle of repose than outside it. There

are two distinct limits of interest here. When the dropping zone shrinks, region B overtakes

C (and A). In contrast, the contrary happens if the noise during the deposition increases,

with C overtaking B. The “familiar” angle of repose is the final single angle that results

after taking anyone of these limits.

The pair of external angles was measured as follows. For every zi , we located the set of

points ri defining the outermost surface points around the heap, plotting them as r = r(z).

Then, using bins with1r = 10 particle diameters, we fitted a straight line through the points

(ri , zi ) for each bin obtaining the dependence of the local angle of repose θ as a function

of the distance r from the axis.

Figure 3 shows the evolution of the angle θ of repose as a function of the distance r from

the axis of the heap. From this figure it is easy to recognize the characteristic discontinuities

found in the external angle of repose as well as the magnitudes of the angles inside and

outside the rain of particles. Error bars represent deviations recorded when sampling over

five distinct heaps and show that the variations of the angles are much larger than the

fluctuations resulting from sampling different heaps. The existence of two angles of repose

can be observed qualitatively already with a simple “kitchen table” experiment [39].
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Figure 3. (colour online) Evolution of the angle θ of repose as a function of the distance r from
the axis. Note the clear discontinuity at r = 80, the vertical dashed line, indicating the radius of
the dropping zone. The angle of repose is larger under the rain of particles. The heap underlying the

determination of θ here contains N = 25×106 particles; r is measured in units of particle diameters.
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Figure 4. (colour online) Effect of noise in the deposition process. The plots show density fields.
In the leftmost panel the heap was never perturbed (e = ∞). The other three panels, from left to
right, show heaps formed when applying with an increasing frequency a random perturbation, namely
after every 512, 128 and 32 “events” (see text) corresponding, approximately, to particles traveling
downwards for about 160, 40, and 10 particle diameters, respectively. Region B is overtaken by C as

random noise during the deposition increases. Each panel displays N = 3 × 106 particles.
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4096 N. Topic et al.

3. Effect of noise in the deposition process

While sequential deposition means that particles follow strictly the path of steepest descent,

noise of any origin may occasionally interrupt such path by relocating the particle to a

randomposition in a close neighborhood of its original position, thereby allowing previously

unaccessible minima to suddenly become accessible. Therefore, it becomes desirable to

understand how angles of repose and density zones are affected by random fluctuations

like, e.g. saltation of grains, which are necessarily present during experimental deposition

processes.

To have an idea of the impact of noise during the deposition we performed a simple

numerical experiment which consisted of perturbing periodically the down-hill rolling

movement after the particle had a certain number e of “events” in the pile, i.e. after it

had the opportunity of falling long enough so as to have changed its contacts e times

on its way down. Thus, after falling down unperturbed during e events, the particle was

then lifted vertically from its position (x, y) and dropped randomly at a nearby location

(x+1x, y+1y), where1x and1y are random numbers such that (1x)2+(1y)2 < 9R2,

where R is the radius of the particles.

Figure 4 illustrates the result of such experiment for increasing noise strength: one

clearly sees that regions B andC become “mixed”, i.e. indistinguishable, as the perturbation

frequency increases (from left to right). Since the correlation of the deposition process is

destroyed by noise, Figure 4 indicates that strong noise during deposition is responsible for

the increasingly higher density observed in the B zone (when compared with the density

in C). Remarkably, zones A and D remain essentially unaffected by noise. A clear result

of this experiment is to show that deposition strongly affected by noise may prevent the

possibility of observing the external pair of angles of repose.

4. Contact number distribution of monodisperse heaps

Aclassicalmeasure to characterize the packing structure of spheres is to compute the average

number of contacts among particles [41]. Accordingly, we determined the average number

of contacts in a similar way as described above for the density after replacing ρ(r ) by

c(r ) = (
∑

i ci )/n, where ci and ri are the number of contacts and position of particle

i , and n is the total number of particles inside of the averaging volume. Figure 5 shows

the result of such counting. It is clearly consistent with our findings described above, in

particular with the geometrical picture summarized in Figure 2(f).

The average contact number in Figure 5 shows two interesting novel features: a pro-

nounced jump in contact number as one crosses the boundary from A toC , and a dip between

C and B. The boundary between A and C corresponds to a “transition zone” where the top

flat surface observed in the earlier stages of the construction of the heap disappears or where

the tilted surface meets the flat surface. This sharp transition zone corresponds to an area of

high contact number where the surface curvature is high (see Figure 2(e)). Accordingly, we

assume the local surface curvature to be responsible for the changes in the average contact

numbers. The local curvature can be determined from the surface r(z) described above.

