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Chaotic particle dynamics in viscous flows: The three-particle Stokeslet problem
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It is well known, that the dynamics of small particles moving in a viscous fluid is strongly influenced by the
long-range hydrodynamical interaction between them. Motion at high viscosity is usually treated by means of
the Stokes equations, which are linear and instantaneous. Nevertheless, the hydrodynamical interaction medi-
ated by the liquid is nonlinear; therefore the dynamics of more than two particles can be rather complex. Here
we present a high resolution numerical analysis of the classical three-particle Stokeslet problem in a vertical
plane. We show that a chaotic saddle in the phase space is responsible for the extreme sensitivity to initial
configurations, which has been mentioned several times in the literature without an explanation. A detailed
analysis of the transiently chaotic dynamics and the underlying fractal patterns is given.
@S1063-651X~97!10408-1#

PACS number~s!: 47.10.1g, 47.15.Gf, 47.52.1j, 05.45.1b
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I. INTRODUCTION

When microscopic objects move in a fluid, the stresse
the liquid due to viscosity may be several orders of mag
tude larger than those due to inertia. A first estimate of
ratio

~stress in fluid due to inertia!

~stress in fluid due to viscosity!

is given by the Reynolds number Re as Re5LU%/m, where
L and U denote the characteristic length and speed of
particle,% andm are the density and the dynamic viscos
of the fluid. Collective phenomena involving the motion
assemblies of small particles in the low Reynolds num
limit cover a wide range of interest to both scientists a
engineers. Probably the most extensively studied class
problem is the passive sedimentation of particles in
gravitational field@1#. A closely related system is that o
small charged or polarized particles in a viscous fluid driv
by an external electrical field, the dynamics of which is oft
referred to as electrophoretic motion@2#. Similar physics is
involved in another, more complicated example for trans
tion in a strongly viscous environment, the swimming
microorganisms such as algae and bacteria. In a quies
fluid even their slow motion~typically a couple of meters pe
day! can result in considerable spatial rearrangements,
namic pattern formation, or bioconvection@3# due to hydro-
dynamical interactions.

The familiar approximation, which gives reasonably acc
rate results up to Re'1, is based on the Stokes equations@1#

“–u50, ~1!

2“p1mDu1f50. ~2!

*Permanent address: Department of Atomic Physics, Eo¨tvös Uni-
versity, Puskin u. 5-7, H-1088 Budapest, Hungary.
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Hereu5u(r ) is the velocity field,p5p(r ) and f5f(r ) de-
note the local pressure and force fields, respectively. Eq
tion ~1! expresses the incompressibility of the flow, whi
Eq. ~2! is the dynamical equation obtained by neglecting
inertial terms in the full Navier-Stokes equation due to t
slow temporal changes characterizing the process. The m
important simplification represented by the Stokes equati
~1! and~2! is that they are linear and instantaneous@4#. These
equations are solved subject to boundary conditions m
often on the velocityu. Usually the so called ‘‘no slip’’
condition is prescribed on solid surfaces, which means
the relative velocity between the fluid and the body vanis
on the boundary@1#.

In this work we revisit a classical problem of viscou
flows, namely, the dynamics of three microscopic, no
Brownian particles driven by constant external forces, l
gravity, or electrostatic field. To achieve the highest poss
resolution in the initial configuration space with accepta
computational demand, we used the simplest approxima
capturing the essence of hydrodynamical interaction,
Stokeslet model, described below. The more comp
Stokes, or creeping flow, solutions for a couple of partic
can be obtained by a number of special techniques tailore
the viscous limit@1,5–15#. Although these equations of mo
tion are relatively simple, long-range interactions and co
plicated boundary shapes usually require further simplify
assumptions@16#. Up to now, lattice Boltzmann technique
@17,18# have come closest to realistic simulations of rath
large systems at wide Re ranges. In a remarkable recent c
putation, Ladd@19# treated 32 768 suspended particles at l
Reynolds numbers, and he could track the trajectories
about 500 Stokes times.~A unit Stokes time is defined as th
time needed for an isolated sphere to pass over a distanc
one-particle radius.! In our Stokeslet model simulations, w
followed particle trajectories for several thousands Sto
times from about a million initial configurations whic
would have been unfeasible with more sophisticated te
niques.
2858 © 1997 The American Physical Society
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56 2859CHAOTIC PARTICLE DYNAMICS IN VISCOUS . . .
The paper is organized as follows. In Sec. II we brie
outline the Stokeslet model forn interacting particles. Nex
~Sec. III! the motion of three particles in a vertical plane
studied in the framework of this model. Results of high re
lution numerical simulations are presented in Sec. IV. W
show that a chaotic saddle existing in the phase spac
responsible for the extreme sensitivity to initial configur
tions which has been mentioned several times in the lite
ture without an explanation. A detailed analysis of the tra
siently chaotic dynamics and the underlying fractal patte
is given. Section V is devoted to a discussion of the range
validity of our results.

