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We show that a duality transformation (connecting integrable Hamiltonian systems) recently
discovered by Hietarinta and co-workers in two dimensions at a classical level can be directly established
in NV dimensions from a quantum formulation of the problem. Further, we show duality to be valid for a
much larger class of dynamical systems and to be not necessarily unique. We speculate that this
nonuniqueness could be a characteristic of separable systems. .

PACS numbers: 03.20.+i, 02.30.+g

A number of recent papers have been devoted to the
investigation of certain duality properties between pairs
of Hamiltonian systems. In this context the term duality
is used to mean that once a given property of one of the
Hamiltonians is established, the same property is expect-
ed to show up in the dual partner. The existence of such
a duality between Hamiltonians is obviously of enormous
interest: The discovery of one integrable dynamical sys-
tem (usually a difficult task, specially in higher dimen-
sions) would automatically imply the existence of anoth-
er integrable system, nonintegrability of one of the
partners implies the nonintegrability of the other, chaos
in one implies chaos in the other, etc.

The first example of what we now like to call duality is
the quite early discovery' of a transformation connecting
the radial equations of the harmonic oscillator and the
Coulomb potential. Coincidentally (or not!) these poten-
tials are the only ones for which all bound orbits are
closed (Bertrand’s theorem) and ellipses.? On a different
but equivalent language, these potentials are the only
ones for which, besides energy and angular momentum,
a further constant of motion (the Runge-Lenz vector)
exists. Although the harmonic oscillator and the Cou-
lomb potentials are three dimensional, they are separable
and, therefore, the duality as established in Ref. 1 is a
property of two one-dimensional (in particular, radial)
equations. Over the years the existence of an equiva-
lence between the harmonic oscillator and the Coulomb
potential has been rediscovered by Bergmann and Frish-

man,> Dulock and McIntosh,* Talman,® and Rockmore,

at least. ]

The next interesting example of duality was obtained
by Feldman, Fulton, and Devoto,” Quigg and Rosner,?
and Collas.® These authors established that to every ra-
dial equation containing a potential r? there was another
dual equation containing a potential r?, with p and ¢
connected by the equation

p+q+ 3 pg=0. (1)

This very symmetrical equation is particularly beautiful
because it connects the bound-state spectrum of a
confining potential r9, ¢ >0 with that of a potential 7,
—2 < p <0, which is singular at the origin. In particu-
lar, the harmonic oscillator (g =2) is easily seen to be
dual of the hydrogen atom (p=-—1) and vice versa.
The important point to realize here is that for one-
dimensional systems Eq. (1) was established in a quan-
tum as well as in a classical way: through the semiclassi-
cal WKB approximation,” through transformations on
the Schrodinger equation,® and through local diffeomor-
phisms connecting classical Hamiltonians of different po-
tentials.®

Recently, and apparently unaware of the aforemen-
tioned 1D results, Hietarinta !® used Painlevé analysis to
conclude that two bidimensional Hamiltonians of the

type
H=% (p2+p?)+Cxot24x%? )
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with parameters a; and a; are dual if a; and a; obey
a1+a2+%a1a2=0. (3)

In this way he was able to show that several previously
uncorrelated pairs of integrable two-dimensional dynam-
ical systems were indeed dual to each other. Using Eq.
(3) he was also able to find new “missing” integrable
systems. Later, Hietarinta et al.!! found a noncanonical
transformation which explained at a classical level the
observed duality. Such transformation interchanged en-
ergy into coupling constant and vice versa while preserv-
ing important properties such as integrability. Using c-
number representation for quantum operators along with
Moyal brackets for commutators, the authors of Refs. 10
and 11 were also able to gain some information about
the quantum integrability of the dual transformation.
For example, while for a=1, 0, —4, and —6 the Hamil-
tonian (2) is classical as well as quantum integrable, for
a=—% it is found to be classical but not quantum in-
tegrable.'® However, in this particular case, Hietarinta
discovered that it was possible to “restore” quantum in-
tegrability through a suitable deformation of the poten-
tial by an extra term proportional to # 2 50 that

Vix,y)=Cx¥+x"2y2— 2 p2x 72 “)

This “net quantum correction” that had to be added to
the potential was later!! found to be related to a Schwar-
zian derivative recently discussed by Weiss'? in connec-
tion with properties of integrable systems.

The purpose of the present paper is to show that the
duality as well as the coupling-constant metamorphosis
discovered by Hietarinta and co-workers'®!! at a classi-
cal level for 2D systems can be directly obtained from a
quantum formulation of the problem. Thus, instead of
the ad hoc introduction of deformations proportional to
k2 in the potential we derive these ‘“‘corrections” from
transformations of the Schrddinger equation. Further,
we show duality to hold for systems of arbitrary dimen-

2 2 2
49 2(1+p/q)M+Dh2 p 970
pzé g2 3 an?