This assumption is of course consistent with the peak in contact numbers near the axis (area

D): close to the top of the heap the mean curvature becomes very high.

The dip in contact number between areas B and C corresponds to points where the

angle of repose changes from α to β. Change in the angle of repose causes lower or even
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Figure 5. (colour online) Typical profiles of the average contact number inside of the heap shown as
a function from radial distance from the heap axis. The pair of rectangles indicated the region used

to compute the variation of contact number (see text). Here N = 107.

negative mean curvatures, a fact consistent with the drop in the number of contacts. We

explain this as a simple geometrical effect. Recall that a particle stopping on a flat surface

will have three contact in addition to the contacts from the particles deposited on top of it.

If a particle is deposited onto a surface having a positive mean curvature (e.g. an sphere), it

will have three contact from the particle below it but, thanks to the curved surface, there is

more space for contacts from particles deposited on top of it, leading to an increase in the

number of contacts. For negative curvature the reverse happens: there is less space for new

contacts, causing a decrease in contact number.

5. Relation between the two new angles of repose in monodisperse heaps

As it is clear from Figure 2(f), the angles α, β, and γ are not independent from each other.

Therefore, we now derive a relation interconnecting them. During the initial phase of the

growth the heap has a top flat surface (see panels (a)–(d) in Figure 2). Particles falling

on this flat surface stay on it, since it is only a quite negligible amount falls of the edge.

Particles that fall onto the tilted surface form a layer of approximately constant thickness on

the whole inclined surface of the heap. From these assumptions and, for simplicity, working

with an“average” angle δ = (α + β)/2, it is not difficult to derive a differential equation

for r(h), the function describing how the radius r of the flat surface shrinks as a function

of the height h of the heap.

Let the quantities r, S, h, δ define the geometry of the heap as illustrated in Figure 6.We

wish to find a relation between the angle of repose δ and the change in the area dr/dh of

the top flat surface of the heap under the simplifying assumptions that the heap has constant

density, a single angle of repose, that it grows symmetrically, and that the material added to

lateral surface has constant thickness. From Figure 6 it follows that s = x sin(γ − δ) and
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4098 N. Topic et al.

Figure 6. Schematic view of a central section of the symmetrically growing heap, characterized by
the h-dependent angle γ ≡ γh ,drawn for times t and t + 1t (ticker lines). The random “rain” of
particles originates from a circular source with radius S. For clarity, the distance between the source
and the heap was greatly reduced here.

1h = x sin γ so that, eliminating x , we get:

s

1h
=

sin(γ − δ)

sin γ
. (3)

This relation may be obtained in another way, as follows. The assumption of constant

density implies that V = Vt + V f , where V denotes the total volume of deposited material

at time 1t , Vt the volume deposited on the tilted surface, and V f is the volume on the flat

surface. When 1t is small, the volume contained between flat and tilted surface becomes

negligible and the particles being deposited end up located either on the flat surface of radius

r < S or inside the lateral tilted surface. Since particles are dropped as a homogeneous rain

through the area source, the number of particles that fall onto the flat surface of the heap in

time1t is N f = πr2F1t . Here F is the particle flux through the source, i.e. the number of

particles that pass through the unit area of the source in unit time. Since the total number of

particles passing through the whole source in an interval 1t is N = π S2F1t , we find that

the number of particles that end up on the tilted surface is Nt = N −N f = π(S2−r2)F1t .

For constant packing fraction n, the number of particles N f that fall onto the flat surface

contributes to the change of 1h,

πr2F1t = nπr21h (4)

and Nt contributes to s,

π(S2 − r2)F1t = n s π
L2 − r2

cos δ
, (5)

where π(L2 − r2)/ cos δ is the surface of the frustum.

