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Abstract

In number theory, “units” are very special numbers characterized by having their norm equal
to unity. So, in the real quadratic field Z(V/3) the number —2 + /3 ~ —0.2679491924. .. is a
unit because (—2 + v/3) (=2 — v/3) = 1. In this paper we determine precisely the numerical
values of the coordinates of some points defined by multiple intersections of domains of stability
in the parameter space of the Hénon map and, in all cases considered for which analytical
calculations were feasible, find that such intersection points are invariably defined by units and by
simple functions of units. The very special points defined by units are analogous to the familiar
multicritical points in phase diagrams. Some simple consequences of the precise dynamics on the
ground fields enforced by the equations of motion are discussed.

1. Introduction

The purpose of this paper is to report some analytic results concerning the precise
mathematical determination of certain points in the parameter space of simple dynamical
systems, namely those points defined by intersections of boundary curves which delimit
domains of macroscopically different behaviors. Such intersection points are analogous
to the familiar multicritical points which appear commonly in phase diagrams.

The knowledge of the precise location of points of intersections is important be-
cause around them one finds several “sectors”, or “quadrants”, characterized by different
physical behaviors. An example of an elementary intersection is illustrated schemat-
ically in Fig. 1. This figure shows a two-parameter slice of the parameter space of
some generic multi-parameter and multi-variable dynamical system. For definiteness
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Fig. 1. One point of intersection in parameter space.

and simplicity one may imagine a and b as being the parameters of the Hénon map
(x,y) — (a— 2+ by, x). Line I in Fig. 1 indicates those parameters for which the
system bifurcates from a stable motion characterized by some property of interest, say,
from a motion characterized by having a periodicity p; (on and below I) to a motion
characterized by a periodicity p; (on and above line I). Line I marks the birth (appar-
ently “out of nothing™) of stable motion of period p3, a motion which exists only on
and to the right of the line, as indicated by the shading. The shaded region is therefore
characterized by the coexistence of more than one stable periodic motion (and thus by
a much stronger dependence on initial conditions).

As it is easy to recognize from Fig. 1, the intersection of lines I and II defines
parameters a and b for which there are degenerate stable motions (in a sense to be
made precise below). Around the point of intersection one finds four different real and
stable physical phenomena:

In the sector p, « existence of motion of period pi;
In the sector p, « existence of motion of period ps;
In the sector p3 & p; < coexistence of motions of periods p3 & pi;

In the sector p3 & p» <« coexistence of motions of periods p3 & p;.

There are many interesting questions to be asked about the evolution of the dynamics
around intersection points. For example, when crossing from left to right the border
line I between p; and ps, for parameters lying above the line II we expect basins of
attraction to evolve continuously in their volume and location. Thus, above line II there
is essentially one observable “macroscopic” physical change: the change in periodicity
p1 — p2. In sharp contrast, for parameters located on and below line 1I there are always
two stable attractors such that in addition to a similar change in periodicity, there will
be necessarily at least one further macroscopic change in the system: the volume of the
basin of attraction for the single attractor existing for parameters located above the line
Il must display a discontinuous change in order to accommodate the basins of the two
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(instead of only one as previously) stable attractors that coexist on and below the line.

A third macroscopic change that could occur simultaneously with the process of “bi-
furcation of the basin of attraction” happening along the line II is a qualitative change
of the basin boundary, i.e. of the curve [more precisely, the F-set (see Ref. [1])]
delimiting the two new coexisting basins: basin boundaries might be either smooth or
“fractal”. A discussion of this and additional interesting phenomena that may occur in
generic dynamical systems is given in the books by Ott [2], by Nusse and Yorke [3],
and in Refs. [4,5]. There is already a fairly good description of possible mechanisms
responsible for changes and for the death of chaotic attractors. But a systematic investi-
gation of the precise phenomena occurring during the limiting processes involved in the
transitions between periodic and aperiodic behaviors seems to be still missing.

In this paper we identify some interesting regions and points in parameter space of
the Hénon map,

Xt41 =f(-x!ayt9a’b) = a—x,2+b}’1a

(1)
y1+| =g(xn}’r’a,b) = Xt.

For this dynamical system it is relatively easy to progress analytically towards obtain-
ing answers to a number of quite difficult questions concerning the precise dynamics
involved in the limiting process involved in transitions between periodic and aperiodic
behaviors. The analytical work is done following procedures described elsewhere [1,6],
in particular in Section 3 of Ref. [6].

