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Simple Formula for the Ionization Rate of Rydberg States in Static Electric Fields
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With use of a full three-turning-point WKB analysis, a simple formula is obtained for the
ionization rate of hydrogenic atoms. Contrary to current belief, WKB ionization rates are
found to be excellent approximations to exact numerical calculations. In addition, the sym-
metries of the WKB solution are explored and it is shown that the resonance parameters
can all be written as simple functions of three objects, 1,7, 1,9, and 6, which can
easily be calculated on programmable pocket calculators.

PACS numbers: 32.60.+i

The advent of highly selective field ionization
techniques has reawakened interest in the study
of the decay mechanism of Rydberg atoms in the
presence of static electric fields. Several experi-
ments in recent years' motivated a good deal of
theoretical work and important progress in this
direction has been achieved. The divergent per-
turbation series for the energy was proved to be
Borel summable.? A dispersion relation between
the ground-state energy shift and the ionization
rate was discovered® and generalized.* Exact
numerical calculation of Stark resonance parame-
ters has also been accomplished.’ Since the
spectrum turns into a continuum no matter how
small the electric fields are, these calculations
are quite elaborate. The theory of the ionization
of hydrogenic species in dc electric fields was
reviewed by Yamabe, Tachibana, and Silverstone.®
The purpose of the present paper is to report a
nonperturbative WKB approach to the problem.
Although the WKB quantization equations can be
analytically expressed in terms of complete ellip-
tic integrals,” a fact known to Lanczos,? the usual
WKB approaches until recently’ have been to ex-
pand the quantization equations in a similar way
to the perturbative series. This introduced fur-
ther approximations into the calculations. Fur-
thermore, when applying the WKB approximation
to radial equations, some authors used a factor
m?~1 in the centrifugal term, thereby violating
the conditions® for the applicability of the WKB
quantization. In addition, it is common to see in
the literature WKB formulas for the widths of the
levels with simple exponential tunneling factors
(e 2" etc.). These factors, obtained through dif-
ferent arguments, are accurate only approximate-
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ly and at energies well below the autoionization
limit, a region of little interest. Therefore it
should not be surprising to find sometimes in the
literature statements that “WKB ionization rates
are of little accuracy.”

In the present communication we derive a sim-
ple formula for the ionization rate of hydrogenic
atoms in dc electric fields. This formula is ob-
tained from a full first-order WKB treatment of
the three-turning-point scattering problem and
avoids the aforementioned problems. By com-
parison of values obtained from this formula with
exact numerical calculations reported in the liter-
ature® we believe our formula to be reliable
around the autoionizing limit. As a byproduct of
our calculations we are able to show that the
whole three-turning-point problem on hand re-
duces to the sole calculation of three families of
integrals, namely of the objects

9= [T - -b)E -c)]" 2 g, (1a)

I, :fab[(;) —a)(b=n)c-n]"Y2pdn, (1b)
and

09 = [ Ta=n)b-nc-nl"n'dn (1c)

for j=—1, 0, and 1; the other symbols are de-
fined below.

The Hamiltonian for the Stark effect in hydrogen-
like atoms is separable in parabolic coordinates
& and 1.1° With the usual product Arsatz for the
eigenfunctions'® the problem reduces to the study
of two one-dimensional Schrodinger equations
with the potentials V=~ Z,/& + m2/4£% + LF¢ and
V a==Z,/n +m?/4n® — +F1 where m® -1 was re-
placed by m?2 on account of the criterion for ap-
plicability of the WKB approximation to radial
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equations,’ and where Z, + Z,=Z. F represents
the static electric field. The motion along the &
coordinate is always confined. The 7 motion is
complicated by the fact that the electron can es-
cape from the atom in the direction n—-«<. The
WKB quantization neglecting tunneling then reads
Ie=(, + %)7 and I,= (1, +%)7, n, and n, being the
usual parabolic quantum numbers,'® and I; and I,
the usual phase integrals. These integrals may
be very much simplified by the use of the identity

L=/ (sE-V)V2dt
=4[ VyGE -V Vot at, @)

obtained after a trivial integration by parts. The
first equality sign in Eq. (2) gives us

\/—P‘ 2F ( 4z (0) le (-1)
1522—[—I§(z)+‘?1§ 1)+71'1§0—'T1g 1}.
(3a)
From the second equality if follows that
vF 2Z m?
IE:?I:%I;Z)-’-#I{(O)_*F_IE'( 1)}. (3b)

