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The year of 1986 was extremely fruitful in results for the quadratic 

Zeeman effect. We mention three examples: first, quasi-Landau 

resonances having a closer spacing than 1.5 Hill near the zero-energy 

threshold have been reported experimentally by the Bielefeld groupl,2 and 

explained theoretically. 3-6 The second example is the investigations 

connected with the manifestation of quantum chaos, i.e. how does 

classical deterministic chaos manifest itself in the quantum spectrum of 

energies. 4 ,7,8 Connected with this is the very interesting work of 

Wintgen9 showing the existence of long-range correlations in the quantum 

spectrum. These contributions are particularly interesting because in 

contrast to previous studies of model Hamiltonians, they are based on a 

real physical system which can be investigated in the laboratory. As 

observed by Professor Friedrich in his lecture at this Conference, the 

magnetized hydrogen atom is becoming the system par excellence to 

investigate quantum chaos. The third example is the beautiful results of 

O'Mahony and Taylor on the quadratic Zeeman effect for nonhydrogenic 

systems.10,ll The central point in almost all the aforementioned 

theoretical works was the calculation of the energy spectrum of a 

magnetized atom. 

The purpose of this paper is to present a single variational 

function capable of producing very accurate approximations to the 

eigenenergies of a hydrogen atom in a uniform magnetic field. In fact, 

to the best of our knowledge, the trial function presented here is the 

only single function capable of consistently generating eigenenergies 

with at least 5 significant digits in the whole parameter range O,y<", 
where y is the magnetic field strength in units of 2.35xl05T. Our 
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function is based on an expansion in parabolic coordinates proposed by 

one of us,12 using a basis combining characteristics of both the Coulomb 

and Landau regimes. Calling 

f(x,y) = 1 + x1c(x+Y) + x2C2xy + x3c2(x2 + y2) + x4 C3xy(x+y) 

+ x5c3(x3+y3) + X6c4x2y2 + x7c4xy(x2+y2) + x8c4 (x4+y4) 

+ ~c5(x5+y5) + x10C5xy(x3+y3) + x11C5x2y2(x+y) 

+ x12c6x2y2(x2+y2) + X13c6xy(x4+y4) + x14c6x3y3, 

1 the trial function is given by ljI(x,y) .. f(x,y) exp[- 2" a(x+y+acxy)], 

where x=!;; and y=n are the usual parabolic coordinates and a trivial 

normalization constant has been omitted. The great advantage of this 

trial function is having the exponential dependence appropriate to the 

symmetry of the problem. 

Table 1. Comparison of binding energies (in a.u.) for a 

magnetized hydrogen atom. ERWHR are the energies of 

RO"sner, Wunner, Herold and Ruder. 14 The number in 

parenthesis indicates the number of configurations 

y 

1 
2 
3 
4 

10 
20 
40 

100 
200 
300 

1000 
2000 

10000 
20000 

needed to guarantee their quoted digits. 

energies obtained by us using N configurations of the 

basis proposed by Gallas. 12 

0.831169( 7) 
1.022214(11) 
1.164533(11) 
1.280798(12) 
1.747797(19) 
2.215398(20) 
2.801029(24) 
3.78905 (12) 
4.72655 (12) 
5.36030 (12) 
7.66205 (12) 
9.30448 (12) 

0.83117 
1.02220 
1.16451 
1.28077 
1.74774 
2.21533 
2.80094 
3.78952 
4.72626 
5.35920 
7.65562 
9.29149 

14.09563 
16.63834 

0.83117 
1.02221 
1.16453 
1.28080 
1.74780 
2.21539 
2.80102 
3.78977 
4.72709 
5.36074 
7.66231 
9.30462 

14.14038 
16.70516 

0.831169 
1.022214 
1.164533 
1.280798 
1.747797 
2.215398 
2.801028 
3.789799 
4.727134 
5.360799 
7.662388 
9.304706 