A first example of what we mean by precise analytical results for the dynamics is
presented in Fig. 2. This figure shows the first four points of intersection of domains
of lowest possible periodicities, determined as described in the sequence of the paper.
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Fig. 2. Four points of multiple intersections along the lines defined by Eq. (13) for the Hénon map. Dashed
line: W+ = 0; Solid line: W~ = W; = 0; Dotted line: W§ = 0 and dash-dotted line: W, = 0. The dotted
line, W =0, indicates blrth of perlod 3 orbits, which exxst on and to the right of the line. The figure on the
right is a magnification of a portion of the view on the left. Stable motions of periods 1, 2 and 3 coexist at
the point a while stable motions of periods 2, 4 and 3 coexist at 8. Precise numbers defining these points are
given in Egs. (2)-(5).
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Points & and B are very close on the scale of the figure on the left. These two points
are shown with more detail in the magnification on the right.

The basic result reported in this paper is the precise number-theoretic identification of
the particular parameter values (numbers) and respective degeneracies of the intersec-
tions described above and shown in Figs. 1 and 2. For example, the intersection points
a, B, v and & in Fig. 2, common to the boundaries of the regions of smallest period,
are defined precisely by the algebraic numbers

aa = 3(2-V3),

ba = —2+V3=1-v6y2-V3=1[-5+6y/38 -21V3],

ag = Z(4-V15),

bg = —4+V15=1[3-v2y/452 - 115V15] (3)
= L[-5+Vv2y/632-161V15],

(2)

ay = 3(2+V3),
by = -2-V3=1-V6\2+V3=1[-5-v6y/38+21V3],

as = 2(4+V15),

bs = —4—V15=1[3 - V21/452 + 115V/15] (5

s Ay VS

(4)

where we always mean taking the positive branch of the square-root function. The b
values above are defined in Z(\/Z) with 4 =3 or 15, i.e. b values are numbers of the
generic form

u+0vVa, (6)

with u and v belonging to Z = {0,41,£2,43,...}. In contrast, a values require
Q(V/4), i.e. have the same form as above but involve rational u and v. The determination
of such parameters reduces essentially to the computation of zeros of polynomials,
more precisely, to the determination of the proper ground fields where polynomial
factorizations occur. Notice that although algebraic parameters like those in Egs. (2)-
(5) may be represented symbolically with precision, it is actually impossible to compute
them precisely since they involve infinite sequences of digits. There is an intrinsic
undecidability as to where the intersections are located physically in practice.

In all cases where factorization was feasible in practice we find the remarkable result
that the numerical value of the parameters defined by intersections are either units [7-
10} or simple functions of units in characteristic ground fields. We believe this result to
represent a generic property of dynamical systems. This analytical finding provides a new
insight into the exact number-theoretic structure and properties of multicritical points
in physical models and allow one to explore important aspects of dynamical systems
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which are not easily accessible to numerical investigations restricted by finite-precision
arithmetics.

The existence of units is a well-known fact in number theory [7-10] although the
explicit construction of units belonging to a given ground field is far from being a
trivial problem [9]. In the words of Cohn [10]: “...the problem of finding units is in
general extremely important and also extremely difficult.” Although there are already a
few very interesting books about applications of number theory in physics (for example,
Refs. [ 11-14] and references therein) we are not aware of any previous observation of
units occurring in physics. In fact, we are also not aware of any previous application of
units outside the abstract domain of number theory.

We conclude this section calling attention to Refs. [ 15-24] where one finds a number
of interesting results concerning iterated maps and number theory as well as additional
references.

2. Numerical experiment: lattices and their accumulations

The purpose of this Section is to report a simple numerical experiment performed in
the parameter space of the Hénon map. This experiment motivated in fact the derivation
of the analytical results given in the continuation of the paper. The Hénon map was
chosen because it allows derivation of analytical results with relative ease. The use of
this map is not essential since similar results were also obtained for other discrete-time
dynamical systems.

The numerical experiment consists of identifying in parameter space the sequence of
boundary curves where period-doubling phenomena occur. More specifically, we search
for the sequences of boundaries curves resulting from the infinite period-doubling cas-
cades corresponding to stable periodic motions for the two lowest possible periodicities,
namely the cascades 1 x 2”7 and 3 x 2/, with n, j =0, 1,2,3,.... The parameter regions
where these two cascades coexist in phase space are shown in Fig. 3. This figure is an
isoperiodic diagram obtained as described in Ref. [25]. The cascade 1 -2 — 4 — .
is indicated by the colors green — dark-blue — red — --- while the cascade 3 —
6 — 12 — .- is indicated by the sequence of colors: light-blue — yellow — green
— ---. The white region represents “chaos”, i.e. parameters for which the period is
higher than 32 or for which it was not possible to detect numerically any periodicity.
Black represents the basin of attraction of the stable attractor at infinite distance from
the origin (xq, yo) = (0,0).