From Equations (4) and (5) we obtain

s

1h
=

S2 − r2

L2 − r2
cos δ. (6)

Comparing Equations (3) and (6) one readily sees that

sin(γ − δ)

sin γ
=

S2 − r2

L2 − r2
cos δ (7)
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Now, using the addition formula for the sin function and the relation L = r + h cot δ

extracted from the figure, we obtain:

tan γ =
(r + h cot δ)2 − r2

(r + h cot δ)2 − S2
tan δ. (8)

Thus, since dr/dh = − cot γ , we obtain a differential equation for r(h), the function

describing how the flat surface shrinks in time:

dr

dh
= − cot γ = −

(r + h cot δ)2 − S2

(r + h cot δ)2 − r2
cot δ. (9)

The proper initial condition is r(h = 0) = S. The negative sign indicates that the area

shrinks from its initial value.

Of course, this equation is only physically meaningful as long as r ≥ 0. The solution

obtained by numerical integration for S = 60 is shown by the straight line in Figure 2(e).

Solving the equation for h = 0 we get γ0 ≡ γ (h = 0) = arctan(2 tan δ) = 71◦. Note that

Equation (9) can be rescaled with respect to S in such a way that only r/S and h/S appear

in it. This means that Equation (9) is scale invariant and needs to be solved just once, thanks

to the relation rS(h) = xrS/x
(

h
x

)

.

6. Two-dimensional heaps and small systems

Is it possible to find two angles of repose in two-dimensional heaps? In two dimensions,

the packing outside the dropping zone degenerates into a (trivial) hexagonal packing for the

following reason: Each particle which reaches the floor outside the dropping zone must be

in contact with another particle (on which it rolled down). Therefore, outside the dropping

zone the particles on the floor form a connected line of identical spheres. The next layer

will sediment in the local minima between the particles in the first layer and, consequently,

also touch one another. Iterating this procedure, a hexagonal packing of particles emerges.

Therefore, the packing in two dimensions will have a very different (trivial) structure as

compared to the three-dimensional case.

To illustratemore clearlywhat happens underVBballistic deposition in two dimensions,

Figure 7 presents three snapshots taken during the growth of a heap. In the initial phase,

shown in Figure 7(a), the impact of the random layer deposited directly under the dropping

zone is quite large since the random layer generates dislocations that propagate towards the

boundaries, producing rather rough lateral surfaces.Here, growth occurs by steepest-descent

on complex dislocation hillocks, and involves the formation and incorporation of small,

mobile little clusters arising from the initial randomly deposited bead layer. Defects in the

form of hollow channels are observed and persist indefinitely during the growth. Although

such dislocations remain always present, Figure 7(b) shows that the relative impact of the

dislocations on the lateral surfaces is greatly reduced as the deposition proceeds. From this

figure is also not difficult to recognize that the heap consists mainly of three large domains

of hexagonal packings which are separated by the persistent dislocation lines. In the limit

of large number of particles (as shown in Figure 7(d)) only a single asymptotic angle of

repose is visible, with the bump produced by the dislocation lines (magnified in Figure 7(c))

becoming less and less distinguishable. Figure 7(e) illustrates how the lateral surface grows

as more and more particles are added to the heap. Thus, large two-dimensional heaps reveal

just a hexagonal packing and its characteristic angle of repose of 60◦.
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(e)

(c)

(c) (d) (e)

(a)(a) (b)

Figure 7. (colour online)Three consecutive snapshots of a growing two-dimensional heap of particles
sedimented from a line source (indicated as a black bar) of length 15 particle diameters. The rectangle
in (a) contains the area from which the dislocation lines originate (c) shows the dislocations on the
left surface while in (e) one sees the characteristic hexagonal packing (see text). Note: scales are not
the same for these snapshots. The size of the black bar provides a reference. The lateral growth occurs
by steepest-descent on complex dislocation hillocks, and involves the formation and incorporation
of small, mobile little clusters arising from the initial randomly deposited bead layer. Defects in the
form of hollow channels are observed and persist indefinitely during the growth.

Why are large systems necessary to identify the two angles of repose and the four density

regions? The effect of different densities in regionsA–D is a small (but reproducible) effect.