II. THE STOKESLET MODEL

The simplest possible treatment of a viscous two-ph
flow is based on the so-called Stokeslet model@1#, where the
moving objects are approximated by pointlike particle
Hocking @20# first studied the motion of small clusters o
such particles by means of this approximation in order
explain related sedimentation experiments by Jayawe
Mason, and Slack@21#. Recent analytical treatments for
restricted class of initial configurations add to the interes
the Stokeslet approximation@22#.

The Stokeslet velocity distribution is the solution to E
~2! with a little spherical particle of radiusa moving with
velocity v0 in an unbounded fluid which is at rest at infini
@16#. A particle momentarily in the origin generates the v
locity field

u~r !5
3av0

4 S e

r
1

~e–r !r

r 3 D 5av0U~r !, r .a. ~3!

Heree is the unit vector in the direction of the self-veloci
v05v0e, r 5ir i , and terms ofO(a3/r 3) are neglected. In the
case of sedimentation, e.g.,e is the unit vector pointing
downward along the vertical (z) axis. In the following, how-
ever, we usually refer toe as directed vertically upward in
order to emphasize the generality of the treatment, and i
cate the relevance to, e.g., electrophoresis, too.

Let us now considern particles which would all have the
same steady state velocityv0 if they were isolated. In the
case of sedimentation or electrophoresis,v05F%/(6pma)
due to Stokes law, whereF is the modulus of the constan
external force. Then, particlej generates a velocityu(r2r j )
at point r . The linearity of Eqs.~1! and ~2! implies in the
lowest order approximation that we can use free superp
tion. Thus, the velocity distribution due ton particles is
( j 51

n u(r2r j ). At position r i of particle i the background
flow generated by the othern21 particles is( j Þ i

n u(r i2r j ).
In the lowest order approximation one assumes that the
locity of the particleṙ i at r i in the laboratory frame is the
sum of this passive advection velocity andv0

ṙ i5v01av0(
j Þ i

n

U~r i2r j !, i 51, . . . ,n. ~4!

It is useful to measure the length and the time in units oa
and a/v0 ~Stokes time!, respectively. The dimensionles
form of Eq. ~4! then is
-
e
is

-
a-
-
s

of

e

.

o
ra,

n

.

-

i-

i-

e-

ṙ i5e1(
j Þ i

n

U~r i2r j !, i 51, . . . ,n. ~5!

With the given expression ofU @see Eq.~3!#, this defines a
closed set of differential equations for the trajectoriesr i(t) of
the different particles. Because particles are assumed t
pointlike, vectorsr i and r j must not coincide but otherwis
they can take on any values. With a fixed set of initial co
ditions r i(t50)5r i0 , i 51, . . . ,n, Eq. ~5! has a unique so-
lution.

We note that Eq.~5! is invariant under the transformatio
t→2t,e→2e, which means the reversal of time and th
driving force. Consequently, it is also invariant under t
transformationt→2t,r i→2r i for i 51,2,3 at afixede. The
system is thusreversiblein the sense that there is an involu
tion ~a transformation that composed with itself yields t
identity! in phase space which reverses the direction of ti
@23#. In addition, the phase-space volume is conserv
( i“ i• ṙ i50, although there is dissipation in the system~it is
not Hamiltonian!. As a consequence of this volume prese
vation, however, the dynamics cannot have any attractor

It is worth mentioning that this equation is similar in spir
to that describing the dynamics of ideal point vortices in
two-dimensional fluid@24,25#. They are also freely advecte
in the flow field induced by the others. The vortices do n
have self-velocities (v05e50), and the functionU(r ) is
then proportional to 1/r according to the reciprocal distanc
dependence of the velocity field around a single vortex@24#.

