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Arithmetical signatures of the dynamics of the Hénon map
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We report a fourth-degree polynomial that parametrizes analytically all period-4 orbits of the He´non map
and use it to investigate arithmetical signatures of the symbolic coding for this prototypical multidimensional
system. A discontinuity in the symbolic dynamics observed by Hansen while following numerically a period-
6 orbit along a closed loop in parameter space is shown to exist already for period 4. We obtain an analytical
expression for the locus of all such discontinuities in parameter space and explain their origin. Our analytical
results allow the accurate location of all discontinuities, in contrast with topological methods based on ho-
moclinic tangencies that exist over continuous intervals.
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I. INTRODUCTION

An outstanding problem in chaotic dynamics is to spec
generating partitions for symbolic dynamics in dimensio
larger than one@1#. It has been known that the infinite num
ber of unstable periodic orbits embedded in the chaotic
variant set provides sufficient information for estimating t
generating partition. However, the extraction of this inform
tion is a quite difficult task that is currently the subject
much work@1–12#. Knowledge of the generating partition
is of fundamental importance to understand the evolution
such systems by encoding arbitrary trajectories as an infi
sequence of symbols.

Partitions are ‘‘generating’’ when they do not assign t
same symbolic sequence to different orbits. A comparison
several possible generating partitions for the paradigm
guinea pig, the He´non map, has been recently reported
Eisele @13# where the difficulties of them are discussed
detail. The main problem is that we only know how to co
struct generating partitions for the most simple dynami
systems, namely, one-dimensional maps and uniformly
perbolic systems. Even for two-dimensional dissipative m
there is no systematic way to construct generating partitio
in general.

Various approaches have been introduced to encod
given trajectory in phase space@1–13#. A popular way of
obtaining binary partitions is by using the concept of h
moclinic tangencies@14#, i.e., points on the attractor wher
the stable and unstable manifolds are parallel. The basic
is that the binary coding assigned to each periodic orbit
mains unchanged when parameters of the dynamical sy
are varied smoothly. The key aspect of this is the identifi
tion of some parameterph such that the corresponding dy
namics is characterized by a complete horseshoe. The en
ing of each periodic orbit for any desired parameterp is then
obtained by smoothly deforming the orbit fromph to p.

From classic works of Cauchy and Puiseux and, specia
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Riemann and Weierstrass, we do not expect such sm
variations to work, in general, for arbitrary deformation
Indeed, while studying his box-within-box structuring, Mir
@15# observed that for the He´non map

~x,y!°~a2x21by,x!. ~1!

‘‘There exist a set of boxes such that starting from a box
theb50 axis belonging to this set, and following a correct
selected continuous path in the (a,b) @parameter# plane, it is
possible to get to a different box ofb50.’’ Later on, Hansen
@16# ~see also Giovannini and Politi@17#!, investigated a spe
cific period-6 orbit of the He´non map which, when followed
along closed paths in parameter space, is transformed in
different orbit, thus signaling to unavoidable ambiguities
the symbolic coding. Such transformation into a differe
orbit means that somewhere along the deformation path,
symbolic coding of the orbit has to be somehow modifi
discontinuously in order to yield the final coding.

The discontinuities reported in Refs.@16,17# were found
by numerical calculations. Hansen@16# considered the dy-
namical changes undergone by two of the nine poss
period-6 orbits. As recently found, the set of nine period
orbits has the remarkable property of containing nonlinea
interdependent orbits that display a generic ‘‘orbit-withi
orbit’’ stratification @18,19#.

The discontinuity in the symbolic coding reported b
Hansen @16# was observed while circulating around
period-6 cuspidal structure in parameter space. Hansen s
that period 6 would be the simplest example leading to s
discontinuous symbolic change. However, a cuspidal str
ture is known@15,20,21# to appear already for period 4. Thi
fact and the very interesting results of Hansen@16# and Gio-
vannini and Politi@17# raise the question whether the simpl
and less numerous~only three! period-4 orbits would allow
one to gain insight about the difficulties of establishing ge
erating partitions for multidimensional systems.

Apart from the aforementioned interest for practical a
plications, an additional motivation for investigating the o
gin of discontinuous changes is provided by a number
questions of concerning thearithmetical nature of periodic
©2002 The American Physical Society31-1
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orbits and their evolution as parameter changes. For insta
it would be very useful for applications to know whether
not the Galois group associated with minimal polynomi
defining periodic trajectories are preserved upon change
parameters. Is there anarithmetical codingcapable of label-
ing different trajectories unambiguously, based possibly
the number-theoretical structure of the orbital points? C
we hope to devise algorithms capable of generating s
structuring and labeling? From a mathematical point of vi
a direct arithmetic labeling would be the most basic that o
could possibly use. The answers to these and similar q
tions @18,19,21# presuppose detailed arithmetical investig
tions of both orbits~phase space! and parameters~phase dia-
grams! and this paper may be regarded as a step toward
goals.

