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Abstract

We report exact analytical expressions locating the 0 → 1, 1 → 2 and 2 → 4 bifurcation
curves for a prototypical system of two linearly coupled quadratic maps. Of interest is the
precise location of the parameter sets where Naimark–Sacker bifurcations occur, starting from a
non-diagonal period-2 orbit. This result is the key to understand the onset of synchronization in
networks of quadratic maps.
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An essential clue to understand how dynamical systems synchronize and the ori-
gin of their riddled basins of attraction is provided by the mechanisms underlying the
transverse destabilization of low periodic orbits embedded in chaotic attractors [1–4].
So far, these mechanisms have been investigated only via direct numerical simulation
of the dynamics. The purpose of this paper is to report exact analytical results for a
prototypic model, two linearly coupled quadratic maps, de;ned by the following pair
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of equations:

xt+1 = a− x2t + b(xt − yt); yt+1 = a− y2t + b(yt − xt) : (1)

Here xt , yt represent dynamical variables, a is the local nonlinearity, b the coupling,
and t = 0; 1; 2; : : : is the discrete time. Systems of coupled nonlinear oscillators are
nowadays used in practical applications, e.g., in the investigation of coupled p–n junc-
tions [5] and of Josephson-junction arrays [6]. They also serve as useful approxima-
tions of nonlinear partial diLerential equations describing, for example, the onset of
Muid turbulence [7] and reaction diLusion systems [8]. Previous analytical results were
obtained using linear stability analysis [9–11], and renormalization theory [12]. Here
we go well beyond this presenting (i) the algebraic varieties delimiting stability do-
mains for motions of periods 1 and 2, and, (ii) the Naimark–Sacker line (also called
Hopf bifurcation line) showing where quasiperiodicity stabilizes following a period-2
oscillation. The motivation for considering this problem anew is our interest in using
more realistic and Mexible maps as local oscillators in applications dealing with diLu-
sive–advective eLects like, e.g., in ocean convection [13–15]. For additional discussion
of problems involving coupled systems we refer the reader to the excellent tutorials in
Refs. [1–4].
As is well-known [16,17], there are three ways in which a ;xed point p of a discrete

map f may fail to be hyperbolic: Df(p) may have an eigenvalue +1, an eigenvalue
−1, or a pair of complex eigenvalues, say � and N�, with |�|=1. The ;rst two situations
are familiar from period-doubling cascades and appear much more frequently than the
last one. But it is precisely this last situation, characteristic of a Naimark–Sacker
bifurcation, that is of great interest for coupled systems and that we consider here.
Eq. (1) has four ;xed points, two diagonal and two non-diagonal

D1 ≡ (x1; x1); D2 ≡ (x2; x2); N1 ≡ (x3; x4); N2 ≡ (x4; x3) ; (2)

where x1 = (−1 + 
)=2, x2 = (−1 − 
)=2, x3 = (2b − 1 + �)=2, x4 = (2b − 1 − �)=2,
and 
=

√
1 + 4a and �=

√
1 + 4a− 4b2. The stability of these points is ruled by the

equation |J − �I | = 0, where � is the eigenvalue, I is the identity matrix and J is the
Jacobian matrix of the mapping. The eigenvalues of these four ;xed points are always
real, with D2, N1 and N2 being always unstable since at least one of their eigenvalues
is larger than 1. The remaining ;xed point, D1, is stable in the region delimited by
−1=4¡a¡ 3=4 and

√
1 + 4a=2 − 1¡b¡

√
1 + 4a=2, bounded by the curves

a= − 1
4 ; a= 3

4 ; c1 ≡ 4a− 4b2 + 1 = 0; c2 ≡ 4a− 4b2 − 3 − 8b= 0 ;

shown in Fig. 1.
The stable ;xed point bifurcates into two quite diLerent period-2 orbits when one

increases a, depending on the value of b. When crossing the line a = 3
4 one ;nds

diagonal period-2 orbits with signature (u; u) → (v; v) → (u; u) → : : :, where u= (1 +√−3 + 4a)=2 and v= (1− √−3 + 4a)=2. We denote such orbits by P2D. Beyond the
curve c2 =0 one ;nds non-diagonal orbits with a signature (s; t) → (t; s) → (s; t) → : : :
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Fig. 1. Stability domains for period-1 and period-2 orbits. P2D and P2 refer to domains of diagonal and
non-diagonal orbits, respectively. Numbers indicate periods.