The relativemotions of the particles are unaffected by t
constant termv0 or e. For this motion, an alteration of lengt
scale in the configuration is equivalent to a change in
time scale, since the remaining terms in Eq.~5! are homoge-
neous functions of the positions. Without any loss of gen
ality, any convenient length in the initial configuration ca
be chosen as a unit@20#.

III. THREE PARTICLES IN A PLANE

The analytical solution of Eq.~5! for n52 ~the two-
particle problem! is not difficult @1#. It corresponds to a par
allel displacement of the pair in a direction being, in gene
different from that of the driving forcee. The first nontrivial
case is the motion of three particles. Although the trajec
ries from a general initial configuration can be tracked o
numerically, useful exact results are known for special c
figurations. Already Hocking recognized a conservation l
@20#: The horizontal projection~more generally, a projection
along e! of the triangle formed by the three particles is
constant area. Thus an initial configuration of zero projec
area leads to a motion in a vertical plane. Periodic soluti
belonging to symmetric initial configurations of nonzero pr
jected area have been discussed by several aut
@20,22,26#.

The three-particle problem in a vertical plane has a
attracted considerable interest@20,21,6–8,10,15#. Periodic
orbits were not found. Typically, after some ‘‘mixing’
phase, during which the particles totally change their relat
positions compared to the initial configuration, a couple
formed and the third particle lags behind~see Fig. 1!. ~A
couple moves faster than an isolated particle.! It is also
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2860 56JÁNOSI, TÉL, WOLF, AND GALLAS
known from experiments@21# and simulations@20,7,8# that
the final configuration dependsvery sensitivelyon the initial
one.

We have systematically studied the Stokeslet model
three particles in a vertical plane. By introducing relati
coordinatesr125r22r1 andr235r32r2, we find for the rela-
tive motion

ṙ125U~r23!2U~r121r23!, ~6a!

ṙ235U~r121r23!2U~r12!. ~6b!

Here we have utilized thatU(r ) is an even function. Note
that after the restriction to two-component vector variabl
Eq. ~6! still preserves the phase-space volume. In spite of
and the aforementioned reversibility property, Eq.~6! cannot
be written in a Hamiltonian form@27#. In fact, the system
seems to have no global conserved quantities. We so
these equations with a step-adaptive fourth order Run
Kutta algorithm@28#. The simplicity of Eq.~6! allowed us to
use a much higher resolution than in previous experime
or numerical studies.

The phase space of this system of equations is four
mensional. In order to gain insight into the complex ge
metrical structures underlying the dynamics, we fix one
the relative coordinatesr12, at time zero, and monitor th
changes due to varying the other initial coordinater23. The
(x,z) plane defined by the two components ofr23 will be

FIG. 1. ~Color! Numerical solution of model~5! from two initial
configurations for 105 Stokes times. The particles started from t
same height z50. The horizontal locationsx were ~a!
~23.9050,21.0,1.0!, and~b! ~23.9048,21.0,1.0!. The color coding
for both cases is~blue, yellow, red!. Note that the particle left
behind and the length of the mixing phase are very different.
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called the initial condition space, or the phase space, of
test particle~at fixed inital condition for the other two!.

IV. RESULTS

We first show the trajectories obtained by two simulatio
with slightly different initial conditions~see Fig. 1!. The ul-
timate separation into a couple and an isolated particle
clear in both cases. A tiny change in the relative positio
results, however, in a strong rearrangement. The mix
phases, during which all particles stay close to each ot
have drastically different durations. Note, furthermore, tha
completely different particle is left behind in these two cas

We are now in a position to quantitatively characteri
this sensitivity to initial conditions. A perturbation
dx(t50)510210 was imposed on only one of the particle
~Note that a perturbation on a single particle changes all
trajectories as a consequence of strong hydrodynamica
teraction.! We determined the Euclidean distan
D5A(xp2xu)21(zp2zu)2 for each of the three particles
where the subscriptsp and u belong to the perturbed an
unperturbed positions at the same time. Figure 2 shows
the divergence has an overall exponential time depende
D(t);exp(lt), and the fit gives an estimate for the first~lo-
cal! Lyapunov exponentl50.03860.001. Because of the
reversibility property and the continuous time dependen
Eq. ~6! must have three other~local! Lyapunov epxonents
Two of these vanish, and the last one is2l @29#. Note that
other values of the first local Lyapunov exponent were o
tained in the range between 0.0~power-law divergence! and
0.1 depending on the initial configurations, but we fou
values around 0.04 to be representative. The positivity of
first Lyapunov exponent is a clear indication ofchaos. In
fact, this kind of chaos is of transient type@30#, and has a
finite average lifetime.