In numbers, the difference in density between regions B andC is a small fraction of a percent

(see color scale in Figure 2). The difference betweenAand B is yet smaller. To generate the

density plots in the (r, z)-plane shown in Figures 2, 4, 8 from the full 3-dim representation

(r, z, φ) and the corresponding fields of coordination number in the (r, z)-plane shown in

Figures 5, 8, we average (integrate, sum) over the angle φ. Only with this averaging we

obtain smooth enough fields to reliably distinguish the different regions A–D. If the heap

would be small, the average over φ would correspond to only few particles located in a

certain interval (r +1r, z+1z), in particular for small values of r . Consequently, in order

to obtain significant results for the density in the (r, z)-plane, allowing to distinguish sub-

percent differences, we need a large enough heap. Alternatively, we could also simulate

many smaller heaps to obtain the fields at the same low noise level, however, the total

number of sedimented particles (either on one heap or on many heaps) would be invariant.
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(a) (b) (c)

Figure 8. (colour online) (a) Distribution of density inside of the heap created from a point source.
The inset shows the density averaged in z direction inside of the black rectangle. (b) Distribution of
contact number. The inset shows the changes in contact number, c, obtained by the same averaging as

in (a). The fields represent an average over five different heaps, each one containing N = 107 particles.
(c) Inverse of excesses of contact number as a function of the distance from the axis, calculated from
the contact number from the inset of (b).

7. Point source density and contact number of monodisperse heaps

For comparison purposes, we now consider monodisperse heaps, obtained when particles

are deposited from a fixed point (not from extended sources as before). Point sources are

interesting because they appear often in industrial settings and in experiments dealing with,

for example, the stress distribution under the pile [3–9,11,12]. Obviously, since point source

is a limiting case of area source, it can be used as an additional check of the geometrical

picture given in Figure 2. We look at the density fields, the contact number and the angles

of repose.

We start by considering the distribution of density and contact number. Particles with

same radius, R = 1/2, are dropped from a fixed point high above the heap onto the flat

horizontal plane. If a particle lands exactly on top of another one it is allowed to roll in a

random direction. The density distribution inside the heap is shown in Figure 8(a). Particles

are most tightly packed in the region around the heap axis. Further away from the axis the

packing fraction quickly approaches a constant value. The point source can be obtained

from an area source if we let the radius of the dropping zone tend to zero, and therefore two

highest density zones C and D will merge, forming a single zone after matching at the axis

of the heap. The area A will disappear, leaving only two zones: a zone of high density near

the axis and lower density everywhere else. This prediction matches very well the measured

density distribution, Figure 8(a). The distribution of contact number shows the same trend

as the density, as may be seen from Figure 8(b).

What is the functional relationship between the average contact number, c, and the

distance r from the axis? To obtain c at some r , we average the field, c̄(r, z), in the z

direction for a certain section of the heap, indicated by a black rectangle in Figure 8(b).

There is approximately a linear dependence between 1/(c − 6) and the distance from the

axis, Figure 8(c), implying that c − 6 ∼ 1/r . The quantity c − 6 is the excess of contact

number as compared to average for the VB packings. Since the surface of the heap is

approximately conical and, therefore, its mean surface curvature decays as∼ 1/r , there is a

linear relationship between the excess of contact number, c−6, andmean surface curvature.
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0 50 100 150
54

55

56

r

θ

Figure 9. (colour online) Angle of repose θ ≡ θ(r) computed for a monodisperse heap deposited
from a point source. For each r the angle of repose represents an average obtained over five heaps,

each one containing N = 107 particles. The errors are standard errors of themean value of θ measured
at fixed distance from the axis for five independent heaps.

How does the angle of repose varies with the distance from the axis for a heap deposited

from a point source? This is shown in Figure 9. For a heap with N = 107 particles and base

radius of L = 180 particle diameters our numerical experiments show that the change in

the angle of repose for r > 30 is less than 0.25◦, while in the vicinity of the axis r < 30 the

total change is around 1θ = 1◦. The magnitude of such changes are close to the estimated

statistical errors. Therefore, the heap has a shape close to a cone, particularly away from the

axis. This is at variance with the results for the heap created from an extended area source,

where an angle variation of ≃ 3◦ can appear at any distance from the axis, depending on

the size of the area source.

8. Effect of polydispersity on the heap structure

Strongly polydisperse particles are of importance in industrial applications [43], while at

the same time realistic granular particles are never precisely monodisperse. Therefore,

it is of interest to understand the effect of polydispersity on the structure of the heap and

compare it with themonodisperse limit. Packings producedwith particles having power-law

distribution of radii have been shown by numerical and analytical tools to have high packing

fractionswhen compared to other distributions [44–46].Due to this special status,we choose

a power-law distribution of particle radii, namely f (R) = A/R3, where R is particle

radius, with f (R)dR being the probability of having a particle in the range (R, R + dR).