Although the familiar topological approach is very use
to describe the relatively tame changes that occur as pa
eters are varied smoothly, the most interesting physical p
nomena appear invariably along curves and wrinkles
cannot be ironed away. The analytical determination of
period-4 wrinkles~nonhyperbolic parameters! was reported
recently in Ref. @21#. For particular eigenvalues, suc
wrinkles define boundaries of stability and multistability d
mains.

The aim of the present paper is to consider the very r
dynamics along wrinkles and several additional loci that
derly period-4 orbits. More precisely, we report an investig
tion of the changes undergone by all three period-4 orbits
the Hénon map @Eq. ~1!# when the parameters (a,b) are
changed adiabatically. We derive an exact analytical exp
sion for the critical parameter locus characterized by orb
discontinuities. In addition, we explain theorigin of the or-
bital discontinuities responsible for ambiguities in the sy
bolic coding.

In the following section, we show how to obtain explicit
an exact analytical expression parameterizing all poss
period-4 orbits of the He´non map, their solutions and discu
several parameter loci underlying them, pointing out the
istence of a cusp in parameter space. In Sec. III, we cons
a circulation along a closed triangular parameter path enc
ing the cusp, pointing out the existence of three change
the orbital labeling during the circulation. In Sec. IV, w
derive the conditions for the existence of discontinuities,
cate precisely where the discontinuity occurs along the tr
gular path and explain the origin of all such discontinuitie
Finally, in Sec. V, we present our conclusions. The Appen
contains a plethora of algebraic details concerning the s
metries of period-4 orbits and identities~automorphisms! im-
plied by them.

II. PARAMETERIZATION OF ALL PERIOD-FOUR
ORBITS

Any k-periodic orbit consists of a set$xj%, j
51,2, . . . ,k, of k points that may be used to build a polyn
mial of degreek whose coefficients, say$u l %, are given by
the well-knownsymmetric functionsof the points in$xj%.

Now, the equation of motion implies additional relation
constraints, among thek orbital points $xj%. These con-
03623
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straints may be used to express all coefficients$u l % in terms
of any one of them, sayum . The same constraints may b
also used to obtain an additional equation from which
possible values of the chosenum may be determined. In
other words, it is always possible to reduce the equation
motion to: ~i! a polynomial that parameterizes simult
neouslyall orbits of any given periodin terms of an arbi-
trarily selectedum , ~ii ! a polynomial from which all allowed
values ofum may be derived. This general procedure is va
for any dynamical system with equations of motion defin
by algebraic equations.

As an illustration of the general procedure above,
present now explicit results of a parameterization of
period-4 motions for the He´non map, Eq.~1!. The convenient
coefficient um chosen here for this parameterization is t
sums[x11x21x31x4 of the orbital points.

Using Eq.~1! to obtain relations interconnecting the o
bital points, one finds that all period-4 orbits of the He´non
map have their orbital points defined necessarily by the ro
of the polynomial

P~x!5x42sx31u2~s!x22u1~s!x1u0~s!, ~2!

where

u2~s!5
1

2
@s~s112b!24a#, ~3!

u1~s!5
1

24
@4s3112~12b!s2240as18~12b!~11b!2#,

~4!

u0~s!5
1

24
$s416~12b!s31@3~11b!2216a#s2

2~12b!@12a214~11b!2#s124a2224~11b!2

3~a2b!%. ~5!

The possible values ofs are defined by the roots of the cub

s323Us22V50, ~6!

whereU[4a/32(11b)2 andV[2(12b)(11b)2 and the
discriminant of the cubic is22233(V22U3). Equation~6!
shows at once that, for any given pair (a,b) of parameters,
the Hénon map contains a total ofthreeperiod-4 orbits.

A. The orbital points

To have a period-4 orbit for the He´non map means to dea
with four numbersx1 , x2 , x3 , x4 interconnected by Eq
~1! in the following way:

S x1

x4
D→S x2

x1
D→S x3

x2
D→S x4

x3
D→S x1

x4
D , ~7!

a very specific ordering that repeats forever as time evolv
In the Hamiltonian case, whenb561, the orbital points

xi may be easily obtained sinceV50 along both linesb5
61. Then, Eq.~6! simplifies considerably,
1-2



g

ARITHMETICAL SIGNATURES OF THE DYNAMICS OF . . . PHYSICAL REVIEW E 65 036231
FIG. 1. Structure of the three orbitsOn , for n51,2,3, whena52 andb50. OrbitsO2 andO3 look quite similar, despite the stron
dissimilarities of their analytical expressions, shown in Eqs.~19! and ~20!.
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s~s224a112!50 for b51, ~8!

s~s224a!50 for b521. ~9!