+e-

FEr—egr—cgmrli—2

sionality and to be valid for a much larger class of
dynamical systems than previously thought. We con-
clude by showing that duality may not be unique in the
sense that in some cases it is possible to find more than
one dual partner for a given quantum system even when
the potential has only one free coupling constant. We
speculate that this “abundance of duality” could be a
characteristic of separable systems. Before starting, it is
perhaps important to stress that quantum integrability is
not a trivial consequence of classical integrability. '3

The similarity between Eqgs. (1) and (3) suggests that
we try the same change of dependent and independent
variables as in the one-dimensional case®: It does not
work. The noncanonical transformation discussed in
Ref. 11 suggests that we try a change of the time scale in
the time-dependent Schrodinger equation, but this does
not work either. What works is a combination of a
Fourier transform (of some of the variables) after a con-
venient change of the (non-Fourier-transformed) vari-
ables. It is important to note that the noncanonical
transformation used in Ref. 11 is more than just a
change of time scale. The fundamental step in it is the
interchange of y and P,. The quantum equivalent of this
step is the Fourier transform.

Let a dynamical system be described by a potential

Vix,p)=f(x) —Cx*—ex9+Dx%2*+L¥Yx?%  (5a)

with the corresponding bidimensional Schrodinger equa-
tion given by

_A(Wxx+Wyy)+V(x»y)!l/=E!I/- (5b)

The parameter A=#/2%/(2u) defines the energy scale
while f(x) is an arbitrary function of its argument. Let
us now transform x and y in Eq. (5b) according to the
prescription

E=x"9P, y(x,y)=¢ WHPIORG(E ), 6

and, subsequently, Fourier transform the y variable in
the equation. This leads to

A

2
_ZT -1 ] gzp/q+_fl‘4_2n2+L2§2P/q} }q) =0, (1)

where now ¢=¢(&,1) and F(£) =f(£ ~P/9)£P, This equation can be brought to the form of Eq. (5) by our changing

n— kn with k2=A4¢2/(D#?p?) and choosing p such that

p+gq+ 1 pg=0.
Equation (7) reduces to (writing 7 instead of k77)

= APzt 9py) +V(EN9=pred/q 2,
where

V(n) =*;Lz— {F(g) —E&P— Cgp—sp/q.i.D%z_épnz_*_
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The Schrédinger equations (5) and (9) are dual to each
other. The parameter p in Eq. (9b) is connected with ¢
of Eq. (5a) through relation (8) which is identical to Eq.
(3) that was found classically by Hietarinta.!® Equation
(9b) clearly shows why for g=—% a — 35 A%x 2 de-
formation was needed in Eq. (4) for the system to be
quantum integrable. For a given g the term proportional
to & ~2 will be absent in Eq. (9b) whenever we start from
a potential having

Li=1A(q%p2—1) =1 Aq(g+4). (10)

For g=—% one obtains L?=— 3% A=— %1%y, in
perfect agreement with the empirical finding of Hietarin-
ta.! Further, Eq. (10) shows that g=—$% is not the
only case requiring a “quantum deformation” and, in
particular, allows one to predict correction terms for all
cases listed in Table I of Ref. 10.

Comparing Eq. (5) with Eq. (9) one sees that the cou-
pling constant € becomes the energy of the dual equation
while E (the energy of the starting equation) becomes
one of the coupling constants in the dual potential, exact-
ly as in the noncanonical classical case.!! Further, note
that Eq. (5a) contains a term (Dy?—e¢)x? while Eq.
(9b) contains (p%/q2)(p2Dn?%/q?—E)EP and that the
simultaneous occurrence of these terms is critical for
quantum duality to exist.

Another interesting feature of duality is the “univer-
sality” of Eq. (8), i.e., the validity of Eq. (8) to connect
dual systems in /N-dimensional spaces, N =1,2,... . For
N =1 we already saw that duality can be established
classically as well as quantically. In fact, in this case du-

ality is much simpler to establish since for D=0 the
Schrodinger equation (5) separates and no Fourier
transformation is needed. We already mentioned the du-
ality between the Coulomb and the harmonic oscillator.
Another interesting 1D dual pair should be that associat-
ed with the linear potential. The linear potential (p =1)
has well-known closed-form solutions (in terms of Airy
functions). We should therefore expect closed-form
solutions to exist for the potential » ~%/3,

From the above discussions one realizes that duality is
also valid for three-dimensional potentials of the generic

type

V(x,p,z) =f(x)+ (az?+by*—e)x9, (11)
where a and b are coupling constants, and that this result
can be trivially extended to arbitrary dimensions.

