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Abstract: We consider two problems in dynamical systems. First, shad-
owing, namely the impact of small numerical errors in calculations of
orbital points of the two-dimensional Hénon map is investigated. The
unique map inverse allows one to access numerical errors by performing,
under size-controlled representation of real numbers, a “there and back
game”, namely, iterating the map arbitrarily forward and, from there,
backtracking using the unique inverse. Numerical errors are determined
by measuring the distance between the points of departure and return.
Second, we report exact analytical results for the quadratic map in the
fully chaotic partition generating limit. In particular, exact expressions
for periodic orbits and for preperiodic points allow one to extract precise
coordinates of points belonging to periodic orbits. Such coordinates pro-
vide valuable checkpoints against which to gauge propagation errors for
some classes of numerical calculations. The simple systems considered
here provide fruitful workhorses to investigate numerical noise and error
propagation when performing large number of iterates.
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1. Introduction

Le cose sono unite da legami invisibili. Non puoi
cogliere un fiore senza turbare una stella.

Galileo Galilei

The overwhelming majority of models that are interesting from a prac-
tical or fundamental point of view turn out to be hard to deal with nu-
merically. This is so because it is quite difficult to numerically compute
approximate solutions of an initial value problem which remain close to
true solutions over a long time interval. To begin with, what should be
understood by a “true solution” of a problem that cannot be integrated ex-
actly? This question is relevant because virtually every equation of motion
does not allow a solution to be represented in closed form and, therefore,
to mimic the ad-hoc and very narrow class of problems which admit exact
solutions and which are traditionally found in introductory textbooks of cal-
culus and classical dynamics. Systems allowing exact analytical solutions
are the exception, not the rule.

The task of solving typical equations of motion becomes generally im-
possible if one fixes the precision of the numerical representation of real
numbers and demands solutions to remain valid over arbitrarily long time
intervals. Numerical solutions normally involve hundred of thousands or
even millions of iterates. To numerically solve equations of motion means
to iterate discrete maps, either stepping forward a numerical integrator,
or iterating a map assumed to represent the dynamics. In this context,
it becomes natural to inquire about the exact meaning and significance of
numerical solutions of equations of motion, and for how long such numeri-
cal approximations remain valid. But, how to make sense of this questions
when “true” solutions are unknown and impossible to obtain? Against what
can we gauge numerically obtained solutions? It is one thing for a given dy-
namical system to have true orbits, that may behave in complicated or even
chaotic ways, and another for such orbits to be computable, or observable
in real life.

To address numerical computability problems, mathematicians came up
with a number of concepts and claims centered around the notion of shad-
owing, all arising from a shadowing theorem for Anosov diffeomorphisms.1

Anosov and Bowen showed that in systems which are uniformly hyperbolic,
approximate numerical (i.e. “noisy”) orbits will stay “close”, or shadow, a
true orbit for arbitrarily long times. Note the use of “a true”, not “the true”
orbit. Regrettably, a key issue in this context is that the shadowing theo-
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rem does not apply to real-life systems, which tend to be never hyperbolic
let alone uniformly hyperbolic. Thus, strictly, one is still left in the dark
regarding true mathematical orbits, having to rely on numerical experi-
ments and rules of thumb derived from them which, nevertheless, use to
emerge dressed as theorems, with dubious significance for applications. The
rigorous study of shadowability has been a surprisingly difficult and tech-
nically sophisticated mathematical playground which so far seems to have
only been thoroughly carried out in the case of one-dimensional maps, like
maps of intervals or the circle, or the two-dimensional Hénon map.2,3 At
present, despite the immense literature available, it seems fair to say that
shadowability is still a subject where problems vastly outnumber significant
results.

The purpose of this paper is, first, to describe a simple numerical exper-
iment profiting from the fact that the Hénon map has a unique inverse. As
it is typical for any map having a unique inverse, one can in principle iter-
ate the map forward any number of times and, using the inverse, return to
the original point of departure. Here, we check how this “there and back”
excursion fares numerically. Generically, dynamical systems with unique
inverse provide a wide class of models to study round-off and propagation
errors numerically using simple examples. Second, we provide a survey of
some recent results and examples of a general methodology to obtain exact
expressions for periodic orbits of the quadratic map in the partition gen-
erating limit, as well as the coordinates of their orbital points. Knowledge
of the precise location of orbital points is a mean of obtaining exact mark-
ers, reference points in phase space, that help to quantify the impact of
unavoidable round-off and noise errors that parasitize numerical solutions
of equations of motion. Curiously, while the literature on shadowability is
already imense, apparently in all this literature there are no explicit dis-
cussions of the impact of shadowability on real-life applications. Of course,
as for Lorenz’s butterfly effect, it is not difficult to grasp the conceptual
interest in shadowability. But an example of a practical situation where
shadowability really makes a detectable difference seems to be still missing.

Before proceeding, we draw attention to the notion of noninvertible
map. It is common to say that a dynamical system is noninvertible if the
backward time evolution is either undefined or multivalued. In the present
paper, the term unique inverse is used to clearly indicate situations where no
branch ambiguity arises when taking the inverse. Of course, in general the
number of inverses can vary from point to point or be undefined. Systems
with multivalued inverse pose no intrinsic difficulty, just much more labor.
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Table 1. Differences observed in the arrival distance from an arbitrarily se-
lected initial point (x0, y0) = (0.2, 0.7), after performing n forward followed
by n inverse iterates of the Hénon map. The topmost set of data was obtained
with 10 digits arithmetics, the middle set with 15 digits, and the bottom set
with 30 digits. Here, (a, b) = (1.4, 0.3). Manifestly, the huge distances shown
have no practical use, but are just indicative of the numerical capabilities of
the computer algebra system used.