These interesting equations show that the nondissipa
~Hamiltonian! limit contains always an orbit for whichthe
sum of orbital points is identically zero. The corresponding
orbital equations simplify to

~x212x1a22!~x222x1a22!50 ~b51!, ~10!

~x22a!250 ~b521!. ~11!

In the dissipative case, whenbÞ61 ~andsÞ0) the or-
bital equations may be obtained by eliminatinga among Eqs.
~2! and ~6!. This procedure yields a fourth-degree polyn
mial in x, with coefficients that depend only onb ands and
whose roots give the following orbital points:

x15
1

4
@s2S12AS2~S11s!#, ~12!

x25
1

4
@s1S12AS2~S12s!#, ~13!

x35
1

4
@s2S11AS2~S11s!#, ~14!

x45
1

4
@s1S11AS2~S12s!#, ~15!

where

S1[As214~11b!2, ~16!

S2[2S s22~12b!

s DS1 . ~17!

Eliminating s between Eqs.~2! and ~6! one obtains a
12th-degree polynomial inx with coefficients depending
only ona andb. The three period-4 orbits are formed by th
roots of three fourth-degree polynomials that compose
12th-degree polynomial.

In the remainder of the paper we explore Eqs.~2! and~6!,
our main analytical results.
03623
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For (a,b)5(2,0), the well-studied limit in which the map
is known to contain generating partitions, Eq.~6! reduces to
(s22s24)(s11)50, giving us three roots, (1
1A17)/2, (12A17)/2, and21 which, substituted in Eq
~2!, yield the orbits

O1~x!5x42 1
2 ~11A17!x32 1

2 ~32A17!x2

2~22A17!x21, ~18!

O2~x!5x42 1
2 ~12A17!x32 1

2 ~31A17!x2

2~21A17!x21, ~19!

O3~x!5x41x324x224x11, ~20!

respectively. Here and below, all square roots denote
positivevalue of the root. The orbital points for these thr
orbits are given in the Appendix.

Figure 1 shows the phase-space structure of the three
bits Oj (x), from which one may read directly the corre
sponding symbolic codings.

Notice that, for any choice of parameters, just a sin
equation, Eq. ~2!, correctly parameterizes all possib
period-4 orbits. In particular, Eq.~2! yields at once in factor-
ized form the pair of conjugate orbits ‘‘interlaced’’ in th
irreducible octic studied in Ref.@19#,

O1~x!O2~x!5x82x727x616x5115x4210x3210x2

14x11. ~21!

B. General solution of the cubic

For arbitrary parameter values, the solution of Eq.~6!
depends essentially on a single numberN1 :

N1[A3 V1AD, ~22!

whereD[V22U3, a quantity that may also be written as

D54~12b!2~11b!42F4

3
a2~11b!2G3

5
16

27
a2@9~11b!224a#2~11b!4D1 , ~23!
1-3
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D154a2~5b226b15!54a24~12b!22~11b!2.
~24!

Fixing now the auxiliary quantities

N2[U/N1 , ~25!

v52(12 iA3)/2, andv252(11 iA3)/2, one may write
the three roots of Eq.~6! as

s15N11N2 , ~26!

s25vN11
N2

v
5vN11v2N2 , ~27!

s35v2N11
N2

v2
5v2N11vN2 . ~28!

In the generating partition limit (a,b)5(2,0), Eq. ~22!
gives N1

3 5(181 iA51)/9, allowing three possible choice
for N1 , namely,

N1
(1)52

1

2 S 11
i

3
A51D , ~29!

N1
(2)5vN1

(1) , ~30!

N1
(3)5v2N1

(1) . ~31!

These different choices simply show that there are three
ferent possibilities for fixing the initial labelings of thes i in
Eqs. ~26!–~28!. The actual labelings underlying each po
sible choice are shown explicitly in Table I.

As it is not difficult to realize, the main wrinkles definin
the stability of the system are those obtained whenD50 and
D150. Of interest also is the parameter locus along wh
U50. All these loci are shown in Fig. 2

C. The critical loci

From Eq. ~6! one recognizes that interesting changes
the dynamics occur for parameters such thatD5V22U3

50. Although this condition represents a simple curve in
U3V space, it implies rather different situations in thea
3b space. We consider them now.

~1! The locusD50: As seen from Fig. 2,D50 is the
main wrinkle along which period-4 orbit is created, whena
increases. This locus has N15N2[N5A3V
5A32(12b)(11b)2 a fact that reduces Eq.~6! to s3

TABLE I. Three possible choices ofsk in the generating parti-
tion limit, depending on the value chosen for the cubic rootN1 .
We fix N1[N1

(1) .

N1 s1 s2 s3

N1
(1) 1

2 (11A17) 1
2 (12A17) 21

N1
(2) 1

2 (12A17) 21 1
2 (11A17)

N1
(3) 21 1

2 (11A17) 1
2 (12A17)
03623
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23N2s22N350, with rootss52N,2N,2N. Along the lo-
cus D50 one finds the cuspidal structure shown in Fig.
The cusp is centered along theb51 ‘‘Hamiltonian axis.’’ In
this figure, Greek letters represent interesting intersecti
points discussed in Ref.@21#.

