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Abstract 

With the help of a parallel computer we perform a systematic computation of Lyapunov exponents for a Duffing oscillator 
driven externally by a force proportional to cos(t). In contrast to the familiar situation in discrete-time systems where one 
finds "windows" of regularity embedded in intervals of chaos, we find the continuous-time Duffing oscillator to contain 
a quite regular repetition of relatively self-similar "islands of chaos" (i.e. regions characterized by positive exponents) 
embedded in large "seas of regularity" (negative exponents). We also investigate the effect of driving the oscillator with a 
Jacobian elliptic function cn(t, m). For m = 0 one has cn(t, 0) = cos(t), the usual trigonometric pumping. For m = 1 one 
has cn(t, 1) _= sech(t), a hyperbolic pumping. When 0 < m < 1 the Jacobian function is an intermediary double-periodic 
function with periodicity depending on m and with Fourier spectrum consisting of a regular train of narrow lines with 
varying envelope. Using m to tune the drive appropriately one may displace the islands of chaos in parameter space. Thus, 
Jacobian pumping provides a possible way of "cleaning chaos" in regions of the parameter space for periodically driven 
systems. 

1. Introduct ion  

The purpose of  this paper is to report a systematic 

computation of Lyapunov exponents [ 1-4] for a Duff- 

ing oscillator driven externally by periodic forces. As 

is well known, Lyapunov exponents are very interest- 

ing quantities to probe dynamical systems in that they 
provide a quantitative criteria allowing one to discrim- 
inate between asymptotically periodic and aperiodic 3 

1 E-mail: andrea@ifl.ufrgs.br 
2 E-mail: jason@hlrserv.hlrz.kfa-juelich.de 
3 Here the terms "chaotic" and "aperiodic" are used as synonyms. 

The word "aperiodic" seems more appropriate because it repre- 
sents more faithfully what is actually observed in our numerical 
experiments: absence o f  periodicity (i.e. absence of non-positive 
exponents) within the accuracy of  the numerical work, which is 
high. 

behaviors for sets of  parameters and/or  initial con- 
ditions. For example, by computing Lyapunov expo- 

nents one may construct phase diagrams showing re- 

gions characterized by periodic motions (i.e. by nega- 

tive exponents) or aperiodic behaviors (positive expo- 
nents). In other words, one may use Lyapunov expo- 

nents to discriminate regions characterized by chaotic 
or non-chaotic behaviors. 

A major difficulty in employing Lyapunov expo- 
nents for producing phase diagrams for dynamical sys- 
tems defined by  differential equations is that an ac- 
curate determination of  the exponents involves rather 
time-consuming computations. With the help of  a scal- 
able distributed multicomputer we have been able to 
generate a relatively large number of  Lyapunov expo- 
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nents and to use them to investigate the dynamical be- 
havior present in a well-known physical oscillator: a 
Duffing oscillator. We have performed two numerical 
experiments for this oscillator, experiments that are re- 
ported in this paper. However, before discussing them, 
since there are many different "Duffing equations" in 
the literature, it is perhaps appropriate to explain what 
we mean by "Duffing" equation. 

Duffing [5] considered modeling forced oscilla- 
tions using several different differential equations, 
aiming at reproducing his observations of the behavior 
of machines. He was an engineer interested in solving 
a very practical problem: to model forces and frictions 
inducing the complicated oscillations he observed and 
to predict behaviors in general. His results are con- 
tained in an interesting and readable monograph [5] 
in which the work done in the field by his predeces- 
sors is reviewed critically, including works by Braun 
(1874) and Rayleigh (1894). Duffing discusses in 
detail analytical and numerical approximations to the 
solutions of the generic differential equation 

5~ + a± + cex + /3x  2 + x 3 = b.  f ( t ) ,  (1) 

where f ( t )  is a periodic function driving the system. 
Further, he presents exact analytical solutions not only 
for the b = 0 "no-drive" limit (in terms of elliptic 
functions as defined by Weierstrass) but considers also 
several limits with b ¢ 0, presenting in particular 
approximate solutions for situations in which Eq. (1) 
has one and/or two potential wells driven periodically 
by a trigonometric function. Here we refer to "Duffing 
equation" as being the particular single-well equation 

Yc + a± + x 3 = b .  f ( t ) ,  (2) 

where x and t are the dependent and independent vari- 
ables, respectively, and a and b are adjustable param- 
eters of the model. We concentrate on this one-well 
form of the equation because there is already an im- 
mense body of results for it. In particular, when driven 
with f ( t )  = cos(t) ,  Eq. (2) was considered previ- 
ously by Hayashi [6] and Ueda [7] among other re- 
searchers. Holmes [ 8] studied another of the equa- 
tions considered by Duffing. 

