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Modeling velocity in gradient flows with coupled-map lattices with advection
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We introduce a simple model to investigate large scale behavior of gradient flows based on a lattice of
coupled maps which, in addition to the usual diffusive term, incorporates advection, as an asymmetry in the
coupling between nearest neighbors. This diffusive-advective model predicts traveling patterns to have veloci-
ties obeying the same scaling as wind velocities in the atmosphere, regarding the advective parameter as a sort
of geostrophic wind. In addition, the velocity and wavelength of traveling wave solutions are studied. In
general, due to the presence of advection, two regimes are identified: for strong diffusion the velocity varies
linearly with advection, while for weak diffusion a power law is found with a characteristic exponent propor-
tional to the diffusion.
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I. INTRODUCTION

The aim of the present paper is to introduce a sim
model for studying a number of dynamical features obser
in atmospheric circulation systems. While still preservi
nonlinear effects, the motivation of the model is to simpl
the familiar description based on the differential equat
underlying the dynamics, Eq.~1! below, in order to spare
computation time. For a number of applications, a redu
time of computation opens the possibility for investigati
single atmospheric scenarios over much larger time sp
over decades, centuries, or beyond, and allows evalua
average behaviors over larger ensembles of individual
narios. In addition, fast-running algorithms are very handy
ruling out unrealistic processes.

As is well known @1–3#, in setting up models of atmo
spheric circulation it is common to use sets of spatially c
tinuous orthogonal functions to obtain a discrete and fin
set of numbers, a lattice, which approximates in every atm
spheric layer the fields corresponding to each of the dep
dent variables~wind components, temperature, etc.!. Hori-
zontal derivatives are then expressed as linear combina
of the horizontal derivatives of the orthogonal functio
which, in turn, are approximated by linear combinations
the same functions. In general, atmospheric and oce
graphic forecasts based in partial differential equations
cretized on such lattices involve quite elaborate compu
tions @1–7#. However, an alternative elegant way to stu
physical processes is by using a different type of lattice,
where the clock ticks with longer intervals, the so-call
coupled-map lattices@8#.

Coupled-map lattices~CMLs! were introduced in the
early 1980s in investigations of spatiotemporal chaos. Si
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then, they have been successfully applied to a plethora
fields involving spatiotemporal complexity such as fluid d
namics, optics, chemical reactions, plasma, biology, etc.@8#.
CMLs have even been used to simulate quantum field th
ries @9#. By far the most popular CML model is that of
diffusive lattice of quadratic~logistic! maps @8,10#. CMLs
describe the collective behavior of a~usually quite large!
number of interacting low-dimensional local dynamical sy
tems placed on a discrete spatial lattice. So, in addition to
internal dynamics of individual ‘‘units,’’ or ‘‘cells,’’ CMLs
are also characterized by the very rich collective dynam
arising from the coupling between units.

In a seminal work introducing a general procedure
constructing low-order models of atmospheric circulatio
Lorenz @2# explains that ‘‘The most prominent nonlinea
terms in the@equations governing the behavior of the atm
sphere#, and the only ones appearing in some of the m
popular simplifications, represent the advection of some v
able quantity . . . . The terms are therefore quadratic, co
taining products of the advected quantities with the adve
ing wind. They cannot be removed by any transformation
the independent or dependent variables.’’ Thus, these a
ments clearly show that any realistic attempt at forecas
the evolution of atmospheric systems must incorporate
vection @2,11,12#.

The basic physical process underlying standard C
models of today is the diffusion among individual cells@8#
and, therefore, to use CMLs as models of atmospheric
tems one needs first to extend them to include advect
Here we show that a discretization of the appropriate diff
ential equation leads very naturally to a slight generalizat
of the standard~purely diffusive! CML model, a generaliza-
tion which is quite appealing as a model of atmospheric s
tems.