~2! The locusD150: As seen in Fig. 2, theD150 locus is
the parabolic curve along which the period doubling 2→4
occurs. The intersection ofD150 and D50 occurs at
(a,b)5(29h,h).(1.544 155 8,20.171 572 8), whereh5
231A2. This point is one of the vertices marking a doma
where two different stable orbits of period four exist. For
discussion of this interesting domain see Ref.@21#.

~3! The locusU50: As Eqs.~22!–~25! show, U54a/3
2(11b)250 implies either N250 and N15A3@2V or
N25A3@2V and N150, depending on the sign ofV, i.e.,
whetherb,1 or b.1, respectively.

Two points along the curveU50 are particularly note-
worthy, namely (a,b)5(3,1) and (0,21), points where Eq.
~6! has a triply degenerate roots50. As shown in Fig. 3, at
the first point there is cusp along the21 eigenvalue locus.
The curvesU50 and D150 intersect at (6bp8 ,bp8) and
(6bu8 ,bu8), where bp85322A2.0.171 572 and bu853

FIG. 2. Bifurcation curvesD50 andD150, the wrinkles along
which period-4 orbit is created whena increases. For reference
light curves indicate the location of well-known loci. The line ind
cated by an asterisk corresponds to the locus where 9(11b)2

24a50 @see Eq.~23!#.

FIG. 3. Cuspidal structure along the ‘‘Hamiltonian axis’’b51.
The numbers11 and21 refer to the eigenvalues characterizin
the loci.
1-4
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ARITHMETICAL SIGNATURES OF THE DYNAMICS OF . . . PHYSICAL REVIEW E 65 036231
12A2.5.828 427, both quantities beingunits @22# in Q(A2)
with norm 11.

The curve indicated by an asterisk in Fig. 2 signals
location of the locus where 4a29(11b)250 and, as Eq.
~23! shows, signals the locus whereD1 is the quantity ruling
the square root that appears inN1 . There are two points
where the asterisk curve meets the curveD150:
(29bp ,bp) and (29bu ,bu), where bp52312A2.
20.171 572 andbu52322A2.25.828 427, both num-
bers being also units inQ(A2) with norm 11. The point
where D50 meetsD1 coincides with the point where th
curve indicated by an asterisk meets the curveD150. The
perfect symmetry of all four intersections above reflects
remarkable property that all coordinates of intersections
functions of specific units in the fieldQ(A2).

We proceed now to investigate the changes obser
while circulating along generic paths in parameter space

III. A CIRCULATION AROUND THE CUSP

In this section we investigate orbital changes unde
smooth clockwise circulation along the triangleABCA
shown in Fig. 4. We start and return to the vertexA5(2,0),
the limit of complete binary trees and well-defined symbo
dynamics. The triangleABCA encloses the cuspidal struc
ture shown in Fig. 3, which is triply degenerate,s350, for
(a,b)5(3,0). The three segments defining the triangle
AB: b53a/223, BC: b52a/419/4, CA: b5a/3
22/3. A similar adiabatic circulation in parameter space w
considered earlier by Hansen@16# and Giovannini and Politi
@17#, who considered numerically two of the nine possib
period-6 orbits of the He´non map, showing the existence
discontinuities in the symbolic dynamics. Profiting from t
analytical results obtained for the much simpler period-4
bits, our main purpose here is~i! to characterizearithmeti-
cally the origin of such discontinuity as well as~ii ! to locate
in parameter space where exactly such discontinuity occ

At the vertexA, located at (a,b)5(2, 0), there are three
real orbits. Moving upwards alongAB one arrives quickly at
the pointa.2.024 465 632,b.0.036 698 448 10 where th

FIG. 4. Clockwise circulation along the triangleABCA enclos-
ing the cuspidal structure shown in Fig. 3. The vertices are loca
at (a,b)5(2,0), (3,3/2), and (5,1). The dotted parabolaU50 is
where discontinuous jumps occur whenb.1 @see Eq.~45!, below#.
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segmentAB meets the locusD50. Arithmetically, this inter-
section is characterized by sextic numbers easily deri
from the analytical expressions above. Forb
.0.036 698 448 10 there is one real and two complex orb
This situation persists until the segmentBC crosses again the
D50 locus, when all three orbits are real once again. The
fore, only one of the three period-4 orbits remains real d
ing the whole clockwise circulationA→B→C→A.