Let us now investigate quantum duality for potentials
of a different type than those so far discussed. As we
have seen, the transformations defined by Eq. (6) togeth-
er with suitable Fourier transformations and scalings can
lead to dual systems whenever free coupling constants
appear in the potential. Our next objective is to show
through a 2D example that duality is not necessarily
unique and that, in fact, we may have families of poten-
tials sharing dual-type properties. To this end let us take
now a 2D Schrddinger equation in polar coordinates with
a generic potential of the form

V(r,8) =rri+£(r,0). 12)

In these coordinates the Schrédinger equation is given by

1.9 | 99 1 8%
—AV+V(r,0)p=—A|—— + +V(r,0)9=E9,
o+ V(r,0)¢ o rar] 002 (r,0)9=E¢ 13)
which, upon changing ¢(r,6) =r ~2y(r,8), can be more conveniently written as
82y , 1 %y 4
—A —_— +arfy+f(r,80)y — ——y=Ey. (14)
{ or?  r? 962 J vt/ v 4r2W v
Substituting p=r "9/, 6=g6/p, and y(r,0) =p ~1+2/D/25(5 ), one obtains the dual equation
(825, 1 8% ] .+ ,- N
—A |+ 5o+ Fp, ) — = =Ev, (15)
where
A=—pE/q®, E=—p=/q? F(p,8)=f(p~?/9,6p/q)pPpYq? (16)

with p and g connected by the universal equation (8).
Let us now analyze the (separable) axially symmetric
potential

(17)

already investigated by Hietarinta et al.'' From Eq.
(8) we obtain a p~#* dual for this potential. Besides
connecting V(x,y) =A(x2+p2)? with V(%j)=r(x?

Vie,y)=srA(x2+p2)2=Lar4

+52) 743 Egs. (14) and (15) share the property of
transforming —  Ar ~? into — + Ap 2 and vice versa,
therefore bypassing any need for quantum corrections.
This property is easily explained by Eq. (9b) which
shows L?=—14 A4 to be the solution of the equation
LY=L? where

Lr=p2L2— L A(qg?—p®)/p2l/q> (18)
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In Cartesian coordinates the Schrodinger equation for Eq. (20) we obtain
the potential (17) is [ . .
: S IR i L P (23)
— Ayt yy,) + 4 A (x 24y ) 2y =FEy, (19) ov? au?| 9=E9, 3
which can also be written as which is of the generic type
— 4|40 | 2080 289 2. 0% | _ [ 8% . 8% ] ,
A[m/5 [L o +u ™ +20 31 00 Egp, —A|uf ™ +v ﬁ‘;— —CuPv"p=E9. (24)
L J
(20) Introducing
where o(u,v) =xPy(x,y), x=u"% y=0v"0b
v=gexplin(§x3—xy?)], w?=—1/244, (21) a=—1+al)/2a, p=—0+b)/2b, q=p/a,
u=c(x+iy)/"2, (22a) and
v=0(x—iy)/V2. (22b) s=r/b,

Choosing now o=4wh//2 and Fourier transforming

after a convenient scaling of x and y, Eq. (24) is
transformed into

+62w+p2__q2 r2.._.

Mt s
a2 dpik? 4r2y? v
with p and g connected by Eq. (8) and r and s obeying

r+s+ 3rs=0. For the particular case p=r=1 of Eq.
(23) one finds g =s = — % and, therefore,

p2__q2 + r2__S2
4p2x2 4r2y2

0%y

—A4
dx?

—A

5 2
72 u

1 1
?+}—2—J. (26)

In this case Eq. (25) is reduced to the Schrodinger equa-
tion for the (xy) ~%3 Fokas-Lagestrom potential and is
the quantum version of the classical results of Hietarinta
et al.'! From the above calculations one sees that the
potential

V=p(x2+y?2)? @7
has two duals, namely,
Vi=A(x2+y2) =43, (28)
= - 5 1 1
V,= 23 2 1N —+—.
2=A(xy) 77 a [xz yz] (29)

Our analysis indicates the nonuniqueness of the duality
to be related to the separability of the problem, but the
extension of any eventual relation remains an open ques-
tion. Based on the above example we speculate that any
“abundance of duality” could be an indicative property
of separable systems.

In summary, we established a duality between quan-
tum systems, valid in N dimensions. For two-dimen-
sional systems and in the limit #— 0 our results agree
with the classical duality recently obtained by Hietarinta
and co-workers. %! Further, we have shown duality to

2614
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5

xSy =Cy, (25)

be valid for a much larger class of dynamical systems
and to be not necessarily unique.
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