This situation is rather similar to what is called chao

FIG. 2. ~Color! The growth of the Euclidean distanceD between
unperturbed and perturbed trajectories as a function of timet. The
blue, yellow, and red particles started from the same heightz50 at
the horizontal locationsx522.9510, 21.0, and 1.0, respectively
The initial perturbation imposed on the blue particle w
dx510210. The exponential fit~black! has a slope of 0.038
60.001 for each of the particles.
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56 2861CHAOTIC PARTICLE DYNAMICS IN VISCOUS . . .
scattering@31#. The latter occurs in Hamiltonian system
characterized by a complicated interaction at short distan
but without any interaction at asymptotically large distanc
Examples are the motion of a single particle in a nontriv
potential of finite extension or classical models of chemi
reactions@32#. Incoming particles then undergo a free m
tion, later they enter the region of strong interaction a
depending on their initital conditions, spend a longer
shorter time in this region. Ultimately all the particles esca
to infinity in a free motion. The initial conditions used in th

FIG. 3. ~Color! Numerical solution of model~5! for 106 Stokes
times illustrating a scatteringlike process. The particles started f
the following (x,z) initial positions: Red~2169.697 802, 0.0!,
yellow ~2164.658 129, 0.973 979!, and blue ~212.157 925,
694.086 9269!. Note that the couple formed after the scatteri
event need not coincide with the initial one. In this respect
example shown is special.
es
.
l
l

,
r
e

Stokeslet model above correspond to placing the parti
into the interaction region. We can, however, easily fi
other initial conditions where the motion starts with a pha
of approach. An example is shown in Fig. 3. The analo
with a scattering process is clear: The asymptotic state
the interaction region correspond to configurations when
least one particle is far away from the others, and when
three particles are close to each other, respectively. In f
the stay in the mixing phase is the analog, in the languag
chemical reactions, of the creation of an intermediate co
plex of finite lifetime.

The lifetime distribution, i.e., the duration of the stay
the interaction region is known to be a rather irregular fun
tion in chaotic scattering. This irregularity is due to the e
istence of an underlyinginvariant chaotic saddle@30#, which
is a globally nonattracting set, and cannot be reached exa

m

e

FIG. 4. ~Color! Escape-time distribution from 640 000 initia
(x,z) configurations withr125(2,0). The color scale from red
across yellow, green, and blue to violet indicates increasing tim
from 0 to 10 000 Stokes units. Two cross sections are explic
shown at the heights ofz59.0 ~middle! andz53.5 ~bottom!, indi-
cated by dotted lines.
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2862 56JÁNOSI, TÉL, WOLF, AND GALLAS
FIG. 5. ~Color! Four sections of the initial condition space of the test particle. Particles 1 and 2 start always from the
@x(t50),z(t50)# positions.~a! Top left, ~21,6! and ~1,6!; ~b! top right, ~-1,6! and ~1,6.7!; ~c! bottom left ~21,6! and ~1,7.5!; ~d! bottom
right, ~0,25! and~0,7!, respectively. The final configurations from 640 000 initial points are indicated in each figure. Different colors d
which particle isleft behind. Red, particle 1; yellow, particle 2; blue, test particle. The thin white squares on the upper left panel sh
regions zoomed with higher resolutions in Fig. 6.
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Particles, however, can come arbitrarily close to it and
hibit chaotic motion before escaping. The chaotic saddle
self is a fractal with a local structure resembling the dir
product of two Cantor sets in certain regions. It contains
infinite number of bounded orbits. Furthermore, there ex
a complicated fractal curve, the so-called stable manifo
along which particles can hit the saddle~although, as men-
tioned above, the probability of falling exactly onto th
curve is zero, because it is a fractal!. Points where the life-
time distribution takes on infinitely large values correspo
to initial conditions falling exactly on the stable manifol
Numerically very large values can really be obtained belo
ing to trajectories starting close to the stable manifold, a
staying therefore a long time around the saddle.

