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Absorptive optical bistability with a Gaussian amplitude fluctuation of the injected signal is inves-
tigated. In the limit of large laser linewidth and good stabilization of the amplitude fluctuations, a
Fokker-Planck equation for absorptive optical bistability is derived. The stationary probability dis-
tribution is derived and its properties are discussed.
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I. INTRODUCTION

It has been recognized that in most realistic experiments
dealing with a resonant atomic system driven by a laser
the main source of noise is due to the partial coherence of
the driving external laser light. The noise, i.e., the influ-
ence of possible laser fluctuations, can become very impor-
tant if the driven system exhibits some critical behavior
due to a nonlinear feedback mechanism. A very impor-
tant example of such a system in quantum optics is one
which exhibits the effect of optical bistability.! Optical
bistability with laser fluctuations also provides a highly
nontrivial example of an open system exhibiting a bifurca-
tion and driven by an external source of noise. It is gen-
erally believed that in optical bistability laser phase and
amplitude fluctuations of the injected laser signal can in-
fluence the bistable behavior of the system much more
than the intrinsic quantum fluctuations of spontaneous
emission.

The problem of quantum fluctuations in optical bista-
bility has been investigated in detail by now.? The same is
true for some external sources of noise leading to a white-
noise multiplicative stochastic equation for optical bista-
bility.>* Except for a few numerical results>® there is so
far in the literature no detailed investigation of the influ-
ence of laser fluctuations on optical bistability. This is no
doubt due to the difficulties associated with the nonwhite
character of laser fluctuations in a nonlinear system far
from equilibrium.

For quantum fluctuations a careful analysis of the
quantum equations of motion for optical bistability has
been performed. With the help of the Glauber P represen-
tation and after elimination of the atomic variables, a
Fokker-Planck equation for the quasiprobability of the
transmitted electric field can be obtained. In this case the
noise, which is due to spontaneous emission, is basically
white and the main complications come from the atomic
degrees of freedom.

For an external noise due, for example, to laser fluctua-
tions, the microscopic part of the dynamical system can be
described by a set of simple macroscopic state equations
which after a reduction of some of the degrees of freedom
can be converted into a single nonlinear state equation,
which shows explicitly the bistable behavior of the system.
In this case, the dynamical part can be treated semiclassi-
cally and no microscopic complications enter the theory.
The main complications which have prevented a closer ex-
amination of laser fluctuations come now from the source
of noise itself.

A partially coherent laser has a finite bandwidth which
results in a nonwhite noise in the nonlinear macroscopic
state equation. A colored noise in this nonlinear dynami-
cal state equation leads to very important problems.
These problems are mostly related to properly deriving a
generalized Fokker-Planck equation which correctly takes
into account the colored character of the external laser
noise.

In this paper we present an attempt toward the solution
of this problem. We choose to discuss first a much
simpler case of absorptive optical bistability (AOB) assum-
ing an exact resonance of the laser beam with the optical
resonator filled with a nondispersive absorber. We shall
not take into account the phase fluctuations of the driving
laser light. We know that phase fluctuations are perhaps
much more important than amplitude fluctuations in real-
istic experiments,’ but just in order to have some ideas of
what an external nonwhite noise is doing to the hysteresis
cycle we limit our discussion in this paper to Gaussian
amplitude fluctuations of the injected signal.

The present paper is organized in the following way: In
Sec. II we present a simple phenomenological stochastic
equation of AOB in the limit of a good cavity, including
Gaussian laser amplitude fluctuations. In Sec. III we
derive for this nonlinear stochastic equation with an addi-
tive colored noise a Fokker-Planck equation in the limit of
large laser linewidth and good amplitude stabilization.
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This Fokker-Planck equation has a nonconstant diffusion
term which shifts the most probable values of the steady-
state probability distribution from its deterministic posi-
tions. In Sec. IV the stationary probability distribution of
this Fokker-Planck equation is derived, and its properties,
including the most probable position fluctuations and sta-
bility region, are discussed.

II. LANGEVIN EQUATION OF AOB

The theory of AOB in a cavity filled with homogene-
ously broadened two-level atoms is particularly simple in
the limit of low-transmission mirrors and weak enough
absorption. The critical properties of the optical bistabili-
ty are given by the dimensionless order parameter
C =aL /(2T), where a is the absorption coefficient of the
medium, L is the length of the cavity, and T is the mirror
transmission. In this limit (the mean-field limit) the rela-
tion between the transmitted x and the incident electric
field y has the following form (in dimensionless units; see
Ref. 1 for details):

ax _

dr —

x + +y , (2.1)

1+x2

where the dimensionless time # is measured in units of the
cavity bandwidth «~cT /(2L). In the steady-state limit
(x=0), Eq. (2.1) yields to the well-known state equation
for real field amplitudes
2Cx
y=xt 14x2
which for C > 4 exhibits a bistable behavior. In a realistic
experimental situation the injected electric-field amplitude
y should be replaced by a stochastic random field y ()
describing the fluctuating electric-field envelope of the
driving laser light.