Figure 5 shows in detail the evolution of the real orb
during the circulation fromA→B→C→A. In this figure,
numbers denote points of the orbit while dashed lines
used to help visualize how the points move in phase sp
In Fig. 5~a! one sees clearly a crossing of the dashed line
crossing absent in Figs. 5~b!–5~d!. In addition, comparing
Figs. 5~a! and 5~d!, which correspond to the vertexA at the
beginning and at the end of the circulation, one sees that
period-4 orbit changed continuously fromO1(x) to O2(x),
moving out of the generating partition parabola where co
plete binary tree exist and returning back to it butat a dif-
ferent location. Notice that the point 3, which at the begin
ning of the circulation was between points 1 and 4 on
parabola, finished the circulation at a point lying between
and 2 on the parabola.

From Fig. 5 one recognizes an additional rather curio
phenomenon happening along the path followed by the
bital point labeled by the number 3:this point crosses the
diagonal in three different locations. Since the He´non map is
two dimensional, such crossings imply the existence of n
trivial orbits having yi[xi . This means that the minima
polynomials defining orbital points of multidimensional sy
tems may have multiple zeros, in sharp contrast with the
usual Abelian equations@23#, characteristic of one-
dimensional systems, which are not allowed to contain m
tiple roots@19#. Therefore, although by elimination of var
ables one may effectively reduce a multidimensional se
equations to an one-dimensional equivalent system, such
duced systemsallow multiple rootsa fact that may be used t
segregate those one-dimensional equations of motion
pable of representing higher-dimensional dynamical syste
a quite useful result.

The specific parameter values and orbital points of
three orbits having pointsyi[xi on the diagonal are summa
rized in Table II. Both orbits lying on the segmentAB have
their parametera defined by a zero of the sextic

729a627776a5134 668a4283952a31117 936a2

291 392a130 20850, ~32!

while the remaining orbit lies onBC and has its parametera
defined by a zero of

a6262a511607a4223 108a31187 775a22773 150a

11 184 47350. ~33!

Figure 6 shows the evolution of the four orbital points
a function ofa and, in particular, what happens in the vici
ity of the three locations where the orbit contains points
cated on the diagonalyi5xi , i.e., whenx35x2. As it is clear,

d

1-5
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FIG. 5. Phase-space evolution, fromO1(x) to O2(x), of the orbit that remains real during the clockwise circulation fromA→B→C
→A along the triangle as shown in Fig. 4. Orbits start and finish on the logistic parabola.~a! The dashed line indicates the position of th
initial orbit O1 when departing from vertexA; ~b! The orbit at vertexB; ~c! The orbit at vertexC; ~d! Arrival at A, with the final orbitO2.
The crossing of the dashed lines seen in~a! is topologically different from the situation in~b!–~d!. Compare the orbital points 1,2,3,4 wit
the corresponding ones in Fig. 1. The scales shown apply to all figure parts.
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two intersections occur along the branchAB, one alongBC,
and none alongCA. Recall that the branchCA is fully con-
tained in the domain where all three period-4 orbits are r
As Fig. 6 shows, along this branch there is a relatively m
variation of the orbital points. In particular, one of them r
mains essentially constant froma55 back toa52, along
CA.

Figure 6 shows clearly that asa changes from 2→5 and
back,the ordering of the orbital labels changes three time,
the greatest variation happening in the segmentAB, where
two orbits are defined by complex numbers. The possibi
of having ‘‘oscillations’’ in the symbolic dynamics seems n
to have been noticed before. It would be nice to che
whether or not there is any relation between such oscillati

TABLE II. Approximate numerical values of the three period
orbits shown in Fig. 7 having a point on the diagonaly5x. Exact
values are roots of polynomials given in the text.

P1 P2 P3

a 2.347 056 131 5 2.838 563 263 5 3.478 593 743
b 0.520 584 197 2 1.257 844 895 3 1.380 351 564
s 2.129 326 750 9 21.045 008 096 1 21.561 268 882 7
x1 21.616 547 577 8 22.446 437 075 8 22.695 263 345 3
x2 0.824 955 474 0 20.393 581 600 3 20.590 458 659 3
x3 0.824 955 474 0 20.393 581 600 3 20.590 458 659 3
x4 2.095 963 380 5 2.188 592 180 4 2.314 911 781
03623
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and the degree of the number fields underlying model par
eters. This, however, seems to be a hard task.

Figure 7 shows the topological structure of the orbits t
contain diagonal pointsyi5xi . Comparing Figs. 5~a! and
6~a! it is not difficult to realize that whena increases fromA
to B along the segmentAB, there is a very interesting situa
tion in which three orbital points lie on a same straight line.
The alignment of these three points marks the transition fr
‘‘crossing’’ to ‘‘noncrossing’’ of the dashed lines, a significa
tive change. The three-in-a-line alignment of the points 1
and 4 happens for the parameters and orbit defined in the
column of Table III, which shows approximate values. T
exact value ofb is a root of

p8~b!59 b8154b71105b62162b52524b42210b3

1249b2290b19, ~34!

derived from Eqs.~12!, ~14!, and~15!, from which one may
obtain the other values exactly. Table III gives the location
another similar triple alignment,b being now a root of

p7~b!5b717b6274b4270b319b21. ~35!