The paper is organized as follows. In Sec. II we start
deriving the model. In Sec. III the velocity of traveling pa
tern solutions is studied and the numerical results are c
pared with those obtained for atmospheric fluids such as
©2002 The American Physical Society19-1
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LIND, CORTE-REAL, AND GALLAS PHYSICAL REVIEW E66, 016219 ~2002!
dient flows. Section IV presents a study of the mo
particular solutions, called traveling waves. Here we emp
size the variation of their wavelengths with advection. A fin
discussion and conclusions are given in Sec. V.

II. THE DIFFUSIVE-ADVECTIVE CML MODEL

The purpose of this section is to introduce the diffusiv
advective CML model. This is done by extending the sta
dard diffusive CML model to incorporate advection. To th
end we discretize in space and time the general equa
controlling the time evolution of any given intensive phys
cal propertyP, namely,

]P
]t

5K¹W 2P2vW •¹W P1F~P,P 8, . . . !, ~1!

wherevW is the advective velocity andK the diffusion coef-
ficient @13#. The functionalF depends in general onP and its
spatial derivatives and includes all additional contribution

Assuming for simplicity a single spatial dimension a
unitary increments in space and time, a straightforward
cretization of Eq.~1! yields

Pn,t115~122K!Pn,t1
2K2v

2
Pn11,t1

2K1v
2

Pn21,t

1F~Pn6 i ,t!, ~2!

wherei 50,1,2, . . . and theintegerst andn label time and
position in the lattice, respectively.

For a genericF(Pn6 i ,t), a plausible first approximation i
to consider the system as evolving in a ‘‘mean field’’ whi
acts effectively so as to modify homogeneously the rela
weights ofPn,t , Pn11,t , andPn21,t in the first three terms
of the second member of Eq.~2!. This leads to

Pn,t115~12«! f ~Pn,t!1
«2g

2
f ~Pn11,t!1

«1g

2
f ~Pn21,t!,

~3!

whereg5v represents the advection,«52K is the coupling
parameter representing diffusion, andf (x) stands for the lo-
cal nonlinear map representing the mean field, in suita
units. In the remainder we consider the rich dynamics of
~3! when the local cells are ruled by the usual quadra
function f (x)512ax2, with periodic boundary conditions
xL1n5xn , whereL is the total number of lattice sites.

If, as usual, one interprets the coefficients of the nonlo
terms in Eq.~3!, as coupling parameters varying between
~no coupling! and 1 ~full coupling!, then for 0<«<1 the
allowed interval ofg is 2«<g<«.

Equation ~3! defines the model incorporating advectio
through the parameterg which corresponds to an asymmet
in the coupling with nearest neighbors. In the absence
advection (g50) Eq. ~3! reduces to the familiar diffusive
model @8,14–16#. For g56« Eq. ~3! reduces to the so
called one-way coupling model@17#. With minor changes of
variable, Eq.~3! contains all previous models which in on
way or another have asymmetries in the coupling@18,19#.
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III. POWER LAW FOR TRAVELING
PATTERNS VELOCITY

One of the most interesting features of the model is
existence of traveling pattern solutions either in the abse
@8,14,16# or in the presence@20# of advection. In this section
we study the variation of the velocity of such traveling pa
terns as a function of both advectiong and diffusion«. A
main result is that the velocity has a correspondence with
so-called gradient wind velocity@21# over a certain region in
the parameter space.

In atmospheric circulating systems, the gradient wi
equation is a solution of the equation of motion describ
the balance between the centrifugal force, the pressure
dient force, and the Coriolis force. In other words, the g
dient wind is a frictionless wind describing the motion
atmospheric flows in closed trajectories@21#. The presence
of a centrifugal force yields different solutions for the grad
ent wind velocity, depending on the signs of the curvatu
radius and of the pressure gradient. Some of these solut
are ‘‘nonphysical’’ while the others explain the four types
atmospheric pressure system occurring at the mesos
namely, the so-called normal or anomalous highs and nor
or anomalous lows@21,22#. In the atmosphere, the combina
tion of these pressure systems is determinant for its l
term behavior; it is rather difficult to predict their evolutio
for long periods of time, weeks and beyond@23#.

In general, the gradient wind velocity depends on the
called geostrophic wind velocity@see Eq.~6! below#, that is,
on the horizontal pressure gradient force. In this section
argue that the advection may be interpreted as the g
strophic velocity.