Combining (3a) and (3b) it is easy to eliminate 7%

and obtain

I=F 5 @+b + )WV
- %@ +ac+bc)[(? +abel V] (4)

The roots c<0sb<a are obtained from

2E 4z m?
3, 27 s2 Tl
R

=(a-£)(E-b)( -c) =0, ®)

where E is the energy. The objects Ig(j) can
easily be evaluated:

I 5(0) =gK(k)’
1.7V =(g/a) (@ - b)/a k),
1Y =glcK () +(@ - B ()], ®)

where g=2(@~c¢) Y2, k*=(@@-b)/la-c), and K,
E and II are standard complete elliptic integrals
of the first, second, and third kinds, respective-
ly. For states below the autoionization limit the
expression for I, is obtained from Eq. (4) by re-
placing VF by —VF and £ by 7. The 7 roots 0<a
<b <c are now obtained from

4z

n’+ Z—FEnHT%n - %ﬁz(n -a)(e =n)(c-n)=0.
™
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The required 7,/ are obtained from Eq. (6) by
replacing & by . This symmetry reflects the
equivalence of V; and V , under the replacement
Z,~Z,and F~ -F,

The critical quantity in the formula for the ion-
ization rate (i.e., for the width of the levels,
which is the imaginary part of the complex eigen-
values) is the tunneling integral across the 1 bar-
rier. The integral 8 across the barrier can also
be reduced through integration by parts. The
final result is

6=3VF[i(@+b+c)o®

- 2(ab +ac +bc)0'® +abco~ V] (8)

with
09 =gk k), 6" =(g/c)l(c -b)/c,k),
6V =glak ) + (c —a)E ()],

where now g =2(c —a) Y2 and ®=(c = b)/(c - a).
In evaluating 6 the branches for the integrals
were chosen such that 6 >0 for energies below the
top of the barrier.

In obtaining the correct WKB ionization rate
two points are of special relevance: (i) The con-
tribution from the barrier should be obtained
from a detailed analysis of a three-turning-point
problem; by so doing one finds instead of the sim-
ple exponential factor mentioned before

(1+e-26)1/2__1
1+e 2241

Q)

w(d) = (10)
Of course, in deriving this expression for the
present problem (in which V-~ = when 17— «) the
phase shift is obtained from the comparison of the
WKB eigenfunctions with the “core-free” ones,
i.e., with the Airy function. This is an important
modification of the known results for the three-
turning-point problem,'* which usually assumes
V -0 at infinity. (ii) The separation constant Z,
depends implicitly on the energy. This was appa-
rently overlooked by Lanczos® but was correctly
taken into account in the approximate result of
Rice and Good.®'*?

From the usual Breit-Wigner parametrization
of the resonances one finds that the width I of the
levels can be written

=2w(©)({,/9E) . 11)
It is not difficult to see that
al,/3E =F V3 41,V +(02,/3E)1,/?]. (12)

Since at resonance 91,/9E =0, it follows that
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0ZPE==23Z2,/0E=1,"V/21,'9. Therefore

4w (Q)Fl/zlg(())

I'= .
Ig(")[ 71(1) +IgTDIn(07

(13)

Numerical evaluation of this I' just requires de-
termination of ¢ since all /") and 7,'*) are auto-
matically obtained during calculation of the eigen-
value £. For energies well below the autoioniz-
ing limit [w(9) ®e™2°/4], Eq. (13) reduces to the
approximation obtained by Rice and Good.'? In
this same energy range, by doing the crude ap-
proximation 8Z,/0E =0, we obtain I' =8I g5,
where I'gg refers to the width as given by Eq.

TABLE 1. Comparison of present WKB results with
exact numerical calculations of Damburg and Kolosov
(Ref. 13). Ratio means exact/WKB. All values cor-
respond to m = 2. The principal quantum number is
given by n =n+n o+ m+1.