From the laser theory? it is well known that for a laser
operating far above threshold the total driving electric-
field amplitude y(¢) consists of two components, a con-
stant coherent part 4, and a small fluctuation 8y (z),
which is Gaussian with the following mean value and
correlation function:

(8p(1))=0, (8y(1)dy(t')y=ae~ 11—/ |

(2.2)

(2.3)

where the dimensionless parameters @ and b describe the
characteristic properties of the fluctuating laser amplitude.
The parameter ¢ measures the intensity of the noise and
Va /y~1/v'ng, where ng is the steady-state photon
number of the laser operating far above threshold. The
variance of amplitude fluctuations 1is equal to
([y(1)]*) —{y(t)}*=a and in most realistic experiments
a <0.1, i.e, a better than 10% stabilization of the ampli-
tude can be obtained.” The parameter b =xr, is the
coherence time 7, of the laser light in units of the cavity
linewidth. The inverse of 7, gives the laser bandwidth '
caused by amplitude fluctuations. For b-—0 with
ab =D=const, the stochastic process 8y (¢), which is the
well-known Ornstein-Uhlenbeck Brownian motion, tends
to the white-noise limit (the Wiener-Levy stochastic pro-
cess limit)

(8y,) =0, (8y,()8y,(t"))=2D8(¢t —¢t') ,

where 8y, (#)=1im,_,o8y(¢) is a Gaussian process with a

(2.4)

flat power spectrum and noise intensity equal to D. With
amplitude fluctuations the AOB [Eq. (2.1)] takes the form
of the following nonlinear Langevin equation with an ad-
ditive Ornstein-Uhlenbeck stochastic process:

dx

——=F o5 ,

ar (x)+ 0y
where F(x) is the deterministic part of the dynamical evo-
lution given by

(2.5)

2Cx

F(x)=— |x + 3 (2.6)
14+x

+Ao .

This stochastic Langevin-type equation describes the AOB
with Gaussian amplitude fluctu: "on<. In the following
sections we shall discuss the critical properties of this
equation in the limit of weak fluctuations establishing a
Fokker-Planck equation for the dynamical variable x (¢).

III. FOKKER-PLANCK EQUATION OF AOB
WITH AMPLITUDE FLUCTUATIONS

In this section we shall derive a Fokker-Planck equation
for the probability density of the transmitted field x (¢)
governed by the stochastic equation (2.6). From this equa-
tion we derive first the following linear Liouville equation
for the density @(t,x)=8[x —x (¢)]:

2 g1,3)=[ Mo -+i8y (DM gpl1,x) (3.1a)
with the linear differential operators
M0=———a—F(x) and M=ii (3.1v)

dx dx

The Fokker-Planck probability distribution function
P(t,x) is obtained from the density ¢(¢,x) by performing a
stochastic average over all possible realizations of the ran-
dom noise &y(t)

P(t,x)={p(t,x)) .

We can write a formal but exact expression for P(¢,x) by
solving Eq. (3.1) and using the definition (3.2) to obtain

(3.2)

P(t,x)=e"'V(t)P(0,x) , (3.3)
where
t
V(t):(Texp [i [, ds 8y (s )My (s) ]) (3.42)

is the “evolution” operator of Eq. (3.1) averaged over
8y(t). The operator M, 1(s)=e_M°sM e ° corresponds in
form to the interaction picture of quantum mechanics and
T denotes the standard time-ordering operator. For a
Gaussian stochastic process 8y(¢) an exact expression for
V(T) can be obtained”°

V(t)=Texp [—é Lldsy [ dsaMysp)
X8y (s1)8y(sy))M;(s,)

(3.4b)

Owing to the noncommutativity of M;(¢) at different
times this exact but formal solution (3.4b) does not lead to
mathematically tractable expressions for P(¢,x). The non-
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commutativity leads to an infinite hierarchy of equations
for P(t,x). The structure and the form of this hierarchy
can be investigated using standard methods of quantum-
field theory applied to statistical mechanics of open sys-
tems. Different mathematical techniques ranging from
chronologically ordered cumulants,’ the Baker-Campbell-
Hausdorf formula,!! path integration,'® or van Kampen’s
diagrams,'? have been used in the discussion of this prob-
lem. For the purpose of this paper we shall use a very
simple argument in order to obtain the lowest nontrivial
and nonperturbative contribution to V' (¢).