Iterate x y Distance from
departure point

5 0.2000000000 0.7000000000 0
10 0.2014125000 0.7023640733 0.2753× 10−2

15 -2.801580008 25.58914483 25.06948
20 0.2120× 1024 0.1498× 1042 0.1498315× 1042

25 0.4649× 10604 0.7205× 101208 0.7205× 101208

30 0.1048× 1075725 0.3663× 10151449 0.3663× 10151449

5 0.200000000000000 0.700000000000000 0
10 0.200000005703233 0.700000009518633 0.1109× 10−7

15 0.200018165229800 0.700030318666333 0.3534× 10−4

20 0.0815040284379333 0.548873019665267 0.1920
25 873.988260542437 2546234.16352894 2546233.61
30 0.2165× 10574 0.1563× 101148 0.1563× 101148

5 0.200000000000000 0.700000000000000 0.

10 0.200000000000000 0.700000000000000 0.1028× 10−22

15 0.200000000000000 0.700000000000000 0.1162× 10−19

20 0.199999999999999 0.699999999999999 0.3407× 10−15

25 0.200000000001711 0.700000000002855 0.3329× 10−11

30 0.199999988783928 0.699999981280499 0.2182× 10−7

2. The there-and-back game with the Hénon map

As mentioned, maps with a unique inverse are good examples to learn about
difficulties and round-off errors in numerically computed orbits.

Consider a standard textbook-example of a map with a unique inverse,
the Hénon map4–6

x̃ = a− x2 + by, (1)

ỹ = x. (2)

When b 6= 0, the unique inverse is

x = ỹ, (3)

y = (x̃− a+ ỹ2)/b. (4)

Clearly, the inverse means that, at least formally, one can forward iterate
the map any arbitrary number of times and, from there, precisely return
to the initial point of departure. But, does this also hold for numerical
work? If not, after how many forward iterates can one return within a
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Fig. 1. The future and the past: Topological similarity between shape and distribution
of stability phases in the control parameter space of (a) the Hénon map, and (b) the
inverse Hénon map. Colors/shadings denote periods mod 17, as defined by the colorbar.
White denotes chaos. Numbers represent the period of the main domains of major islands
and are added to facilitate visual comparisons. Divergent (unbounded) orbits constitute
roughly half of both windows. Resolution of each panel: 1200× 1200 parameter points.

prescribed radius of the initial point? In other words, how far can we move
from the initial point and safely come back? To investigate this question
we use Maple, a computer algebra software which allows fixing the number
of significant digits in computations with real numbers.

Table 1 illustrates typical results obtained when iterating the Hénon
map forward and backward 30 times while fixing number of digits in the
computations. As parameters, we select Hénon’s classical values (a, b) =

(1.4, 0.3), and as initial point in phase space, we arbitrarily chose the point
(x0, y0) = (0.2, 0.7). This point lies relatively close to the chaotic attractor.
To reduce the table size, iterates are recorded modulo 5. The top set of
data in Table 1 was obtained with 10 digits arithmetics, the middle set with
15 digits, and the bottom set with 30 digits.

As seen from Table 1, moving five iterates forward and then backward
always allow one to safely return to the original departure point, indepen-
dently of using 10, 15 or 30 digits arithmetic. However, the situation starts
to change considerably after moving 10 iterates forth and back. Ten it-
erates are barely able to bring one back to the point of departure with
10 digits arithmetics. Double precision computations normally use 15-16
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digits and, therefore, allow safe excursions of about 10 iterates. However,
15 digits arithmetics fails spectacularly after some 20 iterates or so. Even
when using 30 digits, which require the ability of performing arithmetic
with dedicated software, do not allow very far excursions. One may sus-
pect the divisions by b in Eq. (4) to cause loss of precision. By performing
similar experiments with b = ±1 it is not difficult to realize this not to be
the case.

Out of curiosity, we decided to compare the distribution of stability
regions between the direct Hénon map, Eqs. (1)-(2), and the corresponding
inverse map, Eqs. (3)-(4). To this end, phase diagrams were computed
in the control parameter space as described in the literature.7,8 Figure 1
illustrates the results obtained for representative parameter windows. As
seen from this figure, the formal similarity of both maps is reflected in
the relatively isomorphic distribution of the stability phases, despite the
strong shear present in Fig. 1(b) and the fact the window lies well outside
the familiar stripe −1 ≤ b ≤ 1 typical of forward iteration of the Hénon
map.7 Thus, to iterate forward or backward in time a map which has a
unique inverse seems to produce quite similar distribution of stable periodic
motions.