In order to measure a lifetime distribution in the system
-
t-
t
n
ts
,

d

-
d

f

three particles, we say that an ‘‘escape’’ of a couple is
tablished, if itsvertical distance from the third particle lef
behind exceeds a thresholdzc . We found that at separation
zc>100.0 the particle which is left behind has a negligib
interaction with the pair, it moves vertically upwards with i
own self-velocity. The lifetime or escape timeT depends
sensitively on the initial configuration. To illustrate this, w
fixed the initial value ofr12 to be (2,0) by letting particles 1
and 2 start in (21,6) and (1,6), respectively, and simulate
several trajectories with initialr235(x,z) values in a broad
range. The lower part of Fig. 4 shows the dependence of
escape time on the test particle’s initialx coordinate at two
fixed initial heightsz. The distributions are rather irregula
with regions of very wild changes over several orders
magnitude in the escape timeT. The color plate was obtaine
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56 2863CHAOTIC PARTICLE DYNAMICS IN VISCOUS . . .
by distributing initial points on the rectangleuxu<7,
0,z,14 uniformly. The color coding corresponds to th
value of the escape time. Note that the escape time is
short close to the other two particles@i.e., around the points
~21,6! and ~1,6!#, because the velocity field diverges in th
vicinity of any particle. Points with escape time on the ord
of 10 000 Stokes units~violet! trace out with very good ac
curacy the chaotic saddle’s stable manifold. The complica
winding and the fractal character of this curve is clear.

The coordinates of the test particle were chosen from
(8003800) grid with one of the grid points slightly dis
placed bydx5dz5331027 from the fixed initial position

FIG. 6. ~Color! Enlarged regions of the phase-space sect
shown in Fig. 5~a!. The resolution is proportionally increase
640 000 initial configurations are plotted. The color coding is ide
tical to that of Fig. 5.
ry

r

d

n

of one of the other two particles. This is because exac
symmetric initial configurations result in particle ‘‘colli
sions,’’ which show up as divergences in the numerical
tegration process.

To obtain a further impression about the intricate pha
space structures, we consider now the same part of the

n

-

FIG. 7. ~Color! Top: escape-time distribution in the forward an
backward dynamics on the (x,z) plane for r125(2,0). ~The back-
ward dynamics was evaluated explicitly on the original grid, it
not a mirror image. Hence the agreement with the reflected pat
is a direct assessment of the quality of the resolution.! The color
scale from red across yellow, green, and blue to violet indica
increasing time from 0 to 20 000 Stokes units~cf. Fig. 4!. Bottom:
the chaotic saddle on the (x,z) plane, i.e., initial configurations
belonging to long triplet orbits in both temporal directions are in
cated by the black dots.



if-
on
th
-
ig

he
ic
ni-

m
a
at
s

ke
ar
a

re
x-
h
s.
tr
ed

or
en

rn
a

th
b
th
lity
e

o

d
th
a-
ac
he
a

p
ce
fa
lf-

on
e
th
c

af
n-
gle
o
as
in

con-
c
or-
s
iodic
nd

har-
e
s a

ion
of

ave
ng
he

t
n

le
e
ole
s

ig.

2864 56JÁNOSI, TÉL, WOLF, AND GALLAS
particle’s initial condition space as in Fig. 4, but with a d
ferent coloring. The colors now mean different escape c
figurations: They correspond to the particle left behind in
asymptotic state. Figure 5~a! shows the results, Fig. 6 is mag
nification of the regions denoted by white squares in F
5~a!. It is natural that if the test particle is close to any of t
other two, they form a couple and leave behind the part
that was originally furthest away from them. Thus, big u
colored regions appear around the points (21,6) and (1,6)
denoted by 1 and 2, respectively. It is less trivial that co
pact regions of a given color can be found also further aw
The most surprising fact is, however, that they are separ
by regions where different colors can come arbitrarily clo
to each other. A comparison with Fig. 4 shows that this ta
place along the lines where the escape time is particul
large, i.e., along the stable manifold. In fact this manifold h
an interesting topological property~just as in other scattering
systems with at least three different exit modes@33#!: Any
neighborhood of any point on the manifold contains all th
colors~cf. Figs. 5, 6!. This shows that there is a strong mi
ing of the escape modes along the stable manifold whic
another consequence of the sensitivity to initial condition