Hayashi presents a remarkably detailed investiga- 
tion of periodic motions, giving impressive figures dis- 

playing results obtained not only from numerical stud- 
ies, but also from analytical approximations of the in- 
variant manifolds of periodic orbits. He presents ana- 

lytic approximations of the "separatrix" curves [ i.e. of 
basin boundaries in different parlance] and describes 
quantitatively how these curves emanate from sad- 
dle points on the boundary and how they organize 
themselves in phase space. Ueda, in pioneering con- 
tributions published since 1961 [9], realized the exis- 
tence and the importance of aperiodic motions. Among 
many other things, he reported [7] aperiodic behav- 
iors for a = 0.1 and for six points b in the interval 
10.0 < b < 13.3 and for b = 12 and for nine points 
in the interval 0.01 _ a _< 0.34. A detailed account 
of the contributions from the "Kyoto school" to the 
understanding of driven oscillators and to the "birth 
of chaos" is given by Ueda [9] in a fascinating book 
which also contains English translations of papers pub- 
lished originally in Japanese. 

The present paper reports results of two numerical 
experiments based on Eq. (2).  First, driving Eq. (2) 
with f ( t )  = cos(t) we compute a diagram in the space 
a × b of Eq. (2) showing parameter regions where one 
finds periodic behaviors and where there is aperiodic 
("chaotic") behavior. From this result (shown below 
in Fig. 7) one recognizes that there is a surprising rel- 
atively self-similar repetition of islands characterized 
by positive exponents (i.e. aperiodic behaviors) em- 
bedded in seas of negative exponents (periodic behav- 
iors). We believe Fig. 7 below to be the first one to 
provide a detailed view of the dichotomous division 
over an extended region of the parameter space for 
a cont inuous- t ime dynamical system. In contrast with 
the situation familiarly observed in parameter space 
of discrete-time dynamical systems (i.e. discrete map- 
pings), where one frequently finds islands of period- 
icity embedded in chaotic "phases" [ 10,11 ], in the 
parameter space of the continuous-time Duffing oscil- 
lator this paper reports the opposite: islands of chaos 
embedded in wide seas of regularity (periodicity). 

In the second numerical experiment, with results 
shown in Figs. 10 and 11 below, we study what hap- 
pens with the "islands of chaos" when one changes 
externally the nature of the periodic driving force. An 
easy and convenient way of driving the system with 
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a periodic force having a more sophisticated Fourier 

spectrum than a cos(t)  is to drive it with a Jacobian 
elliptic function, a quite natural choice since Jacobian 
functions are exact analytical solutions of the differ- 
ential equation in the absence of forcing [5,12,13]. 
Specifically, we consider quantitatively what happens 
to Eq. (2) when driven with the Jacobian elliptic func- 
tion 

f ( t )  = cn(t,  m).  (3) 

By varying the parameter m one may conveniently 
and continuously move from the standard trigonomet- 
ric pumping for m = 0, when cn( t ,0 )  __:_ cos(t) ,  to 
a hyperbolic pumping for m = 1, when cn(t, 1) - 
sech(t) .  For m-values in the range 0 < m < 1 one has 
intermediary pumpings with rich and regular Fourier 

spectra (see Fig. 4 below.) 
An interesting finding while driving the system ex- 

ternally with more general periodic functions is that it 

is possible to clean regions in parameter space from 
chaotic behavior by displacing the chaotic islands. 
Cleaning parameter regions from chaos by tuning ex- 
ternal drives may be of interest in experimental situ- 
ations where model parameters are more difficult to 
change (or when one does not want to change them) 
than those of the drive. Lasers systems with modula- 
tion either in the losses of the resonator, in the pump 
or in the resonator frequency are natural examples of 
systems that could be cleaned from chaos by suitably 
tuning external drives. For a recent review on instabil- 

ities in lasers see Ref. [ 14]. 
In one form or another, Duffing equations have al- 

ready been considered by several workers. For re- 
cent references see, for example, Refs. [ 8,15-28 ] and 
the references therein. In recent years the emphasis 
has been in studying "chaotic" behaviors, i.e. recur- 
rent aperiodic motions, which appear when exciting 
the system. In this context, we mention an interesting 
possibility of suppressing chaos in the Duffing oscil- 
lator by resonant parametric perturbations as recently 
discussed both theoretically and experimentally [29]. 
Among other things, some works have concentrated 
on the investigation of the structure of basin bound- 
aries for the more general case of the Duffing equa- 
tion, also in situations having two wells [9,15]. 