Before moving on, it is interesting to observe that, with the possible
exception of the weak interaction,9 all known laws of physics do not dis-
tinguish between future and past, although observed phenomena are irre-
versible. It is an important and difficult open problem to find a theoretical
explanation for the observed asymmetry in the direction of time, time’s
arrow in the words of Eddington.10

3. Exact coordinates of orbital points

Now, we consider the determination of exact orbital points in the so-called
a = 2 partition generating limit4–6 of the quadratic or, equivalently, logistic
map

xt+1 ≡ f(xt) = a− x2t , t = 0, 1, 2, . . . . (5)

For systems like this, with algebraic equations of motion, it is possible to
use the standard elementary symmetric functions11 to express individual
periodic orbits as functions of the orbital points, which are roots of the
periodic orbits. Using the so-called Vieta’s formulas, the elementary sym-
metric functions may be expressed in a general manner by means of the
coefficients of the orbital equation of motion, without the equation itself
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being solved. Of particular interest in the present context is an observation
by John Wallis (1616-1703), in De Tractatus Algebra, Historicus et Practi-
cus, that “the coefficient of the second term [of any polynomial], reckoning
downward from the highest, is the aggregate of all the roots...”.

Accordingly, a fruitful quantity to express individual orbits of polyno-
mial dynamical systems is the scalar which represents the sum σ of the
orbital points. With σ, all possible orbits can be extracted from a single
σ-parameterized polynomial ψk(x), called the orbital carrier.12,13 For each
period k, the corresponding values of the scalar σ are obtained as roots of
an auxiliary polynomial Sk(σ), whose degree informs the total number of
k-periodic orbits that exist in the system. As it is not difficult to realize,
the study of the polynomial doublets ψk(x) and Sk(σ) shifts the traditional
study of numerically approximate orbital points to a new level, namely to
the study of σ-parameterized algebraically exact equations of motion. Every
periodic orbit can be parameterized by the sum σ of orbital points, and the
method to do it is effective.13

A few examples help to understand what this is all about, and how it
works. Consider the polynomial doublets ψk(x) and Sk(σ) which encode
all possible orbits of periods 4, 5 and 6 in the partition generating limit of
the quadratic map. Explicitly, for period four the doublet is13

ψ4(x) = x4 − σx3 + 1
2
(σ2 + σ − 8)x2 − 1

6
(σ3 + 3σ2 − 20σ + 2)x

+ 1
24

(σ − 3)(σ3 + 9σ2 − 2σ − 16) (6)

S4(σ) = (σ + 1)(σ2 − σ − 4). (7)

The degree of S4(σ) tells us that there are three period-four orbits, one
with integer coefficients and two with quadratic numbers as coefficients.

For period five the analogous doublet encoding all possible orbits is

ψ5(x) = (360σ2 − 360σ − 240)x5 − 120σ(3σ2 − 3σ − 2)x4

+60(σ2 + σ − 10)(3σ2 − 3σ − 2)x3

−(60σ5 + 90σ4 − 1800σ3 + 1710σ2 + 1860σ − 1200)x2

+(15σ6 + 45σ5 − 735σ4 + 375σ3 + 3480σ2 − 2700σ − 1200)x
−3σ7 − 12σ6 + 192σ5 + 30σ4 − 2061σ3 + 1446σ2 + 4248σ − 3600, (8)

S5(σ) = (σ − 1)(σ2 + σ − 8)(σ3 − σ2 − 10σ + 8). (9)

The total number of period-five orbits is six, the degree of S5(σ). The orbit cor-
responding to the choice σ = 1 has integer coefficients, two orbits have quadratic
numbers as coefficients, and three orbits have coefficients given by algebraic num-
bers of degree three.

Abbreviating ϕ ≡ 3σ3 − 7σ2 − 13σ+ 13, for period six the doublet encoding
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all possible orbits is

ψ6(x) = 160ϕ2σ2(x6 − σ x5) + 80σ2(σ + 4)(σ − 3)ϕ2x4

−40σ ϕ
(
2σ7 + σ6 − 86σ5 + 126σ4 + 358σ3 − 343σ2 − 50σ + 56

)
x3

+20σ2ϕ
(
σ7 + 3σ6 − 70σ5 + 48σ4 + 679σ3 − 683σ2 − 1218σ + 1048

)
x2

−4σ ϕ
(
σ9 + 6σ8 − 91σ7 − 78σ6 + 1693σ5 − 976σ4 − 6911σ3 + 5496σ2

+2508σ − 2128
)
x+ 2σ14 + 14σ13 − 247σ12 − 268σ11 + 7984σ10

−8072σ9 − 80966σ8 + 157668σ7 + 184938σ6 − 530694σ5

+88965σ4 + 373032σ3 − 197156σ2 − 13440σ + 15680, (10)
S6(σ) = (σ + 1)(σ − 1)(σ3 − 21σ + 28)(σ4 + σ3 − 24σ2 − 4σ + 16). (11)

Now, the total number of orbits is nine, the degree of S6(σ). Two orbits have
integer coefficients, three have coefficients given by algebraic numbers of degree
three, and four have coefficients given by algebraic numbers of degree four. All
these exact informations regarding the algebraic nature of the orbits are not
possible to extract from numerical approximations of the orbital equations of
motion, independently of the number of digits used for their computation.