Equations~34! and~35! have the symmetric groupS8 andS7
and discriminants involving remarkably large primes for th
context:2240331832233315 496 661 and 22638 176 981,
respectively. Thesignature@24# of p8(b) is (2,3) while that
of p7(b) is (3,2).
1-6
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For period six, the case discussed in Refs.@16,17#, we find
similar alignments at

a51.402 68, b50.348 003 92, ~36!

and

a51.245 552 566 8, b50.377 223 716 5. ~37!

FIG. 6. Evolution of the four orbital points as function ofa. The
ordering of the labeling changes three times during the circulat
The location of the three crossings is given in Table II while t
corresponding orbits are shown in Fig. 7.
03623
Giovannini and Politi@17# find a homoclinic tangency for

a51.356 928 8, @b50.372 981 29#, ~38!

where brackets were used to indicate thatb ~not given in Ref.
@17#! was computed here so as to lie on the triangle. T
tangency lies between those in Eqs.~36! and~37!. However,
when comparing the values above, recall that as shown
Newhouse@25#, homoclinic tangencies occur inintervals in
parameter space, not points, in sharp contrast with the a
metical events discussed here that are intrinsically discre

IV. WHERE AND WHY DISCONTINUITIES OCCUR

In this section, we show how the orbital discontinui
appears and compute the precise location on the tria
where such discontinuity happens. Although the argume
tion here is for period-4 orbits, the same methodology

n.

TABLE III. Approximate numerical values defining the tw
period-4 orbits characterized by three points lying on a straight
in phase space. Notice the occurrence of twox values of the same
magnitude. Exact values are roots of polynomials given in the t

Points 1,3,4 aligned Points 2,3,4 aligned

a 2.102 136 163 3 2.696 324 313 7
b 0.153 204 244 9 0.232 108 104 5
s 2.494 879 101 8 21.963 829 346 7
x1 1.824 041 673 3 2.191 568 827 5
x2 21.122 216 721 2 22.191 568 827 5
x3 1.122 216 721 2 21.597 968 725 6
x4 0.670 837 428 4 20.365 860 621 0
by
ll
FIG. 7. Three orbits that have an orbital point on the diagonaly5x. They are all topologically equivalent since the polygons obtained
connecting successive orbital points with line segments do not exhibit the crossing that exists in Fig. 5~a!. The scales shown apply to a
figure parts.
1-7
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plies to orbits of any arbitrary periodicity.
To see how discontinuities appear, we start from the

lutions of Eq.~22!, writing them in polar coordinates

N1
(n)5r S cos

u

3
1 i sin

u

3Dvn21, n51,2,3, ~39!

where

r[A3 uV1ADu

and

cosu[Re~V1AD!/r , ~40!

sinu[Im~V1AD!/r , ~41!

where Re(z) and Im(z) denote the real and imaginary par
of z, respectively. The corresponding new form ofsn is

sn5N1
(n)1U/N1

(n)5r S cos
u

3
1 i sin

u

3Dvn21

1
U

r S cos
u

3
2 i sin

u

3D 1

vn21
. ~42!

WhenD.0, Eqs.~40!–~41! simplify to

cosu5
V1AD

uV1ADu
5sgn~V1AD!, ~43!

sinu50. ~44!

From Eq.~43! one sees thatu undergoes a discontinuou
jump of p wheneverV1AD changes sign. The effect ins of
this jump is to promote a permutation among thes values,
implying a corresponding permutation of the orbits.

The aforementioned jump occurs forV1AD5V
1AV22U350, that is, forU50 andV1AV25V1uVu50
where V5(12b)(11b)2. Therefore, the condition for the
existence of a period-4 discontinuity is to have simul
neously

U50 and b.1. ~45!

Figure 8 shows the evolution of the threesn values from
A→B→C, where one can see where the discontinuity
curs. The jump occurs precisely at

aj5
1

3
~7128A55!53.890 137 37, ~46!

bj5
1

3
~21112A55!51.277 465 658, ~47!

when

sn52
2

3
wn21A3 237481508A55.
03623
-

-

-

The orbit corresponding to these parameters is shown in
9.

A significative point is that the discriminantU50 of Eq.
~45!, although obtained in a rather different way, behav
precisely as the locus discussed by Giovannini and P
@17# for period-6, in that both curves contain the cuspid
point.

WhenD,0 all three values ofs are real and there are n
discontinuities.

V. CONCLUSIONS

This paper reported a fourth-degree polynomial capa
of parametrizing simultaneously all three period-4 orbits
the Hénon map in terms of the sums of orbital points, for
arbitrary values of model parameters. The present analys
phase space complements the corresponding parameter-
analysis done in Ref.@21# providing now a complete analyti
cal description of all period-4 motions, valid for any real
complex orbit.