Without advection, Eq.~3! is known to support traveling
wave solutions over a wide range of parameters@8,16#,
namely, 1.6<a<1.85 and 0.4<«<0.9, but always for rather
low velocities, of aboutv;1023 sites/step. Two importan
effects of the advection here are~i! to induce movement in
patterns which would be otherwise stationary, and~ii ! to al-
low velocities to be easily tuned, up to three orders of m
nitude. These effects happen over wide parameter range

Figure 1 shows the velocityv of a pattern traveling on a
lattice with L564 sites as a function of the advectiong,
computed during 104 steps after a transient of 105 steps. The
dependence is rather different depending on whether the
fusion is strong or weak, with the transition between the
regimes happening for« t;0.27.

As illustrated by Fig. 1~a!, for weak diffusion there is a
clear domain where the velocity is locked atv50 for an
interval2gc<g<gc , gc being the maximum value ofg for
which velocity locking occurs. Outside this locking interv
the velocity is well fitted by a power law

v5
g

ugu ~ ugu2gc!
a2u, ~4!

wherea depends on the diffusion« and the constantu rep-
resents small fluctuations around the best fit. From the sm
scale behavior shown in Fig. 1~b! one recognizes thatu var-
9-2
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MODELING VELOCITY IN GRADIENT FLOWS WITH . . . PHYSICAL REVIEW E66, 016219 ~2002!
ies like a step function and that the velocity ‘‘hesitates’’ b
tween different constant values which are roughly equa
spaced.

For strong diffusion Eq.~4! no longer applies, the velocity
then varying linearly withg @see Fig. 1~c!#, apart from a
small fluctuation aroundv5g. This fluctuation may be eithe
random, for chaotic local maps@see Fig. 1~d!#, or vary in
steps, for periodic local maps. Important here is that, des
the strong diffusion, advection dominates diffusion co
pletely with the numerical value ofg being a very good first
approximation of the velocity value. This is in perfect agre
ment with the identification of« in Eq. ~3!. In addition, our
results show that no power law holds for chaotic local ma
independently of the diffusion strength. Since we are in
ested in power-law behaviors, we concentrate hencef
only on periodic local maps. For a more detailed study
chaotic coupled maps see Ref.@20#.

Figure 2 illustrates the transition from weak to strong d
fusion, showing the velocity dependence on both parame
advectiong and diffusion«, for a51, when the local maps
oscillate with period 2. As illustrated in the tridimension
plot in Fig. 2~a!, the velocity shows axial symmetry aroun
g50, namely,v(g,«)52v(2g,«). Furthermore, one see
the full region of velocity locking atv50. This region is
emphasized in Fig. 2~b! which shows the projection ofv into
the «3g subspace. The maximum valuegc of the velocity
locking region decreases when diffusion gets stronger
similar projection into thev3g subspace is illustrated in
Fig. 2~c!, suggesting that the exponenta in Eq. ~4! increases
up to ;1 for « t . Beyond this threshold the velocity is no
locked anymore but depends linearly on the advection
shown in Fig. 3.

Figure 3 illustrates not only the power-law behavior of t
velocity, but also the variation of the exponenta as a func-

FIG. 1. Velocity dependence on the advection for~a! weak dif-
fusion («50.1) and periodic local dynamics (a51); ~b! zoom of
~a! showing step-function fluctuations;~c! strong diffusion («
50.5) and chaotic local dynamics (a51.7); ~d! zoom of~c! show-
ing small fluctuations aboutv5g. HereL564.
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tion of diffusion. Figure 3~a! showsv3g plots similar to
those in Fig. 2~c! but on logarithmic scales for 12 differen
values of the diffusion«P@0.06,0.58#. The best fit for these
curves is the linear fit as illustrated in Fig. 3~b!, where the
slope corresponds to the exponenta in Eq. ~4!. Furthermore,
all the fits intersect roughly at the same pointP
[(log G* ,log v* );(23.16,23.14), where we defineG*
5ug* u2gc . With these values ofG* andv* we obtain an
expression for the lines for any value ofa, making it pos-
sible to write an approximate expression forgc , namely,

gc5ugu2G* S v

v*
D 1/a

. ~5!