As mentioned, when substituted into ψk(x), each individual root of Sk(σ) = 0
“projects” ψk(x) into the specific orbital equation corresponding to σ. Normally,
the polynomials Sk(σ) factor over the integers: factors with degree ∂k > 1 corre-
spond to orbital clusters, namely to irreducible polynomial aggregates commin-
gling together a total of ∂k orbits. Linear factors, multiple or not, correspond to
non-clustered single orbits of period k. For instance, substituting σ = −1 into
ψ4(x) we obtain the non-clustered orbit o4,1(x), while for σ = (1 −

√
17)/2 and

σ = (1 +
√

17)/2, roots of the quadratic factor in S4(σ), we get the orbits o4,2(x)
and o4,3(x), respectively:

o4,1(x) = x4 + x3 − 4x2 − 4x+ 1, (12)
o4,2(x) = x4 − 1

2
(1−

√
17)x3 − 1

2
(3 +

√
17)x2 − (2 +

√
17)x− 1, (13)

o4,3(x) = x4 − 1
2
(1 +

√
17)x3 − 1

2
(3−

√
17)x2 − (2−

√
17)x− 1. (14)

Note that the last two orbits have more complicated algebraic coefficients en-
forced by the σ values underlying them. When multiplied together, o4,2(x) and
o4,3(x) produce an orbital cluster, or aggregate:

c4,1(x) = o4,2(x)× o4,3(x)
= x8 − x7 − 7x6 + 6x5 + 15x4 − 10x3 − 10x2 + 4x+ 1, (15)

a cluster obtainable directly by eliminating σ between ψ4(x) and σ2 − σ − 4.
Note that the product of o4,2(x) and o4,3(x), which individually have algebraic

coefficients, resulted in a cluster with integer coefficients, a generic characteristic
of conjugated orbits with algebraic coefficients. Technically, o4,2(x) and o4,3(x)
are defined by relative14 quartic equations of motion, because their coefficients
are algebraic numbers, not integers. Manifestly, c4,1(x) decomposes over the field
Q(
√

17). Furthermore, note that o4,1(x) provides an exact representation of the
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orbit and has simple integer coefficients. In sharp contrast, the numerical repre-
sentation of o4,2(x) and o4,3(x) will have necessarily approximate numerical coef-
ficients. Thus, the symmetries that are clearly visible between Eqs. (13) and (14)
are totally obliterated when considering numerically approximated “projections”
of the orbits. This unambiguous dichotomic distinction between algebraically
exact and numerically approximate orbits remains valid for other periods and
displays clearly the powerful insight obtained by working with exact equations of
motion.

Doublets like Eqs. (6)-(7), (8)-(9), and (10)-(11) may be determined system-
atically, in principle for any arbitrary period. Doublets for arbitrary values of a
of the quadratic map and arbitrary (a, b) of the Hénon map are available.15,16

Similarly, eliminating σ between ψ5(x) and, successively, σ−1, σ2+σ−8, and
σ3 − σ2 − 10σ + 8, we get, apart from multiplicative constants used to eliminate
denominators in ψ5(x), the following orbits and orbital clusters:

o5,1(x) = x5 − x4 − 4x3 + 3x2 + 3x− 1,

c5,1(x) = x10 + x9 − 10x8 − 10x7 + 34x6 + 34x5 − 43x4

−43x3 + 12x2 + 12x+ 1,

c5,2(x) = x15 − x14 − 14x13 + 13x12 + 78x11 − 66x10 − 220x9 + 165x8

+330x7 − 210x6 − 252x5 + 126x4 + 84x3 − 28x2 − 8x+ 1.

The clusters factor into quintics over Q(
√

33) and Q
(

3
√
−62 + 95

√
−3
)
, respec-

tively, thereby providing explicit analytic expressions for the remaining five
period-five orbits. Such clustered orbits involve relative14 quintic equations,
namely quintics whose coefficients are algebraic numbers (not integers), and which
cannot be represented exactly in numerical computations.

For period-six there are nine possible orbits encoded simultaneously by ψ6(x)
and S6(σ). Apart from multiplicative constants used to eliminate denominators
in ψ6(x), by selecting σ = 1 and σ = −1 we get the orbits with real coefficients
and discriminants ∆6,1 and ∆6,2:

o6,1(x) = x6 − x5 − 5x4 + 4x3 + 6x2 − 3x− 1, ∆6,1 = 371293 = 135,

o6,2(x) = x6 + x5 − 6x4 − 6x3 + 8x2 + 8x+ 1, ∆6,2 = 453789 = 33 · 75.

It is interesting to observe that o6,1(x) and o6,2(x) imply a contrived twist
in the current understanding of polynomial interdependence. Individually, they
are obtained as two seemingly independent “projections” which, however, have
the carrier ψ6(x) as their common origin. Therefore, rather than being de facto
independent orbits, they are in a certain sense “conjugated” orbits. Furthermore,
since all nine period-six orbits arise from the same carrier ψ6(x), the orbits o6,1(x)
and o6,2(x) are also conjugated to all other seven orbits. This illustrates the
existence of a complex and quite subtle carrier-conjugation, i.e. an arithmetical
interdependence lurking among all period-k orbits, which is rather different from
the field isomorphisms familiar from Galois theory of equations.22 For arbitrary
periods k, the orbital carriers ψk(x) allow all its carrier-conjugated orbits to
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Table 2. The nine period-six orbits o6,j of
the map xt+1 = 2−x2t . Here, σ6,j =

∑
xj is

the sum of the orbital points. The triad and
quartet of σ6,j values are roots of the cubic
and quartic factors in Eq. (11), respectively.
Orbit x1 σ6,j
o6,1 -1.770912051306 1
o6,2 -1.911145611572 -1
o6,3 -1.990061550730 -5.142457360
o6,4 -1.756443146740 1.491252188
o6,5 -0.912421314706 3.651205171
o6,6 -1.990663269435 -5.287613777
o6,7 -1.916491658218 -0.902246984
o6,8 -1.559348708126 0.756484903
o6,9 -0.971966826485 4.433375858

have coefficients belonging to very distinct number fields, a remarkable twist in
the concept of conjugation which is not compatible with the standard canons of
number field theory.