14.140629 
16.705632 

Peculiarities of the basis being used were already discussed by us 

in the literature. 12 ,13 
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Using the above function a generalized 15x15 matrix eigenvalue 

problem was solved for the eigenenergies. The last column in 

Table 1 presented the results of such a calculation. In this table 

our results are compared with the results of the very detailed 1984 

eigenfunction expansion of R(Jsner, Wunner, Herold and Ruder. 14 

Their results are the most accurate available in the literature 

covering the whole range O~y<~, and were obtained by expanding the 

eigenfunction either in a Coulomb basis (for ~40) or in a Landau 

basis (for y)40). The number in parenthesis after their energies 

indicates the number of expansion terms that they needed to 

guarantee the quoted digits in the energy. In their calculations 

it was important to obtain first starting functions for the 

computation (thereby needing to solve numerically an eigenvalue 

equation), then to solve the actual problem, and, finally, to study 

the convergence of the procedure as a function of the terms in the 

spherical and the cylindrical basis. In contrast, our method 

involves a search for the minimum of E E(a,c) as a function of 

the two non-linear variational parameters a and c. The procedure 

involves a trivial and stable diagonalization of a 15x15 matrix. 

Altogether, our calculation involves 16 variational parameters (14 

linear + 2 non-linear) but, obviously, 14 of them are automatically 

determined by the diagonalization procedure. To give an idea of 

convergence properties within the basis being used, Table 1 

presents two further columns obtained by considering (i) a 6x6 

matrix formed only with terms involving xl,x2 ,x4 ,x6 and x7 in the 

above equation, and (ii) the 12x12 matrix obtained by neglecting 

x12 ,x13 and x14 in the trial function. 

From the energies presented in Table lone can assess the 

accuracy of the calculation of R(Jsner et al.14 One sees that the 

region roughly between 10~y~200 is a "difficult" region for their 

calculations: up to about y=40 they had to greatly increase the 

size of the basis in order to maintain the same number of 

significant digits in the eigenvalues. For y=100 their value 

obtained using 12 configurations is not as good as ours obtained 

with just 6 configurations (involving 7 variational parameters). 

At this point it would be useful to know how to compare the effort 

needed to obtain eigenvalues of the same accuracy by both 

methods. This question is difficult to answer but it seems safe to 

say that for equal number of terms in the expansions our method is 

much easier to implement than that of Herold et ale Therefore we 
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believe our results involving 12 configurations to be much simpler 

to obtain than the corresponding ones obtained by Herold et al., 

also from 12 configurations. It is also worth mentioning that the 

non-relativistic model on which all calculations are based imposes 

a limit on the strength of the magnetic field for the energies to 

remain meaningful. As mentioned in Ref. 12, a limit on the 

magnetic field strength for the model to remain reliable is 

obtained by estimating the field required to produce an energy 

difference of mc2 between neighbouring Landau levels. This defines 

the threshold Yth=18700, which is therefore the upper limit for the 

variation of y. That is why our table includes results up to 

Y=Yth. A further noteworthy point is the existence of calculations 

based on high-field expansions as, for example, that of Baye and 

Vincke. 15 Using at least 18 variational parameters they reported 

EB=7.662405 and 9.30475 for y=1000 and 2000, respectively. Being 

results of a specific high-field calculation, these 2 energies are 

better than the corresponding ones of Rasner et ale They are also 

better than the more accurate results being reported here. However 

it is important to realize that they use a larger basis and that 

their calculations are totally unable to deal with the Coulomb 

limit. 

In summary, we presented binding enegies E6 , E12 and E15 for a 

magnetized hydrogen atom, based on variational calculations 

involving 7, 13, and 16 variational parameters, respectively. 

These energies cover the whole range of magnetic field strengths, 

from the Coulomb to the Landau limit. Our energies were compared 

with the most accurate results presently available in the 

literature, namely with the results of Rasner et al. 14 Our results 

obtained from the 13-parameter calculation are as good as the ones 

obtained by Rasner et ale The energies obtained from the 

16-parameter calculation agree to at least 7 significant digits for 

Y less than about 40, and are superior for all other y. We have 

also investigated the excited states obtaining similar results. A 

detailed report of our findings will be presented elsewhere. 
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