In this type of distribution, to each interval dR of radii corresponds a constant volume

dV = 4
3

A

R3 R
3πdR = 4

3
AπdR and, therefore, each species of particle radius contributes

equally to the total volume contained in the particles. Denoting minimal and maximal

particle radii by Rmin and Rmax, from the normalization condition 1 = A
∫ Rmax

Rmin
dR 1

R3 , it

follows that A = 2R2
minR

2
max/(R

2
max − R2

min).

As a working measure of polydispersity we use the ratio between the maximal and

minimal radius, α = Rmax/Rmin. For a fair comparison among heaps, we require that two

heaps having the same number of particles have the same mass. From this condition it

follows that
〈

R3
〉

= constant. For the monodisperse case, α = 1, we have
〈

R3
〉

= 1/8,

under the assumption that we deal with monodisperse particles having radius R = 1/2.
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Now we need to calculate Rmin and Rmax in order to fix the distribution of polydisperse

particles. From
〈

R3
〉

= 1/8 and our measure of polydispersity it follows that

Rmin =
3

√

1 + α

16α2
, and Rmax = αRmin. (10)

As it is known, the packing fraction is the basic indicator of the packing structure of

the heap, and we now wish to examine how its distribution is modified as compared to the

monodisperse heap created from an area source. In particular we are interested in how the

geometrical picture of density distribution, from Figure 2(f) is affected. For the computation

of the density of the polydisperse heap we again use Equation (1). The width of the coarse

graining function, w, is taken to be w = 2 3

√

〈

R3
〉

= 1, where the average is done over a

set of particle radii from one heap. As before, to obtain the final density distribution we

perform the averaging around the axis of the heap.

For heaps with polydispersity α = 3 and N = 25 × 106 particles we find that the

total density, Figure 10(a), is higher than for the monodisperse heap, Figure 10(b). More

significantly, in the polydisperse heap the density observed in the area A, ρA = 0.6051 ±

0.0002, is no longer the lowest one, but area B now has the lowest density, 0.593 < ρB

< 0.598 (statistical error is much smaller than the variations across the area B). The

characteristic densities of areas A and C , 0.6032 ± 0.0003 < ρC < 0.6052 ± 0.0004,

may have now nearly equal values. In summary, areas A, B and C have higher densities

when compared to the monodisperse heap, but for polydisperse heaps it is area A which

has the highest increase, matching the density of area C . The slower increase of the density

in areas B and C as compared to area A indicates that, on a tilted surface, pores between

bigger particles are less efficiently filled with small particles than on a flat surface. Less

efficient filling of pores can be caused by segregation on the tilted surface, and segregation

is known to appear in polydisperse heaps created with VB algorithm [19]. In addition, there

is a jump in density near the boundary of areas A and C . Such jump is non-existent or too

weak to be noticeable for monodisperse heaps. This jump appears at the same position as

the jump observed in contact numbers for monodisperse heaps, namely, at the boundary

between areas A and C .

Wenowconsider the effect of polydispersity on the average contact numbers inside of the

heap. For the contact number we used the same counting procedure as for the monodisperse

system. The distribution of contact number for a heap with α = 3 is shown in Figure 10(c)

and, as a comparison, also for the monodisperse heap, Figure 10(d). Polydispersity does

not influence the partition of the heap into four zones of contact number, neither the dip in

contact number at the boundary between area B and C nor the jump at A–C boundary. In

other words, the four zones reported here seem to be quite robust. For the polydisperse heap

the contact number distribution in area B is more inhomogeneous than in the monodisperse

heap, andwe can observe two distinctive features: (i) The average contact number are higher

near the ground in the layer of thickness 10 − 20, (ii) The existence of thin stripes parallel

to the heap surface.

For the polydisperse heap we can look at how the average particle radii changes

throughout the heap. To calculate the distribution of average radii we sort the particles

by their z coordinate and distance from the axis r of the heap into a two dimensional lattice

with vertices (ri , z j ), where a particle with coordinates (r, z) is sorted into the (i, j) cell if

ri < r < ri+1 and z j < z < z j+1. We then sum the radii of all particles belonging to each
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Figure 10. (colour online) Comparison of the packing properties between a polydisperse heap with
α = Rmax/Rmin = 3 (left column) and a monodisperse heap, α = 1, (right column). Panels (a) and
(b) [top row] compare the density distribution inside of the heap, while panels (c) and (d) [bottom row]
compare the distribution of contact number. The areas A, B, C and D still exist in the polydisperse
heap. Additionally, a jump in density appears between areas A and C. The average packing density is
considerably higher for polydisperse heaps. Notable inhomogeneities appear in the area B for α = 3.