The dependence of the test particle’s phase-space s
tures on the initial position of particles 1 and 2 is illustrat
by Figs. 5~b!–5~d!. Here a sequence ofr12 values were taken
corresponding to initial alignments deviating more and m
from a horizontal one, and ending in a vertical arrangem
The figure indicates that a rotation of the initial vectorr12
leads to a smooth deformation of the phase-space patte

It is instructive to construct the chaotic saddle itself, or
least a part of it. Since the saddle contains all the points
never escape either forward or backward in time, it can
obtained as the intersection of the stable manifolds of
direct and time inverted dynamics. Due to the reversibi
property of Eq.~6! mentioned above, the latter is just th
mirror image of the former with respect to the axisz56
@34#. In other words, we obtain a rather accurate picture
the saddle by plotting points with very large escape times
both types of dynamics. Figure 7 shows the escape-time
tribution of both the forward and backward dynamics on
(x,z) plane with color coding. Points that belong simult
neously to large values in both dynamics are plotted in bl
in the lower part of Fig. 7 and correspond to points of t
chaotic saddle in the initial condition space of the test p
ticle. Note the striking direct product structure.

Besides the typical asymptotic states formed by a cou
separated from a single particle, the system has more ex
tional asymptotic states in which all three particles are
away from each other and move with their own se
velocities upward. In such three-singlet statesṙ125 ṙ2350.
Our numerical procedure with a long duration of integrati
and a large fixedzc provides us with initial points that com
after a long time close to a three-singlet state in both
forward and backward dynamics. In other words, the bla
pointsr23 of Fig. 7 along withr125(2,0) correspond to mid
states of complicated trajectories which can be reached
an infinitely long time from some initial three-singlet co
figuration and which decay towards another three-sin
configuration. The property that the invariant manifolds
some asymptotic state provide a fractal foliation of the ph
space~or initial condition space! has also been observed
-
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three-degree-of-freedom scattering systems with energy
servation@36#. It is generally believed that a full chaoti
saddle contains an infinite number of unstable periodic
bits, too@30#. This would imply that, in contrast to previou
statements, the three-particle dynamics has unstable per
solution as well, although they might be rather unstable a
of rather long period@cf. trajectories at around 800,z,3000
in Fig. 1~a!#.

As a next step, one can determine some quantitative c
acteristics of the saddle@35#. Figures 4 and 5 suggest that th
stable manifold in the four-dimensional phase space ha
fractal dimension 31Dp with 0,Dp,1. Consequently, on
the initial condition plane it appears as a curve of dimens
11Dp . Due to the reversibility property, the intersection
the stable and unstable manifolds in the full space is 212Dp
dimensional. The chaotic saddle on Fig. 7 should thus h
dimension 2Dp . One of the simplest methods for measuri
the dimension of a fractal object is the box counting: T
number of two-dimensional boxesN(e) covering the saddle
as a function of box sizee scales with a nontrivial exponen
Dbox, see Fig. 8~a!. The power-law fit gives an estimatio
Dbox'1.2. Consequently,Dp'0.6 is the partial dimension
of the saddle along the stable~unstable! manifold on the
(x,z) plane of Fig. 7.

Figure 8~b! shows the escape-time statisticsP(T), the
probability density for finding an escape timeT in a large
ensemble of particles. In the time regime 150,T,350 it
obeys an exponential decayP(T);exp(2kT) with a decay

FIG. 8. ~a! Result of the box counting for the chaotic sadd
shown in Fig. 7. The sizee of the square boxes covering the imag
of the fractal set is measured in pixels, the resolution of the wh
image was 8003800 pixels. The slope of the power-law fit i
21.2460.04. ~b! Normalized escape-time statisticsP(T) for the
forward dynamics in the (x,z) phase-space segment shown in F
7. The slope of the exponential fit is20.01360.002.
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rate k'0.013. This is an important fingerprint of transie
chaos too@30#. There is a fundamental relationship betwe
the partial dimensionDp , the decay ratek and the first av-
erage Lyapunov exponentl @30#: Dp'12k/l. Our esti-
mated parameters are consistent with this relationship in
given numerical accuracy.