The paper is organized as follows. In the next sec- 
tion, Section 2, we consider some practical aspects of 
the computation of Lyapunov exponents. In Section 3, 
we review briefly some well-known properties of el- 
liptic functions that are of interest in the present con- 
text. In Section 4, we present results for the case of 
trigonometric pumping. In Section 5 we present results 
obtained for m > 0, closing in Section 6 with some 
general conclusions about forced oscillations induced 

by Jacobian elliptic functions. For completeness, we 
mention that some aspects of elliptic functions acting 
as discrete dynamical systems were already consid- 
ered in earlier work [ 13,30]. 

2. Numerical details 

The study of continuous-time dynamical systems 
requires the repeated numerical integration of systems 
of differential equations. A number of commonly used 
numerical methods of integration and their perfor- 
mances have been recently contrasted in an interesting 
paper by Cartwright and Piro [ 31 ], which also con- 
tains additional references. In the present work we in- 
tegrate Eq. (2) with a fourth-order Runge-Kutta inte- 
grator with fixed step size h, a standard choice which 
we also find to provide a good compromise between 
speed and accuracy. 

There are three easily discernible time scales in- 
volved in the numerical solution of ordinary differen- 

tial equations similar to Eq. (2):  a microscopic time 
scale defined by the time step h used to advance the 
numerical solution, a macroscopic time scale deter- 
mined by the total number Af of time steps h spent 
observing the system, and an intermediate time scale 
dictated by the period P of the driving force. For a 
given fixed value of P one needs to find "reasonable" 
working values for h and Af in order to be able to 
perform reliable numerical experiments. The compro- 
mise sought for is familiar: to find numerical values 

for h small enough to guarantee the reliability of the 
numerical algorithms used but simultaneously large 
enough to allow following the dynamics during time 
intervals such that one might feel confident of  being 
"sufficiently" close to asymptotic regimes of interest 
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and then follow the dynamics during reasonable inter- 
vals of time. The period P is the standard time scale 
used to define Poincar6 sections when observing the 
system stroboscopically. 

The method of determining Lyapunov exponents is 

based on the investigation of the growth of vectors 
tangent to the surface defined by the equations of mo- 
tion in the phase space of the physical system. The 
formalism to compute Lyapunov exponents that one 
finds in the literature [ 1-4] assumes the equations of 
motion to be time independent. Therefore, to use this 
formalism one needs to write Eq. (2) with the forcing 
defined by Eq. (3) as an autonomous system, obtain- 
ing the set 

Xl =X2, (4) 

±2 = - -ax2  -- x 3 -I- b cn(x3, m),  (5) 

±3 = 1.0, (6) 

~i = & ,  (7) 

~2 = --3x12(1 -- a(2 -- b(3 sn(x3, m),  (8) 

(3 = 0.0, (9) 

where the three last equations are the var ia t iona l  equa-  

t ions  [ 32 ] corresponding to the first three ones, which 
are equivalent to Eq. (2). The gki define the tangent 
space from which one obtains characteristic Lyapunov 
exponents by studying the time evolution of volumes 
[2,3]. 

All exponents reported in this paper are obtained as 
follows. We integrate Eqs. ( 4 ) - ( 9 )  fixing arbitrarily 
(1 (0) = (2(0) = 1.0 and (3(0) ----- to = 0.0 as the ini- 
tial conditions for the variational system. As is known, 
for some classes of dynamical systems Oseledec [ 1 ] 
has shown that, with the possible exception of a set of 
measure zero, exponents are independent of the initial 
conditions of the variational equations. Unfortunately 
there seems to exist no simple way to guarantee this 
independence for many models of interest, in partic- 
ular for the one under investigation here. When noth- 
ing else is said, the following arbitrary initial condi- 
tions were used for the three variables: xl (0) = 0.0, 
x2(0) = - 6 . 0  and x3(0) = 0.0. Starting from these 
initial conditions we integrated Eqs. ( 4 ) - ( 9 )  during a 
certain number of cycles of the drive (the "transient" 