The parameterization described in this paper is very g
eral and, in principle, may be done for orbits of any arbitra
periodicity of dynamical systems ruled by algebraic equ

FIG. 8. The evolution of the threes values when moving from
A→B→C in the triangle in Fig. 4. The discontinuity occurs for th
parameters (a,b) given in Eqs.~46!–~47!, when (s1 ,s2 ,s3) is
permuted into (s2 ,s3 ,s1).

FIG. 9. Orbital structure at (aj ,bj ), defined in Eqs.~46! and
~47!, where there is a discontinuous change of thes values.
1-8
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tions of motion. This means that the investigation of perio
motions, for arbitrary periodk and for any dynamical system
ruled by algebraic equations of motion, may be effectiv
reduced to the investigation of just two polynomials: o
defining all k-periodic orbits, similar to Eq.~2! above, and
other defining the corresponding values ofs for each orbit,
similar to Eq. ~6!. In particular, we already computed@26#
analytical expressions for the quintic and sextic polynom
that rule orbits of periods 5 and 6.

From a theoretical point of view, an interesting and ge
eral result reported in this paper is the fact that minim
polynomials defining orbital points for multidimensional sy
tems may have multiple zeros, in sharp contrast with the
well-known Abelian equations@23# characteristic of one-
dimensional systems that are by no means allowed to con
multiple roots @19#. Therefore, one sees that the famili
Abelian equations underlying one-dimensional systems
long to the just thesimplestclass of equations of motion
since there is a whole class of much more symmetrical eq
tions still waiting to be properly characterized and classifi

Interesting analytical aspects of the orbits where con
ered in detail. In particular, we studied what happens w
the three period-4 orbits when they move adiabatica
around continuous circuits in parameter space that includ
cuspidal structure. We find that when departing from we
known generating partition limit (a,b)5(2,0) with the orbit
O1(x) and moving clockwise along the triangle shown
Fig. 4 one ends up on orbitO2(x) upon arrival back at (2,0)
This phenomenon is similar to what was observed num
cally for period-6 orbits by Hansen@16# who associated it
with the existence of homoclinic tangencies. Such tangen
occur over intervals@25# and no exact analytical methods a
known to locate them. In contrast, the analytical expressi
obtained in this paper opened the possibility of characte
ing arithmetically with precision~i! the parameter loci along
which discontinuities occur as well as~ii ! the origin of such
orbital discontinuities that induce ambiguities in the sy
bolic coding.

Since discontinuities arise while circulating around cus
dal structures, it seems of interest to point out here a re
work of Carcasse`s and Kawakami@27# where the generic
problem concerning the existence of a cusp point on a
bifurcation curve was addressed forn-dimensional maps.

By adiabatically following trajectories we observed a ph
nomenon that is markedly different from what happens w
the familiar Abelian equations that rule one-dimensional
namical systems when compared with the more intrinc
one-dimensional equations obtained by eliminating variab
that represent higher-dimensional dynamics: high
dimensional systems may now contain one~or several!
points located on the diagonal in phase space. For the
dimensional He´non map under consideration this implies t
existence of orbits containing points withyi5xi . Three ex-
amples are shown in Fig. 7.

Last but not least, as hinted by results in the Append
the great symmetry that interconnects the equations of c
jugate orbits interconnects also physics and number theo
a novel and direct way. The analytic computation of traje
tories automatically generates interesting number-theore
03623
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results and equations for which general mathematical a
rithms and theories are still lacking. In particular, since
even moderate periodicities the number fields underly
conjugate orbits already involve relatively high degrees, th
investigation allows one to understand the intricate origins
many ‘‘miraculous’’ identities that exist in number fields o
lower degrees and which are very hard to justify within t
framework of the low fields where they live and where th
appear to be just accidental events. Such identities are sim
‘‘echos’’ of symmetries living in much higher fields. In som
sense, the arithmetical determination of orbital points may
regarded as a procedure inverse to that normally use
mathematics, where one moves from number fields of low
degree to higher-degree fields. Orbital symmetries beco
even more striking when the period increases@26#.
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APPENDIX: THE ARITHMETICAL STRUCTURE
OF ORBITAL POINTS IN THE GENERATING

PARTITION LIMIT

This appendix collects exact analytical expressions for
orbital points of Eqs.~18!–~20! and summarizes their mai
arithmetical characteristics. As will become clear, the ari
metic structure of the orbital points and the number fie
underlying the equations of motion raise a number of int
esting questions not only in dynamics but also in num
theory.

As before, square roots are to be taken as positive.
seen from Eq.~1!, in the generating partition limit all three
orbits obeyxi 11522xi

2 .