As before, for roots of the cubic and quartic factors in Eq. (11), the result-
ing coefficients in Eq. (10) are more complicated algebraic numbers, not inte-
gers. When all orbits arising from the same σ−factor are multiplied together
one obtains a cluster, a polynomial aggregate with integer coefficients and degree
∂ = mk, multiple of the period k, where m > 1 is an integer. For instance,

c6,1(x) = x18 − 18x16 + x15 + 135x14 − 15x13 − 546x12 + 90x11

+1287x10 − 276x9 − 1782x8 + 459x7 + 1385x6 − 405x5

−534x4 + 170x3 + 72x2 − 24x+ 1, (16)
c6,2(x) = x24 + x23 − 24x22 − 23x21 + 252x20 + 229x19 − 1521x18 − 1292x17

+5832x16 + 4540x15 − 14822x14 − 10282x13 + 25284x12

+15001x11 − 28667x10 − 13653x9 + 20886x8 + 7168x7

−9126x6 − 1802x5 + 2085x4 + 101x3 − 180x2 + 12x+ 1. (17)

Table 2 collects numerical approximations for one orbital point for all nine
period-six orbits, together with the corresponding sums σ6,j . All other orbital
points may be easily obtained from x1 by iterating the map xt+1 = 2− x2t .

As for the remaining polynomials, the orbit o6,1(x) factors into a pair of cubics
over Q(

√
13). The cluster c6,2(x) factors into two equations of degree nine over

Q(
√

21). However, such nine-degree polynomials mix roots of two distinct orbits,
since their degree is not a multiple of six. For the cluster c6,1(x), the proper six
cubics are obtained over Q( 3

√
α), where α = −154 + 42

√
−3 − 18

√
−7 + 30

√
21.

For the cluster c6,2(x), eight cubics are obtained over Q(
√
β), where β = 65 −

13
√

5 + 15
√

15− 3
√

65. These factorizations provide explicit and exact solutions
for all period-six orbits and their orbital points, which are roots of the cubics.
Manifestly, the factors of Sk(σ) reveal how orbits are distributed into clusters and
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Table 3. The eighteen period-seven orbits, characterized by one orbital point
and the sum σ7,j of all points. The remaining orbital points follow by iterating
xt+1 = 2− x2t .
Orbit x1 σ7,j
o7,1 -1.9786867361502203955847071 -2.8882360088434114464952734
o7,2 -1.8108964749862932314435851 -0.6150716258115650649303224
o7,3 -1.0418806809758605723525628 4.5033076346549765114255959
o7,4 -1.9976281104816460923503281 -7.2481321962698823504243586
o7,5 -1.8848761656674288384473805 -1.2290602270284331761618286
o7,6 -1.9409835883148106464466346 -0.77490800237038950156013044
o7,7 -1.6122889835107255448466855 1.8441318528399982410921511
o7,8 -1.7197459866836201484847537 2.7448245616149058389987627
o7,9 -1.2029816300037407895687593 3.6631440112138009480554039
o7,10 -1.9975528324285225652564052 -7.1754350638396879312221350
o7,11 -1.9780114089762614447581210 -2.9359943127153307953060572
o7,12 -1.8812582592076877545063517 -1.6023708208031626612700681
o7,13 -1.9391197295964931429508120 -0.52557288374288388601167975
o7,14 -1.8049930381548525612803578 0.019650748046206826205286560
o7,15 -1.6004083969600341010740502 2.1979580475223842977306042
o7,16 -1.7110701448170319282769643 2.3647347938971127665283378
o7,17 -1.1795694263410389611326784 3.2907783266632442601391821
o7,18 -1.0142477277395461818441842 5.3662511649721171232065293

single orbits, if any.
We remark that, while the derivation of the carriers ψk(x) becomes increas-

ingly more laborious as the period k grows, knowledge of approximate numerical
values of the orbital points suffices to disclose exact expressions for the polyno-
mials Sk(σ) and its factors, thereby revealing the algebraic character of all orbits
encoded by the carriers.

For instance, although the exact analytic expression for ψ7(x) remains yet to
be obtained, Table 3 displays data from which one easily finds exact expression
and factors for S7(σ) = s3(σ)s6(σ)s18(σ), namely

s3(σ) =

3∏
j=1

(σ − σ7,j) = σ3 − σ2 − 14σ − 8,

s6(σ) =

9∏
j=4

(σ − σ7,j) = σ6 + σ5 − 39σ4 + 63σ3 + 110σ2 − 136σ − 128,

s9(σ) =

18∏
j=10

(σ − σ7,j) = σ9 − σ8 − 56σ7 + 118σ6 + 573σ5 − 1249σ4

−1582σ3 + 2700σ2 + 1576σ − 32.