time, almost always 200 cycles, the only exceptions 
being indicated in Figs. 1, 5 and 6 below), so that the 
system would be close enough to the final attractor. 
After that, we started the computation of Lyapunov 
exponents during another number of cycles, a number 

never smaller than the aforementioned transient time. 
We consider now the dependence of Lyapunov ex- 

ponents on the time step h used in the Runge-Kutta 
integration of Eqs. ( 4 ) - ( 9 ) .  To this end Eqs. ( 4 ) - ( 9 )  
are integrated for two sets of parameters motivated by 
previous work of Ueda [7]: (a,  b) = (0.1, 13.5) and 
(0.1, 13.3). Asymptotically, the first set produces pe- 
riodic motion while the second produces an aperiodic 
("chaotic") motion. We assume the driving force to 
be cos(t) ,  and compare exponents obtained by dis- 
cretizing one period P = 2~- using 12 different values 

hi = 2"n'/ki, namely, hi ~ 0.2513, 0.2094, 0.1256, 
0.0837, 0.0628, 0.0200, 0.0125, 0.0100, 0.0062, 

0.0041, 0.0031, 0.0020, respectively for ki = 25, 30, 

50, 75, 100, 314, 500, 628, 1000, 1500, 2000 and 
3000. 

Fig. 1 shows exponents calculated by integrating 
Eqs. ( 4 ) - ( 9 )  during four different intervals M / N  of 
time: 100/50, 200/100, 400/100 and 400/200, where 
M gives the total number of cycles of cos(t)  during 
which exponents where calculated, a f t e r  disregarding 
N preliminary cycles as being a transient time needed 
to come sufficiently close to the asymptotic attractor 
associated with the initial conditions. The total inte- 
gration time is N + M cycles. From Fig. 1 one sees 
that h < 0.1 seems to be already a step size small 
enough to produce converged exponents, even for the 
aperiodic trajectory. Further, Fig. 1 indicates that after 
a transient of 200 cycles the system is already close 
enough to the asymptotic trajectory. The figure also 
shows that as h decreases, residual fluctuations of the 
exponents are significantly smaller in the case of the 
periodic attractor. The behavior displayed by these two 
orbits is qualitatively similar to the behavior observed 
for a few other arbitrarily chosen parameters and ini- 
tial conditions. Based on the results in Fig. 1 we fixed 
h = 0.02 in all subsequent computations for m = 0. 
Notice that h is the quantity defining the price to be 
paid to obtain each exponent, namely the total num- 
ber of steps that one needs to integrate the differential 
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Fig. 1. Dependence  of  Lyapunov exponents  on the step h of  
integration, on the interval of  integration and on the t ime needed to 

reach the attractor; 100 /50  means that exponents  were calculated 
during 100 cycles  of  the drive after disregarding 50 cycles as 
transients, etc. The periodic attractor is for (a ,  b) = (0.1, 13.5); 

the aperiodic one, for (0 .1 ,13 .3 ) .  Here m = 0. 

equations: while one needs only 104 time steps to ob- 
tain the data presented in Fig. 1 for 400 cycles of the 

drive with h = 0.2513, roughly 120 × 104 time steps 

are need to cover the same 400 cycles when using h = 

0.0O20. 

The period of the drive depends on m as shown in 
Fig. 2. For m :~ 0 we also used h = 0.02, obviously 
requiring increasingly more time steps to cover one 
period of the drive as m increases. We noticed that 

frequently the step size h = 0.02 and the number of 

cycles for integrations could be significantly decreased 
without producing visually noticeable changes in final 
diagrams (as in Fig. 6 below, for example.) However, 
in the absence of more detailed investigations about 
the effects of these two parameters, we preferred to 

Fig. 2. Period of  the Jacobian elliptic cn( t ,  m) as function of  m. 
For m = 0.99 one has 4K(m) ~ 14.782549. For m = 1 the period 
is asymptotic to oo. 

maintain the more stringent bounds for the time being. 
Almost all exponents reported in this paper were 

computed using up to 140 nodes in parallel, "farming", 

on an Intel Paragon XP/S 10, a scalable distributed 

multicomputer. Each of these nodes contains two i860 
XP microprocessors (application processor, message 

processor), whose clock speed is 50 MHz, and 32 

MB of memory. The theoretical peak performance of 

the i860 XP is 75 MFLOPS (64-bit arithmetic). In 

other terms, sets of exponents were computed in par- 

allel by an array of up to 140 workstations, each one 

computing a slice either in parameter or phase space. 
The average time required to compute a single expo- 

nent for m = 0 (i.e. without having to evaluate elliptic 

functions) is of the order of 7.5 seconds for integra- 
tions with h = 0102 over 400 cycles of the drive. For 

m ~ 0.5 the average time is about 54.8 seconds per 

exponent while for m ~ 0.999 it takes about 64.3 sec- 

onds per exponent, all computations done in double 
precision. 