Field Toniz.
strength Energy rate
7y ny (kV/cm) ratio ratio
6 3 30 1.0000 1.01
6 3 33 1.0000 1.01
6 3 35 1.0000 1.00
6 3 37 1.0000 0.99
7 2 33 0.9994 1.10
7 2 35 1.0000 1.01
7 2 37 1,0000 1.01
7 2 40 11.0002 0.99
8 1 35 1.0003 1.03
8 1 37 1.0001 1.03
8 1 40 1.0001 1.02
8 1 43 1.0004 1.00
2 8 19 1.0000 1.00
2 8 20 1.0000 1.00
2 8 22 1.0000 0.99
2 8 25 1.0001 0.92
3 7 19 1.0000 1.00
3 7 20 1.0000 1.00
3 7 22 1.0000 1.00
3 7 25 1.0000 0.93
4 6 20 0.9997 1.03
4 6 22 0.9998 1,02
4 6 25 0.9999 0.97
4 6 27 1.0001 0.91
0 11 13.5 1.0000 1.00
0 11 14 1.0000 1.00
0 11 15 1.0000 1.00
0 11 16 1.0000 0.96
0 11 17 1.0000 0.92
1 10 14 1.0004 1.00
1 10 15 1.0000 1.00
1 10 16 1.0000 0.98
1 10 17 1.0000 0.94
1 10 18 1.0000 0.92

(54.6) of Bethe and Salpeter.'®® This gives some
hint of why the simple WKB formula is usually
found to be about 1 order of magnitude too small.
At energies near the autoionizing limit it is im-
portant to use the full three-turning-point formu-
la to obtain the position of the resonances. This
means that 7,= (2, +%)7 should be replaced by
I1,+Q(0) =(n,+ %)7, where Q(f) is a “quantum cor-
rection” which takes the nonzero tunneling proba-
bility into account.'®

In Table I we compare our WKB results with
exact numerical work of Damburg and Kolosov.'®
As mentioned by them, certain sublevels in this
table cannot be correctly described by perturba-
tion theory. As seen from our table, the WKB
resonance parameters, obtained from a full
three-turning-point treatment, are excellent ap-
proximations to the exact numerical parameters.

In summary, we have shown that the correct
WKB treatment of the Stark effect in hydrogenlike
atoms is not only able to produce excellent ap-
proximations for the real part of the complex
eigenvalues but can be used to obtain satisfactory
approximations for their imaginary part as well.
The whole problem can be reduced to the calcula-
tion of three quantities, I, 1,9, and 6.
These quantities may be reduced to complete
elliptic integrals which, in turn, may easily be
evaluated even on programmable pocket calcu-
lators.
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Optical pumping by a single-frequency cw ring dye laser of thick sodium vapor targets
(NL > 10'3 atoms/cm? without buffer gas has been investigated for application in a polarized
ion source. The atomic polarization of the sodium was determined from the optical rotation
of a second dye laser tuned midway between the D lines. Rate-equation calculations repro-
duce the experimental data and predict very high polarizations (P = 0.8) with the use of one
or more single-frequency dye lasers in thick alkali-metal vapor targets.

PACS numbers:

Recently much interest has been generated over
the possibility of producing a polarized H™ ion
source by optical pumping.! An ion source based
on this concept, first suggested by Haeberli® and
examined more closely by Anderson,' has the po-
tential of producing polarized H™ beam currents
far in excess of those produced in today’s ion
sources. In an optically pumped polarized ion
source (OPPIS) incident protons capture spin-
polarized electrons from an alkali-metal vapor
target that is polarized by optical pumping. The
atomic hyperfine interaction in hydrogen can then
be used to convert the atomic polarization into
nuclear polarization.® Capture of a second elec-
tron in an unpolarized alkali-metal vapor target
produces the polarized H™ beam. To achieve ef-
ficient polarization transfer during the charge-
exchange process, the alkali metal must be opti-

32.80.Bx, 29.25.Cy, 29.25.Kf

cally pumped in a large magnetic field.* To
achieve efficient neutralization of the proton
beam, the optically pumped alkali-metal target
must have thickness NL = (1-5)X10*® atoms/cm?,
which should produce 2.6—13 A of polarized H”
beam per milliampere of incident H' beam in
sodium.

Anderson' pointed out two major questions which
need to be addressed to demonstrate the feasibil-
ity of an OPPIS. The first concerns the transfer
of atomic polarization in the charge-exchange re-
action. We have shown theoretically® that at least
75% of the atomic polarization can be transferred.
Recent measurements at the Japanese National
Laboratory for High Energy Physics (KEK)® sug-
gest that the polarization transfer is substantially
better than this worst-case estimate. The second
question concerns the degree of polarization
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