where s= (2b+1+
√
4a− 4b2 − 8b− 3)=2 and t = (2b+1− √

4a− 4b2 − 8b− 3)=2.
These we represent by P2.
The P2D orbit has real eigenvalues and is stable in the domain delimited by the

curves

a= 3
4 ; a= 5

4 ; c3 ≡ 4a− 4b2 − 3 + 4b= 0; c5 ≡ 4a− 4b2 − 5 + 4b= 0 :

It loses stability along c5 = 0 or a = 5
4 , after a 2 → 4 bifurcation. There is a P4D

diagonal orbit when crossing the line a= 5
4 , and a P4 non-diagonal orbit when crossing

c5 = 0.
The eigenvalues of the P2 orbit are

�± = 6b2 + 10b− 4a+ 4 ± 2b
√

5b2 + 10b− 4a+ 4 (3)

and can be complex. From these expressions we obtain [16] the following formula for
the Naimark–Sacker bifurcation line:

aNS = b2 +
5
2
b+

5
4
: (4)

It is important to observe that the linear coupling of the oscillators was fundamental
in allowing the derivation of the above analytical result. Already a quadratic coupling
generates formulas which are intractable with present day hardware and commercially
available software.
From the eigenvalues along c2 = 0 as well as the condition �1 = �2 = 1 we ;nd

that: (i) for b¿ 0, an unstable P2 orbit is born along c2 = 0 stabilizing however along
c4=4a−4b2−3−12b=0 and (ii) for −1¡b¡ 0, a stable P2 orbit is born, also along
c2 = 0. Fig. 1 summarizes all period-2 bifurcation loci. In the small diamond-shaped
region in Fig. 2, delimited by c3 = 0, c4 = 0, c5 = 0 and the Naimark–Sacker line
(indicated by NS), there is coexistence of P2 and P2D motions. On the NS line the
P2 orbit disappears, to give rise to two closed curves (limit cycles).
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Fig. 2. Stability domains obtained by discretizing the parameter interval in a mesh of 1200 × 600 points.
DiLerent gray shadings represent stability domains of attractors with diLerent periods.

The stability domains for the coupled quadratic maps can be generated numerically,
using the method described in Ref. [18], and they are shown in Fig. 2, displaying
the richness of the several coexisting motions in parameter space. In this ;gure the
basin of unbounded (diverging) attractors is indicated by ∞. The lower border line
seen between the P2 domain and black domain is de;ned by the Naimark–Sacker
line. This means that inside the black domain, immediately below the P2 region, we
have quasiperiodic motion with two limit cycles originated from P2 trajectories. As we
penetrate more and more into this black region, we reach a region of chaos. The same
happens for P4 oscillations, the diLerence in this latter case being that the region of
quasiperiodic motions has four limit cycles originated from P4 orbits.
Fig. 3 shows the birth and evolution of the Naimark–Sacker bifurcation in phase

space when we walk along the vertical line a= 0:5 in parameter space. Here we plot-
ted the amplitudes of the maps for four representatives values of the parameter b. For
b close to the Naimark–Sacker line the motion covers a closed curve and is quasiperi-
odic. For smaller values of b, a quasiperiodic transition to chaos takes place. Periodic
windows, not visible in Fig. 3, appear in this route to chaos via quasiperiodicity.
We demonstrated that two linearly coupled quadratic maps can show quasiperiodic

motion arising from a Naimark–Sacker bifurcation of a P2 orbit. This was shown
analytically and corroborated through a numerical simulation, as may be seen from
the similarity between Figs. 1 and 2. The ;rst ;gure was obtained analytically while
the second numerically. The precise analytical determination of the Naimark–Sacker
road to stable quasiperiodic motions opens the possibility of several numerical exper-
iments, in particular, to applications connected with synchronization in networks of
maps [13–15]. Another interesting application is to investigate how a mismatch in the
parameters would aLect the bifurcation structure. These applications will be reported
elsewhere.
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Fig. 3. Quasiperiodicity and chaos seen in the phase space of two linearly coupled quadratic maps. For a=0:5
and (x0; y0) = (0:1234; 0:005), 1000 points have been plotted, after a transient of 400 iterations. Shown are
three quasiperiodic solutions, for b = −0:35, −0:38, −0:40. Here, smaller b corresponds to larger radius.
A frequency-locked solution with period-6 appears at b=−0:41 (not shown in the ;gure). The complicated
dotted structure is a chaotic orbit for b = −0:46.
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