3. Jacobian elliptic functions 

We now review briefly some well-known proper- 
ties of Jacobian elliptic functions that are necessary 
to understand the nature of the driving force with 
which we want to force the Duffing oscillator. As 
mentioned above, it is possible to solve analytically 
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Eq. (2) [as well as generalizations of it containing 
linear and quadratic terms as in Eq. ( 1 ) ] when there 
is no forcing and no friction acting in the system. For 
solutions in terms of the elliptic functions of Weier- 
strass see Duffing [ 5 ] or Reynolds [ 12]. For solutions 
in terms of Jacobian elliptic functions see Ref. [ 13]. 

Further, according to Ref. [33], it should be possible 
to find analytical solutions for some particular cases 

of slightly more general Duffing equations in which 
although there is no forcing, there is friction acting on 
the system. All these solutions are in terms of elliptic 
functions. Basic facts about elliptic functions and in- 
tegrals may be found, for example, in the articles by 
Milne-Thomson [34]. 

Altogether there are twelve Jacobian elliptic func- 
tions, all doubly-periodic meromorphic functions. 
They have a real and an imaginary period depending 
on aparameter  m bounded to the interval 0 < m < 1. 
Of particular interest are the elliptic functions cn ( t, m) 

and sn( t ,m) ,  which for m = 0 reduce themselves to 
the familiar cos (t)  and sin (t) functions, respectively. 
The real period of these elliptic functions is given by 

P = 4K(m) ,  (10) 

where K ( m )  is the elliptic integral 

~r/2 
dO (11) 

K ( m )  = K =  [ 1 - m . s i n ( 0 ) ] l / 2 "  
0 

For m = 0 one has K(0)  = ~r/2. Fig. 2 shows the 
period 4K(m)  for other not so trivial values of m. 

The function cn(t,  m) which will be used to drive 
Duffing's oscillator may be expressed as an infinite 
series expansion in terms of the nome q = e -TrK'/K and 

the argument v = ~ru/ (2K)  as follows (Ref. [34], 
p. 575, Eq. 16.23.2): 

2 ~  ~ qn+l/2 
cn(u ,m)  - ~ ~ 1 + q2n+l cos[(2n + 1)v],  

n--0 

(12) 

where K I (which appears in the nome q) is defined by 

~r/2 

K l ( m  ) =_ Kt = / dO (13) 
[1 - (1 - m )  • sin(0) ] 1/2" 

0 
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0.0 

-0.5 

-1.0 
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t 

Fig. 3. Modifications of the waveform and periodicity of the 
elliptic function cn(t, m) for some values of m, as indicated by 
the numbers. Dotted lines correspond to cos(t). By varying m one 
changes simultaneously the waveform and the period of the drive. 

K ( m )  was efficiently and accurately computed with 
the algorithm R f  given by Carlson [35]. The cn(t,  m) 
function was computed using the arithmetic-geometric 
mean algorithm described by Milne-Thomson [34]. 

Fig. 3 presents graphs of cn( t ,m)  for some val- 
ues of m. One clearly sees the changes introduced by 
the parameter m, both in the waveform of the oscil- 
lation and in its period. To better understand the Ja- 
cobian driving function and in addition to the analyti- 
cal expression above, Fig. 4 shows Fourier transforms 
(taken as the square-root of the sum of the square of 
the spectral amplitudes) obtained numerically from 
time series containing 20 cycles of cn(t,  m).  
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Fig. 4. Four ie r  spec t rum o f  the funct ion  c n ( t ,  m)  for  three values 

o f  m, as indicated.  For  m = 0 one  has c n ( t , 0 )  ~ c o s ( t ) .  