As it is not difficult to recognize, analogously as before, the individual factors
composing Sk(σ) reveal important informations about the number fields under-
lying conjugate orbits. For instance, s3(σ), s6(σ) and s18(σ) define the algebraic



January 3, 2021 7:49 ws-rv9x6 Book Title
sanjuan-festschrift-2020_revised page 12

12 Jason A.C. Gallas

nature of the number fields composing the conjugate clusters entangled in ψ7(x)
which, in their turn, define all individual period-seven orbits as well as the alge-
braic nature of their orbital points. First, for period seven there are no orbits
with integer coefficients. Second, there are three clusters defining period-seven
orbits. Third, the orbits forming these three clusters are relative polynomials of
degree seven, with coefficients defined by algebraic numbers of degrees 3, 6, and
18. These predictions should be validated as soon as ψ7(x) is explicitly deter-
mined. Manifestly, similar predictions may be obtained for all periods k > 7.
There are 30 period-8 orbits, 56 of period nine, 99 of period ten, and so on.17,18

Explicit expressions for S8(σ), S9(σ), S10(σ), as well as their composing factors,
are already available.19

4. Orbital inheritance: solving high degree equations

Another possibility to obtain exact analytical representation for periodic orbital
points, that may act as reference points to investigate numerical errors, is to
use “inherited” orbits.13,19–21 A simple example allows one to grasp easily what
inheritance means. To this end, consider the nonlinear transformation x3 − 3x
applied to o6,2(x), namely13

c6,1(x) = o6,2(x3 − 3x). (18)

This identity shows that, as soon as the roots zi of the orbit o6,2(x) are determined
analytically in an exact manner, namely

o6,2(x) =
(
x3 + 1

2
(1−

√
21)x2 − 1

2
(1 +

√
21)x+ 1

2
(5 +

√
21)
)
×(

x3 + 1
2
(1 +

√
21)x2 − 1

2
(1−

√
21)x+ 1

2
(5−

√
21)
)
, (19)

three new orbits follow from them by solving the six cubics

x3 − 3x− zi = 0, i = 1, 2, · · · , 6, (20)

which, obviously, may be also determined exactly. Thus, these eighteen roots
provide exact analytical representations in terms of radicals for all orbital points
composing the 18th-degree cluster c6,1(x) of Eq. (16). We remark that exact
explicit solutions for non-trivial polynomials of degrees five and higher are in-
creasingly more difficult and rare to find.22 In particular, we are not aware of
any previous explicit exact solution of a degree-eighteen polynomial.

Analogous results concerning orbital inheritance for periods k ≤ 12 are avail-
able in the literature.13

5. Preperiodic points as access to exact orbital points

In the partition generating limit it is easy to obtain preperiodic points which,
when used as initial conditions to iterate the map xt+1 = 2− x2t , grant access to
the exact coordinates of orbital points of periodic orbits.19 Such useful preperiodic
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points are roots of an infinite family of polynomials Q`(x), which may be easily
generated by a recurrence relation, Eq. (21) below. These preperiodic points were
previously used19 to extract specific orbital equations embedded in polynomial
clusters with degree exceeding one billion and, therefore, totally out of reach by
ordinary brute-force polynomial factorization. But we now find that preperiodic
points can be also used to generate systematically, one by one, explicit coordinates
of periodic points for all orbits of the quadratic map, Eq. (5).

The Q`(x) polynomials are obtained as irreducible factors composing an aux-
iliary family of polynomials, T`(x), generated recursively. Starting from two given
initial seed functions, T0(x) and T1(x), all subsequent auxiliary T`(x) are obtained
from the recurrence23

T`(x) = xT`−1(x)− T`−2(x), ` = 2, 3, 4, . . . . (21)

For our present purpose, we fix T0(x) = 2 and T1(x) = x. Instead of the above
recurrence, one may also obtain T`(x) directly, with no need of knowing every
T`′(x) with `′ < `, using Pincherle’s relation24

T`(x) =

(
x−
√
x2 − 4

2

)`

+

(
x+
√
x2 − 4

2

)`

, ` = 0, 1, 2, . . . . (22)

Clearly, T1(x) = Q1(x) = x, and T2(x) = Q2(x) = x2 − 2. For ` > 2,
the polynomials T`(x) are reducible over the integers, products of cyclotomic-like
irreducible factors Q`(x), except for ` = 2n, n = 1, 2, 3, . . . when T`(x) = Q`(x),
which are irreducible. Every new T`(x) generated by Eq. (21) contributes a new
irreducible factor Q`(x), new in the sense of not appearing for any index `′ smaller
than `. Thus, the next first few polynomials are

T3(x) = Q1(x)Q3(x), T4(x) = Q4(x), T5(x) = Q1(x)Q5(x),
T6(x) = Q2(x)Q6(x), T7(x) = Q1(x)Q7(x), T8(x) = Q8(x),

where

Q3(x) = x2 − 3, Q4(x) = x4 − 4x2 + 2, Q5(x) = x4 − 5x2 + 5,
Q6(x) = x4 − 4x2 + 1, Q7(x) = x6 − 7x4 + 14x2 − 7,

and Q8(x) = x8 − 8x6 + 20x4 − 16x2 + 2. The first twenty Q`(x) are listed in
Table 1 of an open access paper19 while the first 100 Q`(x) are shown in Table
A.1 in the Appendix below. A key observation is that the irreducible Q`(x) are
the building blocks of the reducible auxiliary T`(x). Using the roots of Q`(x) as
starting conditions to iterate the quadratic map, Eq. (5), one finds that after
a finite preperiodic start, i.e. a certain number of non-repeating iterates, the
iteration lands on a cycle of k distinct points that repeats forever.
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6. Conclusions and outlook