We have assumed that the intensity of the noise ampli-
tude 8y(¢) is proportional to a <1 [see Eq. (2.3)]. From
the structure of the solution (3.4) we see that by incor-
porating V'@ into M; the commutator [M;(t),M;(t')] be-
comes proportional to a and, accordingly, higher-order
commutators of M;(t) at different times are proportional
to higher powers of a. Because a <1 we shall assume that
in the lowest-order approximation in a [M,(z),M;(t')]=0,
i.e., the chronological product in Eq. (3.4) is redundant.
This permits us to calculate from Egs. (3.3) and (3.4) the
following closed-form equation for P (¢,x):

3 L
SP(x)= (Mo~ [} ds Me -9 (8p(08y(s)) M

XP(t,x) , (3.5)
where the Liouville operator L acts on M as follows:
LM =[M,M,]. Equation (3.5) is a Fokker-Planck equa-
tion of AOB with small (¢ < 1) amplitude fluctuations.
More sophisticated arguments based on different
mathematical techniques (e.g., time-ordered cumulants)
lead to the same Fokker-Planck equation in the limit of
small fluctuations.!? This Fokker-Planck equation is still
rather complicated due to the complex form of its right-
hand side (rhs), involving the Liouville operator. To ex-
hibit this we perform a formal integration of the time-
dependent part of the rhs operator in (3.5) with the corre-
lation function (2.3)

e —(L+1/b)t

e —L(t—9) -
fo dse (8y(1)8y(s)) =a L1k

(3.6)

If b <1, i.e., when the laser linewidth is larger than the
cavity bandwidth, i.e., with I" >k, we can expand the in-
verse of the Liouville operator in Eq. (3.6) as a Neuman
series

1
L+1/b
For b <1 we shall keep only the first terms in the power
series (3.7). For t > b we obtain from Egs. (3.6) and (3.7)

the following Fokker-Planck equation for the AOB with
Gaussian amplitude fluctuations:
i) d 3?

—P=——FP+4+D——KP
at ax + Ox? ’

=b(1—bL +---) . (3.7)

(3.8)

where the nonconstant diffusion function K (x) has the
form:

, 1—x?
K(x)=(14+bF")=1—b —2bC—=— |

(14x2)? 39

and where D =ab.

We check that in the limit of a white noise given by Eq.
(2.4), i.e., if b—0, then K—1 and the diffusion term takes
the well-known constant form. In this case only the con-
stant parameter D plays the role of the diffusion. In gen-
eral, for 540, the diffusion function (3.9) depends on the
laser linewidth b. It is possible to calculate a proper dif-
fusion function in Eq. (3.5) for arbitrary values of b, sum-
ming up the entire Neuman series (3.7).!*> However, for
the purpose of this work and in order to obtain analytic
results, we limit ourselves to the case of b < 1, i.e., to the
diffusion function given by Eq. (3.9).

In order to describe a proper Fokker-Planck equation,
the diffusion function given by Eq. (3.9) must be positive:
K(x)>0. This condition is fulfilled for all values of x
only if

1
142C

This condition is consistent with the power-series expan-
sion (3.7) which is valid only for b < 1. Note also that the
distribution P(t,x) derived in this section is not associated
to any particular ordering prescription of the photon
creation and annihilation operators, e.g., normal or an-
tinormal, because quantum fluctuations are neglected.

b< (3.10)

IV. STEADY-STATE PROBABILITY
DISTRIBUTION

We write the stationary solution [(3/3¢)Py =0] of the
Fokker-Planck equation (3.5) in the following form:

Py=Ne Vx/D | 4.1)

where N is a normalization constant and U(x) is a gen-
eralized “nonequilibrium potential” which may be com-
pared with an equilibrium potential like the free energy.
From the Fokker-Planck equation (3.5) we derive the fol-
lowing exact thermodynamical potential assuming natural
boundary conditions:

F(x)

U= fax |y

+abln|1+bF(x)| 4.2)

In this expression F’ denotes a derivative of the function F
given by Eq. (2.6) with respect to its argument.