4.  R e s u l t s  f o r  m = 0: E f f e c t s  o f  t r i g o n o m e t r i c  

d r i v i n g  

In this section we reconsider the behavior of Duff- 

ing's equation when driven with the trigonometric 

pumping f(t) = cos(t).  We start by studying first 

two slices of the parameter space containing the points 

originally investigated by Ueda [7] and, more re- 

cently, by Moon [ 151. 
Fig. 5 illustrates the behavior of the exponents for 

the slice of the parameter space defined at a = 0. l. 

Superimposed in Fig. 5 one sees the six numerical val- 
ues reported by Ueda. The agreement of both sets of 

exponents is quite good. Further one clearly sees that 
the b values studied by Ueda define a quite character- 

istic "window" of aperiodic motion along the a = 0.1 
slice. Ueda considered also the slice defined at b = 

12.0 for 0.01 < a < 0.34. Our values for this case are 

shown in Fig. 6, again with the values of Ueda super- 
imposed. The agreement is once more quite good. A 
distinctive feature of both cuts is that while for con- 
stant dissipation the minimum value of the exponents 
remains constant, exponents decrease in general when 
the dissipation increases while maintaining fixed the 
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o f  0, 100 and 200  cycles ,  as indicated,  f rom initial condi t ions  

defined in Section 2. The nine dots are values f rom Ueda.  
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Fig. 7. Exponents as obtained under trigonometric pumping. The 
lower view is a magnification of the first half of the view on the 
top. 

oscillation amplitude. 
Fig. 7 shows 50 x 300 exponents for a relatively 

extended region in parameter space: 0.0 _< a < 0.5, 

discretized into 50 equally spaced intervals, and 0 < 
b _< 120, discretized into 300 equal intervals. Individ- 
ual slices of  the surface shown in this figure having 
either a or b constant are qualitatively similar to the 
slices shown in Figs. 5 and 6. As seen from Fig. 7, ex- 
ponents appear as sequences of  "mountains" parallel 
to the a axis, made by more or less concentric nestings 
of  parabolic components. 

A recent study [ 10,11 ] provided detailed parameter- 
space diagrams for discrete-time dynamical systems 

Y 

-25 
-7.5 x 7.5 

Fig. 8. Basins of attraction for periodic motions (white shading) 
and aperiodic motions (black shading). The figure is a PostScript 
bitmap containing 900 x 900 exponents for (a, b) = (0.l, 13.3). 
Here x = Xl and y = x2, with xi as in Eqs. (4) and (5). Basins 
for other parameter values are given by Ueda in Ref. [9] and in 
other references quoted therein. 

showing the location of  a "Via Caotica" [ 10], i.e. re- 
gions of  parameters characterized by supporting ape- 

riodic motions with relatively large basins of  attrac- 

tion. Embedded in these regions of  chaotic parameters 

one finds a number of  easily discernible "directions" 

along which windows of  periodicity appear in a quite 

organized way. Such windows appear frequently as 

characteristic self-similar shapes, a typical exam- 

ple being the "shrimps" discussed in Refs. [ 10,11 ]. 
Knowing the existence of  such regularities in the 
parameter space of  discrete-time dynamical systems, 
it is natural to ask whether similar structures might 

be present in the parameter space of  continuous-time 
dynamical systems. For continuous-time dynamical 

systems the explicit characterization of  periodicities 
for each individual pair (a,  b) although in principle 
elementary, requires additional computer time. From 
Fig. 7 one sees that in the present continuous-time 
dynamical system there are parameter domains char- 
acterized by chaotic behaviors arising systematically 
aligned in a quite regular fashion. It is important to 
call attention to the fact that all figures in this paper 
are obtained without approximations. They have their 
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Fig. 9. Duffing's potential: V(x,t) = lx4 --xbcn(t,m), here for b = 0.05. 

accuracy determined only by the high intrinsic accu- 
racy with which one generates numerical solutions of 
ordinary differential equations. The question concern- 
ing the variation of periodicities in regions between 
(or inside) different "islands" of chaotic parameters 
requires spending additional computer time. We plan 
to consider this interesting question in subsequent 
work. 

Fig. 8 shows examples of  basins of attraction, here 
determined for periodic (white shading) and chaotic 
(black shading) attractors coexisting for a = 0.1 and 
b = 13.3. It is important to notice that the basins in 
Fig. 8 were determined by calculating Lyapunov ex- 
ponents, not by following the time evolution of the 
solution and recording those that enter (or not) a ball 
around a fixed point. Basins of attraction similar to 
those in Fig. 8 were found for many other parameter 
values. An important open problem requiring exten- 

sive computations is the determination of the extension 
and structure of non-measure-zero basins of attraction 
for all possible attractors associated with fixed sets of 
parameters. 