Figure 3~c! clearly shows that~i! for the weak diffusion re-
gime,«<« t , the exponenta is proportional to the diffusion
while ~ii ! for the strong diffusion regimea;1. In other
words,a is truly a characteristic exponent, and the above
~5! gives an approximate value ofgc for any (g,«,v) in the
region where the power-law behavior exists~see Fig. 2!.

So far, we have considered the dynamic effect of adv
tion in the collective behavior of a coupled lattice. Howev
a particularly interesting situation arises for«;0.06, where
from Fig. 3~c!, one findsa50.5. In other words, in this cas
the velocityv is proportional toAugu2gc, therefore scaling

FIG. 2. The transition from weak («&0.27) to strong («
*0.27) diffusion, for a51. ~a! Symmetry v(g,«)52v(2g,«)
and locking regionv50; ~b! projection ofv onto theg3« sub-
space, emphasizing the locking region and showing lines of c
stantv, v150.04,v250.08,v350.12, andv450.16;~c! the veloc-
ity as a function ofg for «150.06, «250.08, «350.1, «450.14,
«550.2, and«650.27;« t ~see text!. HereL564. Similar results
are obtained for other lattice sizes.
9-3
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LIND, CORTE-REAL, AND GALLAS PHYSICAL REVIEW E66, 016219 ~2002!
precisely as in atmospheric gradient flows, where the w
velocity V displays the same dependence on thegeostrophic
wind vg , namely@1,3#,

V56S f 2R2

4
1 f RvgD 1/2

2
f R

2
, ~6!

wheref is the Coriolis parameter andR is the radius of cur-
vature. From Figs. 1~a! and 2~c! one also sees thatgc /ugu in
Eq. ~4! is bounded by 0.3&gc /ugu<1. Therefore, values in
the lower end of this interval have the same order of mag
tude as the valuef R/(4vg);0.25 corresponding to standar
mesoscale analysis in middle latitudes wheref ;1024s21,
R;105m, andvg;10m/s.

IV. WAVELENGTH MODULATED BY ADVECTION

In the absence of advection, traveling wave solutions
pear to havealwaysthe same wavelength@8,16#. In this sec-
tion, we show that in the presence of advection it is poss
to change the wavelength of these solutions.

The possibility of predicting traveling wave solutions
different wavelengths in CMLs, implies the existence of d

FIG. 3. Variation of the exponenta as a function of the velocity
and advection@see Eq.~4!# ~a! Log-log plot of the velocity as a
function of g2gc and~b! the corresponding fits of the data, whe
P;(23.16,23.14) is the approximate intersection of all the lin
~see text!. ~c! Variation of a as a function of« showing the transi-
tion, at aboute t50.27, from the weak to the strong diffusion re
gimes. The gradient flow~GF! regime occurs for«&0.06~see text!.
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ferent spatial scales. In the real atmosphere, atmosph
waves also occur in different spatial scales, generated
local conditions such as topography@24# and influencing the
global climate over different spatial scales@25#, e.g., the
cycle of tides@26# and, as found very recently, the distribu
tion of ozone holes at the earth poles@27#. Most of these
atmospheric waves are generated by dynamical proce
and interact nonlinearly; they are crucial elements in atm
spheric forecasts at all scales.

As recently shown@16#, in the absence of advection th
region delimited by 1.6<a<1.85 and 0.4<«<0.9 is charac-
terized by the presence of wavelike patterns, i.e., patte
with spatial periodicityxt( i )5xt( i 1k) with k;8 sites@8#.
In this domain, by adding advection, static wavelike patte
start to move while moving patterns increase their velociti
in other words, all patterns turn into traveling waves. W
proceed by considering traveling wave solutions of Eq.~3!,
investigating the spatial dependence of their wavelength
the parameters. Wavelengths were computed from ana
of the spatial correlations among lattice sites@20#, namely,

C~ i , j !5
^xixj&2^xi&^xj&

^xi
2&2^xi&

2
, ~7!

where i and j label different sites on the lattice and̂X&
represents the time average ofX.