We are used to think that the most common classes of models of dynamical
systems involve either discrete-time maps or continuous-time differential equa-
tions. This simplistic separation ignores the fact that, when it comes to find
explicit solutions for equations of motion, apart from a measure-zero set of equa-
tions discussed in textbooks of calculus and dynamics, the solution of differential
equations are normally obtained after representing the differential equations by
approximate time-discrete maps which, unfortunately, depend on the integration
step or steps of the specific procedure adopted. Thus, to find explicit solutions
of differential equations means to artfully select a range for the integration step
where solutions remain stable in the sense that they do not change significantly
under slight changes of the integration step. As it is known, the finiteness of
the integration step is an unavoidable source of error in the numerical solution of
differential equations. Even in rare cases when formulas for error estimates are
available, such estimates are virtually never addressed in real-life applications.
In sharp contrast, maps can yield the “correct” temporal evolution free from the
aforementioned errors of numerical methods, provided that the maps faithfully
represent the dynamics, and that calculations are performed under strict control
of the numerical precision. Thus, in one way or another, modulo a measure-zero
set of analytically solvable problems, to find explicit solutions for equations of mo-
tion means, in fact, to iterate maps or, equivalently, to assume that the dynamics
is inevitably governed by discrete-time variables.

For the large class of maps with unique inverse, we believe the there-and-
back game summarized in Table 1 to provide a viable tool to gauge numerical
precision of calculations. For the complementary class of systems with multiple
inverses the there-and-back game should of course be still possible, albeit much
more complicated to implement. We argued that one should seek exact analytical
solutions of simple problems and use them as reference marks in phase-space to
test if numerical work is being done with enough precision. Of course, in general
we will still remain in the dark as usual, having to resort to the standard rules
of thumb. Be it as it may, we believe that physical systems with unique inverses
should be explored under the new light discussed here, in particular to understand
the interconnections between stability diagrams like the ones in Fig. 1.

From a theoretical point of view, we argued that orbital carriers, imply the
startling and subtle notion of carrier-conjugates i.e. an unexpected arithmetical
interdependence lurking among all period-k orbits, which is distinct from the
familiar field isomorphisms from Galois theory of equations. For any arbitrary
period k, the orbital carrier ψk(x) allow all its carrier conjugated orbits to have
coefficients belonging to very distinct number fields, a remarkable twist in the
concept of conjugation, not compatible with the standard canons of number field
theory. Orbital carriers certainly exist for any dynamical system governed by
algebraic equations of motion, a wide class of systems, although it may not be
feasible to obtain them explicitly for arbitrary systems. Fortunately, as illustrated
above, the quadratic map of Eq. (5) allows one to explore carriers explicitly.
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A.1. Appendix

Table A.1 lists the first 100 irreducible polynomials Q`(x) as factors of the cor-
responding T`(x). Manifestly, the irreducible Q`(x) are the building blocks of
the reducible auxiliary T`(x). The polynomials Q`(x) divide themselves naturally
into two groups, according to the odd or even character of `. Further, Q1(x) = x
is a factor of T`(x) for odd values of `, while Q2`(x) is a factor of T2`(x), for
` = 1, 2, 3, · · · . Additionally, the power p ≡ 2` divides the indices of all factors
composing Tp(x).

The regularity observed in Table A.1 between the base factors of ` and the
subindexes of Q`(x) reveals how to generate the decomposition indices of T`(x)
automatically. For example, for odd values of ` = bp11 b

p2
2 the following Maple

driver generates the list of Q`(x) indices which appear in the factorization T`(x):

with(ListTools):
b1 := 3: b2 := 5:
p1 := 3: p2 := 2: L := [NULL]:
for ijk from 0 to p1 do
for lmn from 0 to p2 do

aux:= b1^ijk * b2^lmn:
L := [op(L),aux]: od: od:

print( b1^p1 * b2^p2, sort(MakeUnique(L)) );

This driver may be easily adapted to deal with more complicated values of `. For
higher odd values of ` we determined explicitly the decompositions:

225 = 3252 : T225 = Q1Q3Q5Q9Q15Q25Q45Q75Q225,
441 = 3272 : T441 = Q1Q3Q7Q9Q21Q49Q63Q147Q441.