5. Results for m ~ 0: Effects of  Jacobian driving 

We now consider changes induced in the shape and 
location of islands of aperiodic solutions when driving 
the system with f ( t )  = cn(t,  m) and varying m. In 
this case the potential function acting on Duffing's 
equation is defined by 

V(x ,  t) = l x 4  - -  X" b.  cn(t, m).  (14) 

This potential is shown for four values of  m in Fig. 9. 
From this figure one sees that as m increases, the over- 
all physical effect of the elliptic function is to intro- 
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Fig. 10. Evolut ion of  the island of aperiodic behavior. Each picture shows 50 × 50 exponents  calculated during 400 cycles of the drive 
following a transient of  200 cycles. 
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6. Conclusions 

20 

Fig. 1 I. D e p e n d e n c e  o f  the exponen t s  on m, on a m x b = 20  x 250  

mesh.  The m a x i m u m  value o f  m plotted is m = 0 .999.  In this 

figure, a = 0 . i  and  initial condi t ions  as defined in Section 2. 

duce wide regions along which the potential varies 
less and less in time, compared with what happens 
near the peaks and valleys which are characterized by 
having their amplitudes independent of m and having 
relatively abrupt and localized variations. 

Fig. 10 shows the changes in the a x b space as m 
increases from 0 to 0.999. From this figure one easily 
recognizes that the effect of increasing m is to intro- 
duce a "double-compression" in the system: all islands 
are pushed towards the line b = 0, being simultane- 
ously compressed towards the line a = 0. This implies 
that as m increases the density of parameters charac- 
terized by aperiodic motions increases along lines of 
constant b (amplitude of the driving force) and de- 
creases along lines of constant a (strength of the dis- 
sipation). 

• Fig. 11 shows the evolution of the exponents when 
we fix the strength of the dissipation at a = 0.1 and 
increase m. Shown are 15 x 250 exponents for 250 
equally spaced values of b in the interval 0 < b < 20 
and 15 equally spaced values of  m covering the inter- 
val 0.0 _< m < 0.999. One sees a strong increase of 
the density of parameters supporting aperiodic solu- 
tions as m increases. Further, one sees that there are 
"valleys" between the "mountains" (which signal pa- 
rameters leading to aperiodic solutions) and that these 
valleys become quite narrow as m increases. 
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This paper reported a systematic investigation of the 
parameter space of the single-well Duffing oscillator 
defined in Eq. (2) with f ( t )  = cn( t ,m) .  We used 
Lyapunov exponents to perform a dichotomous divi- 
sion of the parameter space into (i) regions charac- 
terized by parameters for which one finds quite large 
basins of attraction for aperiodic solutions (positive 
exponents), and (ii) regions characterized byperiodic 
solutions (non-positive exponents). When driven by 
a cos(t)  function, the parameter space of the Duff- 
ing equation contains a series of parallel "islands" of 
parameters characterized by aperiodic attractors with 
wide basins of attraction as shown in Fig. 7. The ape- 
riodic solutions discovered originally by Ueda are lo- 
cated in the first such island. Many other similar is- 
lands are observed when increasing the amplitude of 
the driving force. In addition, we find that it is possi- 
ble to displace the island corresponding to aperiodic 
behaviors as shown in Fig. I0 by using cn( t ,m)  in- 
stead of cos ( t ) [ = cn (t, m = 0) ] as the driving force 
and tuning the parameter m. This externally induced 
displacement effect may be conveniently exploited in 
experiments, for example, to "clean" regions of pa- 
rameters from chaotic behaviors or to bring chaotic 
motions to parameter locations of interest. The pos- 
sibility of altering the periodicity of solutions over 
extended regions of parameters via external periodic 
pumping might be helpful in experimental situations 

where changes in other "internal" parameters may not 
be as easy to accomplish. 

As m increases one observes a clear increase in the 
density of parameters corresponding to aperiodic solu- 
tions, meaning that chaotic behaviors are much more 
likely to be found in this case. An interesting open 
question is the investigation of the "fine-structure" 
of both periodic and aperiodic domains of parame- 
ters, determining, for example, their "degeneracies", 
namely, the number of different attractors in each do- 
main and classifying the variation of periodicities for 
solutions corresponding to non,positive exponents. We 
hope to be able to report some o f  these results soon. 
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