The sharp jump in Fig. 8~b! at aroundT'350 Stokes time
is most probably associated with characteristic shapes in
trajectories. In the mixing phase, the number of ‘‘knots
where the three particles move close to each other, ha
integer value. Starting from the initial conditions in th
phase-space segment shown in Fig. 5~a!, we find that the
jump in P(T) belongs to trajectories with three knots. Orb
with three knots have escape times dominantly aro
T5350. This behavior is characteristic only in the larg
single-colored regions in the phase space where the traje
ries are not sensitive strongly to small changes in the in
configurations. At smaller escape times most of the or
have only two knots. Interestingly, neither the single kn
orbits ~there are not too many!, nor orbits with a larger knot
number have such a characteristic escape time.~Note that
there is no direct relationship between the escape time a
characteristic ‘‘meeting time’’ at the last ‘‘knot,’’ becaus
the escape time contains an interval during which the cou
moves away from the third particle to the critical distan
zc5100.!

V. DISCUSSION

We pointed out in Sec. IV that the dynamics of thr
particles is chaotic, and it is associated with an invari
chaotic saddle. Since the Stokeslet model of point partic
we used is the simplest approximation for describing hyd
dynamical interactions in the zero Reynolds number lim
we should discuss to which extent our results can be vali
small but finite Reynolds numbers.

First of all, we compare the numerical results with relat
experiments. Jayaweera, Mason, and Slack@21# performed
the first sedimentation experiment with three particles st
ing from a line. Later, Ganatos, Pfeffer, and Weinbaum@7#
developed a numerical method to calculate particle veloci
and drag coefficients for systems of identical spheres. T
obtained a general agreement between the experimenta
numerical results, however they noted some differences
pointed out again the sensitivity to initial configurations. W
show a comparison between the experiments and our re
in Fig. 9. We cannot expect a better agreement, espec
due to the differences in the resolutions. In addition,
experiments were performed with finite spheres, where r
tion, neglected in our treatment, can modify the trajector

As for corrections to the lowest order approximation, w
have checked the effect ofO(1/r 3) terms. The simples
Stokeslet velocity field Eq.~3! can be replaced in Eq.~4! by
the full solution@4#

u8~r !5
3av0

4 S e

r
1

~e–r !r

r 3
1

a2e

3r 3
2

a2~e–r !r

r 5 D 5av0U8~r !

~7!

of the Stokes approximation fulfilling the no-slip bounda
condition on the surface of the sphere. Using the proper u
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we recover the nondimensional forms~5! or ~6! with U re-
placed byU8. Thus we can implement the same method
the numerical solutions. The result for the initial conditio
space of the test particle forr125(2,0) is plotted in Fig. 10.
A comparison with Fig. 5~a! shows that some new feature
appeared mostly around the fixed particles, but the ove
phase-space structure remained considerably intact. One
also recognize a slight global shrinkage of the correspond
colored domains.

It is instructive to see the effect of different approxim
tions considering special trajectories. Durlofsky, Brady, a
Bossis@8# show the trajectories of three sedimenting sphe
on a vertical plane starting from a line with a horizont

FIG. 9. ~Color! Comparison of the simulations~top band! with
the experimental results of Jayaweera, Mason, and Slack@21# ~bot-
tom band!. Three particles sedimenting in a vertical plane from
horizontal line. The positions of the red and the yellow particles
fixed, indicated also by crosses in the bands. The blue test par
starts from different initial positions. Color stripes show which pa
ticle is left behind after a long time.