States of maximal probability for AOB with laser am-
plitude fluctuations correspond to the absolute minimum
of U(x). Setting dU/dx=0 we obtain the following
““state equation”’:

F(x)—ab?F"(x)=0 . (4.3)

We see that the condition (4.3), which gives the most prob-
able values of the stationary probability distribution, de-
pends on the product ab? of the two coefficients @ and b
which characterize the laser amplitude fluctuations. For a
flat power spectrum, i.e., for 6 —0, the potential

U— — [Tax'Fi(x") (4.4)
b—0

and the most probable values of x correspond to the deter-
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FIG. 1. Location of the extrema of the stationary probability
for C =20, a =0.4, and b =0.023 17.

ministic state equation F(x)=0 [see Eq. (2.2) and Ref. 2].
The impact of a finite bandwidth of the injected laser
mode on the critical properties of the AOB is clear from
Eq. (4.3). This equation leads to the following relation for
the most probable values of the stationary probability dis-
tribution pg(x):

2Cx 2

3—x
x +
14-x2

(14x2)3

Equation (4.5) can be regarded as a generalization of the
deterministic relation (2.2) for the case of laser amplitude
fluctuations. We believe expression (4.5) to be the first ex-
plicit formula for the AOB with realistic laser amplitude
fluctuations. Note that in absence of noise the state equa-
tion leads to the deterministic curve y =Ay(x) given by
Eq. (2.2). This deterministic curve has an inflection point,
the “critical point” with horizontal tangent. In the pres-
ence of the noise the critical point depends also on the
parameter ab? which characterizes the amplitude fluctua-

+4ab?C

Ag= 4.5)
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FIG. 2. These curves show the shape of the thermodynamical
potential U(x) (C =20, a =0.4, and b =0.023 17) for values of
the input A4, field as indicated.

=
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FIG. 3. Development of the stationary probability (C =20,
a =0.4, and b =0.023 17) as a function of the injected laser am-
plitude Ay. System exchanges global stability at 4,=13.82475.

tions. Furthermore, note that in the limit of white-noise
fluctuations [see Eq. (2.4)] the state equation (4.5) reduces
to the deterministic relation (2.2). Only a nonwhite (i.e.,
b=0) character of the additive external noise has a non-
trivial influence on the thermodynamical properties of the
bistable system. :

We have investigated the critical properties of AOB for
the order parameter C =20 and with laser fluctuations
characterized by a =0.4 and b =0.02317, fixed for all
further calculations.!* These external noise parameters
correspond to a noisy laser with linewidth b~! times
larger than the cavity bandwidth [see Eqgs. (2.3) and
(3.10)]. For these values of laser fluctuations the parame-
ter ab? in Eq. (4.5) is very small (ab?>=2.148 < 10~*) and
no significant change of the most probable values of the
stationary probability distribution given by Eq. (4.5) with
respect to the deterministic case can be observed. Figure 1
shows the perfect overlap of Eq. (4.5) with the determinis-
tic bistable hysteresis. However, before drawing final con-
clusions from the state equation (4.5) we have to realize
that it describes only the most probable values of the sta-
tionary probability distribution (4.1). To make a real com-
parison of the theory with included laser fluctuations with
the deterministic case we have to discuss the relative sta-
bility of the bistable branches. This can be achieved by
comparing the relative depth of the minima of U(x). In
this way we can predict the point of equal probability, i.e.,
the point where the two branches exchange global stabili-
ty. An explicit integration in Eq. (4.2) can be performed
leading to an analytical formula for the nonequilibrium
potential U(x). The analytical expression is long and has
been included as the Appendix.

In Fig. 2 we have plotted U(x) for a=0.4 and
b =0.023 17 and different values of the input field 4,. It
is clear from the explicit form of the potential U(x) given
in the Appendix that the depth and the width of the bi-
stable minima depend on the laser parameters in a much
more complicated way than the factor ab? appearing in
the condition (4.5) for the most probable values of Pg(x).
As in the case of quantum fluctuations'>? the random am-
plitude of the laser field leads to a small range of values of
Ay in which the two peaks have a comparable area. In
Fig. 3 we have plotted the stationary probability for dif-
ferent values of the coherent input laser field 4,. Figure 4



318 M. KUS, K. WODKIEWICZ, AND J. A. C. GALLAS 28

shows the mean value and the normalized fluctuation
({x?)—(x)?/{x)*> for C=20, a=0.4, and
b =0.02317. Clearly, the mean value of the transmitted
field (x) coincides with one of the two deterministic
branches except in the narrow transition region where we
have large fluctuations.
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APPENDIX

The integration in Eq. (4.2) can be performed analytically. As a result we obtain the following formula for the thermo-

dynamic potential:

Ao B(1+f) x_ B+g) 1 B
Ux)= — _ 2 _ P 2)2 2
(x) 15 x4+ "7 arctan\/j7 Y arctan‘/g +2(1—b) x4+ |C 5 In|(14+x%)*4+B(x%2—1)|
B(B+4—-2C) x2+f 1—x?
+ 1 +abln|l—b—-2Cb—-F| ,
2h "lxttg (1+4x2)?
where
2C
B=—1_12, h*=B(8+B), g=1+5(B+h), f=1++(B—h)
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