1. The quartic orbit O3„x…

In this simpler case we haves521 with the orbital
points composingO3(x), in Eq. ~20!, being

x15
1

4
@212A52A3026A5#, ~A1!

x25
1

4
@211A52A3016A5#, ~A2!

x35
1

4
@212A51A3026A5#, ~A3!

x45
1

4
@211A51A3016A5#. ~A4!
1-9
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By introducing two convenient quantities, closely related
units in Q(A5),

j[
11A5

4
and h[

12A5

4
, ~A5!

the orbital points above may also be written as

x152j2A3~12j2!521.827 090 916, ~A6!

x252h2A3~12h2!521.338 261 213, ~A7!

x352j1A3~12j2!50.209 056 926 5, ~A8!

x452h1A3~12h2!51.956 295 202. ~A9!

This remarkable symmetry exists due to automorphisms
volving the outermost square roots

2jA12j25A12h2, ~A10!

22hA12h25A12j2, ~A11!

which have the net effect of greatly simplifying the orbit
dynamics.

2. The conjugate octic orbitsO1„x… and O2„x…

The decomposition into quadratic factors of bothO1(x)
andO2(x), in Eqs.~18! and~19!, may be easily done by firs
decomposingA17, a quadratic number, into a product of tw
quartic factors, namely,A175cw, where

c5A1714A17, w5A1724A17. ~A12!

Then, both orbits may be decomposed using eitherQ(c) or
Q(w).

After conveniently introducing an auxiliary unita,

a5
s1

2
5

1

4
~11A17!, ~A13!

closely connected withs1 defined in Table I, we obtain the
following representation for the orbital points ofO1(x):

r 15
1

2
@a1~12a!c#1

1

4
Ab1~b24!c, ~A14!

r 25
1

2
@a2~12a!c#1

1

4
Ab2~b24!c, ~A15!

r 35
1

2
@a1~12a!c#2

1

4
Ab1~b24!c, ~A16!

r 45
1

2
@a2~12a!c#2

1

4
Ab2~b24!c, ~A17!

whereb51723A17. These points may be equivalently wr
ten in the form
03623
-

r 15
1

2
@a2~11a!w#1

1

4
Ab14aw, ~A18!

r 25
1

2
@a1~11a!w#1

1

4
Ab24aw, ~A19!

r 35
1

2
@a2~11a!w#2

1

4
Ab14aw, ~A20!

r 45
1

2
@a1~11a!w#2

1

4
Ab24aw. ~A21!

Analogously, forO2(x) we use the conjugate unit

ā5
s2

2
5

1

4
~12A17!, ~A22!

obtaining the orbital points

r̄ 15
1

2
@ā1~12ā !w#1

1

4
Ab̄1~ b̄24!w, ~A23!

r̄ 25
1

2
@ā2~12ā !w#2

1

4
Ab̄2~ b̄24!w, ~A24!

r̄ 35
1

2
@ā1~12ā !w#2

1

4
Ab̄1~ b̄24!w, ~A25!

r̄ 45
1

2
@ā2~12ā !w#1

1

4
Ab̄2~ b̄24!w, ~A26!

whereb̄51713A17 is the conjugate ofb. Equivalently, the
points above may be written as

r̄ 15
1

2
@ā1~11ā !c#1

1

4
Ab̄24āc, ~A27!

r̄ 25
1

2
@ā2~11ā !c#2

1

4
Ab̄14āc, ~A28!

r̄ 35
1

2
@ā1~11ā !c#2

1

4
Ab̄24āc, ~A29!

r̄ 45
1

2
@ā2~11ā !c#1

1

4
Ab̄14āc. ~A30!

The symmetry enforced by the equations of motion d
pends critically on several unsuspected interconnecti
among octic numbers, which ‘‘propagate downwards,’’ a
fecting quartic and quadratic fields when their members
suitably combined. For instance, in the quartic field conta
ing

A1714A17 and A1724A17,

we find
1-10
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~231A17!A1714A175~51A17!A1724A17,

~1323A17!A1714A175~11A17!A1724A17,

which imply, analogously to Eqs.~A10! and ~A11!,

~241A17!A1714A175A1724A17, ~A31!

~41A17!A1724A175A1714A17, ~A32!

results that depend on the nonuniqueness of the decom
tion in Q(A17)[Q(cw) of the number

1422A175~11A17!~231A17! ~A33!

5~1323A17!~51A17!. ~A34!
.

,

03623
si-

Notice that, since

~241A17!~11A17!51323A17, ~A35!

~41A17!~231A17!551A17, ~A36!

Equation~A34! is obtained from Eq.~A33! by suitably mul-
tiplying it with 1[(241A17)(41A17). In general, finding
multiple decompositions implies having to deal with ha
problems in Diophantine analysis@24,28#. What is particu-
larly attractive here is that theoctic dynamics underlying the
equations of motion ‘explains’ tricky identities and non
niqueness inquadraticnumber fields. In number theory, n
systematic way of uncovering such identities is known
@24#.
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