All fields are average over five heaps, each containing N = 25 × 106 particles.

cell and divide such sum by the total number of particles in this cell to obtain the average

radius for this cell. The result of this measurement for heaps with polydispersities α = 1.2,

α = 1.5, α = 2 and α = 3 is shown in Figure 11. From this figure we see that the heap

can be separated into three sections with sharp boundaries, and they correspond to density

zones A, B and C . It is possible to recognize that smaller particles “prefer” to go inside of

area C . Area B is inhomogeneous, with the largest particles located near the bottom.

We conclude this Section illustrating in Figure 12 how the angle of repose changes

in heaps of polydisperse particles. Such angles are calculated using the same procedure

used to calculate such angle in the monodisperse heap. We look at the same heaps that

were used to compute the distribution of average radii inside the heap. Our simulations

show that polydispersity produces a sharp increase in the angle of repose. Analogously

as for monodisperse heaps, there is a change in the angle of repose as the boundary of

the dropping zone is crossed, but this change is much weaker for stronger polydispersity.

However, in contrast with monodisperse heaps, for polydisperse heaps the angle of repose

outside the rain of particles does not tend to a constant value (Figure 12) and, therefore,
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Figure 11. (colour online) Distribution of average particle radii inside polydisperse heaps created by

dropping particles with radii distribution f (R) ∼ 1/R3 from an extended area source, indicated by
the black rectangle on the top. Polydispersity increases from left to right. The colormap corresponds
to average particle radius at some (r, z) inside of the heap, (see text). As for monodisperse particles,
there is a clear correspondence between zones A, B, C and D (compare with Figure 2(f)). Smaller
particles have a preference for areaC . Large particles accumulate near the bottom of area B. Striations
due to segregation may be seen for higher values of α (see text).
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Figure 12. (colour online) Effect of the polydispersity on the angle of repose θ for particles dropped
from an area source extending up to r = 80. Polydispersity grows from the bottom trace to the top.
Outside the rain θ gets clearly washed out as polydispersity grows. Each data set represents an average

over five distinct heaps made of N = 25 × 106 particles, while the error bars are standard errors of
the mean value of θ measured at fixed distance from the axis.

polydisperse heaps do not show two angles of repose, but only one, locate inside of the

dropping zone.

9. Conclusions and outlook

Our numerical analysis of large three-dimensional heaps revealed a number of unexpected

and remarkable features. As summarized in Figure 2(f), the novel geometrical properties
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are as follows: (i) two external angles of repose α and β, (ii) an internal angle of repose γ ,

and (iii) four distinct density (packing fraction) regions, A, B,C , D. In other words, instead

of just the familiar single angle of repose [42], heaps may in fact show two distinct angles,

a fact that implies the existence of four distinct density zones in the heap. Such properties

can be recognized both in the density distribution and in the distribution of the number of

contacts. We showed the external and internal angles of repose, α and γ , to be interrelated

according to Equation (9), a relation involving explicitly the radius S of the dropping zone

(“rain” of particles). We conducted a series of experiments to assess the impact of noise

on the final heap. Such experiments indicated that the duality of the angle of repose may

be washed out by moderate to strong noise during the deposition process. We have also

simulated ballistic deposition in two dimensions and shown that in this simpler case there

is only a single angle of repose underlying the characteristic hexagonal packing of this

configuration.

Finally, an important aspect described here concerns how polydispersity affects the

several characteristic features reported here. As described in details in Section 8, our

simulations indicate that polydispersity alters more significantly both the magnitude and

the density distribution of the heap.We expect the several new effects described to be easier

to observe in rains where grains do not interact (low density rain) and when suppressing or

minimizing the action of inertia, e.g. by performing experiments in an ambient of a viscous

fluid, or building heaps using adhesive particles. Once a particle gets in touch with an

already sedimented particle, it still can slowly roll under the action of gravity, but it would

not exert any inertial forces. We hope that our present work will trigger more research in

this direction, both experimentally and theoretically. Possible theoretical directions involve

study of other rain geometries and introduction of more realistic models of deposition.
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