Figure 4 shows the spatial wavelength as a function og
for a set of 50 initial conditions. The wavelength reache
maximum of nearly eight sites for a certain interval abo
g50 and decreases when advection is further increased
maining, however, nearly constant inside certaing intervals.
Due to an increase in the propagation velocity, the ph
difference measured at a given site between successive
steps increases, leading to an increase in the quantit
waves needed to ensure stability of the pattern. This incre
in the quantity of waves occurs discontinuously, produc
‘‘jumps’’ in l, which correspond to a splitting of the wav
numberk from n to n11. Thus, the net effect of an increas
in the advection is to produce a decrease in the obse
wavelengths. The association of stronger advection w
smaller wavelengths is also true in the real atmosph
where, for example, the advection of vorticity~a rather im-
portant mechanism in cyclogenesis! increases with the
square of the wave number@21#.

The characteristic valuesg, where the wavelength split
from one value to another depend linearly onl, as may be

FIG. 4. Wavelength as a function of advection. Histograms w
computed from 50 random initial conditions for 100 values ofg.
9-4
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MODELING VELOCITY IN GRADIENT FLOWS WITH . . . PHYSICAL REVIEW E66, 016219 ~2002!
seen from Fig. 5~a!. Figure 5~b! shows that the widthd of the
intervals where the wavelength remains constant is pro
tional to l2.

Both quantitiesg, andd depend on diffusion«. Figure 6
shows a rough illustration ofg, as a function of bothg and
«. The wavelength remains constant inside the parabo
shaped regions and changes abruptly at the boundaries.

V. CONCLUSIONS

In conclusion, we have shown that the discretization
the diffusion and advection operators leads directly and q
naturally to a simple generalization of the standard coup
map lattice model. The model incorporating advection tu
out to be particularly well suited for studying dynamical a
pects of the atmosphere. For instance, in the weak diffus
regime the velocities of the patterns on the lattice are fo
to be of the same order of magnitude and to have the s
scaling as wind velocities of gradient flows in the atm
sphere. In general, there is~i! a weak diffusion regime char
acterized by a locking regionv50 inside an interval cen
tered atg50 and, outside that interval, by an exponenta
which describes power-law behavior between the velo
and advection and~ii ! a strong diffusion regime where trav
eling wave solutions have a velocity approximately equa
the value of advection. The latter, also characterized
wavelike solutions, shows characteristic wavelengths in
tain ranges of advection values.

All aforementioned results are robust to variations of i
tial conditions and length of the transients. For instance,
hesitation ~the analog of the atmospheric vacillation! be-
tween two successive steps seen for weak diffusion in
1~b! does not depend on the transient used. Furtherm

FIG. 5. ~a! The critical valuesg, , where wavelength transition
occur, vary linearly withl; ~b! the amplitudesd of the g intervals
wherel is constant are proportional tol2.
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although in the present work we concentrated on a fix
lattice size,L564, all results are also observed in lattices
different sizes. In fact, the spatial wavelength tends to a fin
value in the thermodynamic limitL→`. A more detailed
discussion of advection is presented elsewhere@20#. Among
others, two questions arise from this study, the first conce
ing the conditions for velocity locking and the second co
cerning the possibility to turn periodic patterns that are c
otic for the purely diffusive CML model, by adding
advection. These questions are treated elsewhere@28#.

As it is not difficult to realize, the present model is no
ready to be applied to simulations of two-dimensional l
tices having a ‘‘vertical’’ coordinate, in order to verify i
traveling wave solutions governed by the advection have
locities and wavelengths lying on a range compatible w
the corresponding ones found for atmospheric waves.
inclusion of this additional degree of freedom produces
whole class of models sharing much in common with tw
level models@1,21,29# widely used in atmospheric forecast
allowing, in particular, the simulation of atmospheric@28,30#
and ocean@31# convection.
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