FIG. 10. ~Color! Segment of the initial condition space (x,z) for
three particles of the modified velocity field Eq.~7! @cf. Fig. 5~a!#.
Particles 1 and 2 start from the positions~21,6! and ~1,6!, respec-
tively, the third one is the test particle. The final configuratio
from 640 000 initial points are indicated. The color coding is ide
tical to that of Figs. 5 and 6.
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2866 56JÁNOSI, TÉL, WOLF, AND GALLAS
spacing~25,0,7! „see Ref.@8#, Fig. 5~b! …. Their full hydro-
dynamical model also accounted for near-field lubricat
effects and the dominant many-body interactions. The sa
initial configuration was used for benchmarking by Philli
@15#, who implemented also an accurate model, and rep
duced the trajectories almost identically„see Ref.@15#, Fig.
2~a!…. Our simple model~5! gives from the~25,0,7! initial
configuration trajectories differing significantly from th
cited ones. On the other hand, direct examination of m
orbits gave the result that small changes in the initial c
figurations alter ‘‘smoothly’’ the resulting trajectories in th
single-colored large regions in the phase space~Fig. 5!. With
a simple trial and error method we located the initial co
figuration ~25,0,7.258! which reproduced the trajectorie
shown in Refs.@8# and @15#, see Fig. 11~a!. Based on the
observation of the global shrinkage of the phase-space s
tures by introducingO(1/r 3) corrections, we found very
quickly the proper initial configuration~25,0,7.156! for the
modified field model~7! which also gives almost identica
trajectories@Fig. 11~b!#. It is likely that the inclusion of ad-
ditional terms, e.g., of those describing rotation, results
better and better approximations and modifies further
phase-space structures so that the initial configurations
the particular trajectories shown in Fig. 11 approach the ‘‘
act’’ ones for ~25,0,7!. Nevertheless, we believe that th
simplest Stokeslet approximation with the leadingO(1/r )
terms captures already quite well the most essential feat
of the hydrodynamical interactions.

Here we would like to emphasize that the CPU time
obtaining the exact trajectories with full hydrodynamics
;12 h on a HP 715/100 workstation@37#, while the Stokes-

FIG. 11. Numerical solution of model~5! for two different ve-
locity fields. The particles started from the same heightz50. The
horizontal locationsx were ~a! ~25.0,0.0,7.258!, velocity field ~3!;
and ~b! ~25,0.0, 7.165!, velocity field ~7!. Axis z is inverted.
n
e
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FIG. 12. ~a! Empirical distribution of the magnitudeuuu of the
particles’ instantaneous velocities during the full simulation of E
~6! and ~3! with initial conditions in the phase-space segment
Fig. 7. The inset shows the same distribution on a double loga
mic scale. The dotted lines are power-law fits for velocities b
smaller and larger than the self-velocityuuu51.0, the exponents are
close to15 and25, respectively.~b! Distribution of the instanta-
neous moving directionsb with respect to the vertical axis~the
particle left behind moves withuuu and b50). The dotted line
shows a Gaussian fit exp(20.03b2). ~c! Correlation diagram be-
tween moving directions and velocity absolute values. The en
lope of the set can be well fitted with an exponential functi
uuumin(ubu);exp(0.26ubu).
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let solution requires only 1.831026 h for a similar solution
plotted in Fig. 11.

We mentioned in the Introduction the problem of swim
ming microorganisms. Although the hydrodynamical intera
tion between algae or bacteria is certainly weaker@38,39#
than that of, e.g., sedimenting particles, simply because
are driven by internal forces, these interactions may cont
ute to the collective behavior. For example, it is a comm
observation that ‘‘individual’’ trajectories tracked in an a
sembly of microswimmers show a rather noisy charac
~see, e.g., Fig. 2 in@39#!. These trajectories can be chara
terized by rather wide distributions of swimming directio
and velocity. In Fig. 12 we illustrate that the fully determi
istic Stokeslet dynamics can also lead to rather wide
smooth distributions. Even more, the histogram of the m
ing directions@Fig. 12~b!# can be well approximated with
Gaussian, which is usually attributed to ‘‘pure’’ rando
noise. In our approach the stochastic behavior is due
deterministic internal dynamics which is strongly chaot
Unfortunately there is no well established simple far-fie
approximation for the velocity around a self-driven sm
-

-
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l-

nn
-

ey
-

n

r
-

d
-

a
.

l

‘‘microswimmer,’’ such as Eqs.~3! or ~7!, therefore we
could not repeat the detailed analysis performed in
framework of the Stokeslet model.

In summary, we introduced the simplest Stokeslet mo
for studying the hydrodynamical interaction between mic
scopic particles driven by external forces. We illustrated
efficiency of the approximation by a detailed description
the three-particle motion in a vertical plane, and pointed
that the sensitivity to initial configurations is associated w
a chaotic saddle resulting in a chaotic scattering like dyna
ics. Our resolution made it possible to locate the saddle
quantitatively characterize its dynamical and fractal prop
ties. We argued that corrections do not alter the unive
phase-space structures drastically, thus even the Stokesle
proximation should be able to capture the essential hydro
namics in an interacting assembly.
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