However, for 675 = 33 ·52 the software and hardware available to us could not gen-
erate T675(x). The driver above was then used to obtain the following illustrative
lists of decomposition indices:

675 = 3352 : [1, 3, 5, 9, 15, 25, 27, 45, 75, 135, 225, 675]

729 = 3292 : [1, 3, 9, 27, 81, 243, 729]

1089 = 32112 : [1, 3, 9, 11, 33, 99, 121, 363, 1089]

Table A.1 leads us to conjecture an interesting theoretical possibility about
the Q`(x) polynomials, which share remarkable similarities with the cyclotomic
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Table A.1. The first 100 factors Q`(x) of T`(x).
i Odd || i Even

` Factors T`(x) ` Factors T`(x)
1 1 Q1 2 2 Q2
3 3 Q1Q3 4 22 Q4
5 5 Q1Q5 6 2 · 3 Q2Q6
7 7 Q1Q7 8 23 Q8
9 32 Q1Q3Q9 10 2 · 5 Q2Q10

11 11 Q1Q11 12 22 · 3 Q4Q12
13 13 Q1Q13 14 2 · 7 Q2Q14
15 3 · 5 Q1Q3Q5Q15 16 24 Q16
17 17 Q1Q17 18 2 · 32 Q2Q6Q18
19 19 Q1Q19 20 22 · 5 Q4Q20
21 3 · 7 Q1Q3Q7Q21 22 2 · 11 Q2Q22
23 23 Q1Q23 24 23 · 3 Q8Q24
25 52 Q1Q5Q25 26 2 · 13 Q2Q26
27 33 Q1Q3Q9Q27 28 22 · 7 Q4Q28
29 29 Q1Q29 30 2 · 3 · 5 Q2Q6Q10Q30
31 31 Q1Q31 32 25 Q32
33 3 · 11 Q1Q3Q11Q33 34 2 · 17 Q2Q34
35 5 · 7 Q1Q5Q7Q35 36 22 · 32 Q4Q12Q36
37 37 Q1Q37 38 2 · 19 Q2Q38
39 3 · 13 Q1Q3Q13Q39 40 23 · 5 Q8Q40
41 41 Q1Q41 42 2 · 3 · 7 Q2Q6Q14Q42
43 43 Q1Q43 44 22 · 11 Q4Q44
45 32 · 5 Q1Q3Q5Q9Q15Q45 46 2 · 23 Q2Q46
47 47 Q1Q47 48 24 · 3 Q16Q48
49 72 Q1Q7Q49 50 2 · 52 Q2Q10Q50
51 3 · 17 Q1Q3Q17Q51 52 22 · 13 Q4Q52
53 53 Q1Q53 54 2 · 33 Q2Q6Q18Q54
55 5 · 11 Q1Q5Q11Q55 56 23 · 7 Q8Q56
57 3 · 19 Q1Q3Q19Q57 58 2 · 29 Q2Q58
59 59 Q1Q59 60 22 · 3 · 5 Q4Q12Q20Q60
61 61 Q1Q61 62 2 · 31 Q2Q62
63 32 · 7 Q1Q3Q7Q9Q21Q63 64 26 Q64
65 5 · 13 Q1Q5Q13Q65 66 2 · 3 · 11 Q2Q6Q22Q66
67 67 Q1Q67 68 22 · 17 Q4Q68
69 3 · 23 Q1Q3Q23Q69 70 2 · 5 · 7 Q2Q10Q14Q70
71 71 Q1Q71 72 23 · 32 Q8Q24Q72
73 73 Q1Q73 74 2 · 37 Q2Q74
75 3 · 52 Q1Q3Q5Q15Q25Q75 76 22 · 19 Q4Q76
77 7 · 11 Q1Q7Q11Q77 78 2 · 3 · 13 Q2Q6Q26Q78
79 79 Q1Q79 80 24 · 5 Q16Q80
81 34 Q1Q3Q9Q27Q81 82 2 · 41 Q2Q82
83 83 Q1Q83 84 22 · 3 · 7 Q4Q12Q28Q84
85 5 · 17 Q1Q5Q17Q85 86 2 · 43 Q2Q86
87 3 · 29 Q1Q3Q29Q87 88 23 · 11 Q8Q88
89 89 Q1Q89 90 2 · 32 · 5 Q2Q6Q10Q18Q30Q90
91 7 · 13 Q1Q7Q13Q91 92 22 · 23 Q4Q92
93 3 · 31 Q1Q3Q31Q93 94 2 · 47 Q2Q94
95 5 · 19 Q1Q5Q19Q95 96 25 · 3 Q32Q96
97 97 Q1Q97 98 2 · 72 Q2Q14Q98
99 32 · 11 Q1Q3Q9Q11Q33Q99 100 22 · 52 Q4Q20Q100

polynomials25 which may be generated by the quadratic map for a = 0. As it
is known, every cyclotomic field is an Abelian extension of the rational numbers
Q. In this context, an important discovery is the so-called Kronecker-Weber
theorem, stating that every finite Abelian extension of Q can be generated by
roots of unity, i.e. Abelian extensions are contained within some cyclotomic field.
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In other words, every algebraic integer whose Galois group is Abelian can be
expressed as a sum of roots of unity with rational coefficients. For details see,
e.g., Edwards.26 The study of the partition generating limit of the quadratic
map xt+1 = a − x2t seems to lend hope that for a = 2 the map may also share
an analogous correspondence with Abelian equations as the one embodied in
the Kronecker-Weber theorem27 when a = 0. The dynamics for other values of a,
when real and complex orbits coexist, is totally open to investigation. Integer and
rational values of a are first good candidates to learn how bifurcation cascades
unfold arithmetically. In particular the case a = 1, say, offers the possibility of
learning about the interplay of infinite cascades of coexisting orbits governed by
towers of real and complex algebraic quantities, a new and totally unexplored
world. The investigation of these problems will certainly provide useful insight
regarding the intricate algebraic nested induced by the dynamics Clearly, these
open problems deserve to be investigated.
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