In Fig. 3 it is important to realize that the parabolic arc corresponding to the 3 x 2/
cascade was painted “over” the cascade corresponding to the 1 x 2" doublings. In other
words, both cascades “overlap”, meaning that for given parameters in the region of
overlap one may observe motions belonging to either one of the coexisting cascades,
depending only on the initial conditions. Further, we observe that it is also possible to
find motions with stable periodicities other than | x 2" and 3 x 2/ in certain sub-regions
of the region of overlap. But this fact is not relevant for our present purposes.
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To enhance contrast between adjacent parameter regions we sometimes used the same
colors to represent regions of different periodicities. This may be more easily recognized
in Fig. 3¢ where yellow is used to represent simultaneously regions of parameters leading
to motions of periods 6 or 8. The 3 x 2/ cascade was painted over the 1 x 2" cascade
only up to b values where the 3 x 2/ cascade meets the parameters beyond which the
cascade 1 x 2" accumulates into aperiodic motions. Further, as a guide to the eye, some
of the varieties defined in Eq. (13) (defined below) were superimposed as dotted lines
in Fig. 3. The characteristic stripes seen in the figure to correspond to the 3 x 2/ cascade
continue to exist along the dotted line seen on the upper-right sector of Fig. 3c. By
using different initial conditions one could easily paint them on the figure, instead of
the behaviors actually shown.

From Fig. 3 one recognizes the existence of a two-dimensional nonlinear mesh of
points which accumulate on the point A, 3 indicated by the arrow in Figs. 3b and 3c.
The first four points of this doubly-infinite mesh are indicated by large dots in Fig. 3b,
two white dots [along the line of birth of period-3 motion], and two black dots [along
the 3 — 6 bifurcation line]. The two white dots are the points @ and B shown earlier
in Fig. 2 and defined by Eqs. (2) and (3). The two additional black dots are the points
a' and B’ defined in Table 1 below (Section 6).

By properly choosing initial conditions one may generate figures similar to Fig. 3,
showing nonlinear lattices of periodicities k| x 2" and k; x 2/ with accumulation points
A, .- One may also expect to find accumulation points generated as the common limit
of more than two coexisting lattices.

A number of questions arise naturally from the realization of the existence in pa-
rameter space of dynamical systems of a great profusion of accumulation points [along
with the generalized “comet-like” nonlinear lattices leading to them]. What universal
behaviors and scalings should be expected when one dares to go beyond the familiar
one-parameter situation and venture considering tuning more than one parameter si-
multaneously [e.g. move along one of the lines I or II in Fig. 1] and contemplate the
individual cascades of changes induced by the accumulation of more and more points of
intersection? Which are the “practical limits” that constrain experimental detectability of
parameter intervals that very quickly have essentially measure zero for most experimen-
tal situations? How to derive appropriate “uncertainty relations™ telling precisely where
our ability to discriminate between different physical behaviors ends as a function of
the experimental resolution? How to know precisely (from a theoretical point of view
at least) when we arrive at some pre-assigned distance from a double accumulation

Fig. 3. Intersection points along boundary curves delimiting regions of different periodicities of the Hénon
map. Integers indicate the periodicities of the larger regions. The sequence of intersection points forms a
two-dimensional lattice (see discussion in Section 2). The arrow indicates the accumulation point .4;3 of
the two-dimensional lattice formed by the two cascades of lowest possible periodicities: 1 X 2" and 3 x 2/, a
“Miichtigkeit 2” accumulation point. Parameter values defining the location of the four large dots in (b) are
given in Table 1 below. Details in Fig. 3a are discussed in Refs. [25,26].
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point [such as the one indicated by the arrow in Figs. 3b and 3c] or at more general
accumulations? Which are the precise number-theoretic conditions determining accumu-
lation points formed by the coexistence of an arbitrary number of lattices (cascades)?
Which number-theoretic mechanisms and ground fields determine the character of basin
boundaries, i.e. their smooth or “fractal” nature?

In the remainder of this paper we dwell upon two main problems: (i) to set up a
framework for the analytical determination of generic algebraic varieties similar to those
seen in Fig. 3 which define border lines between regions characterized by different
physical properties, and (ii) the explicit determination of the number-theoretic nature
of the first few relevant intersection points for one specific example: the Hénon map.
The intersections seen in Fig. 3 arise from very specific reciprocity relations between
the physical parameters (numbers) underlying and ruling the dynamics as we now
demonstrate. These reciprocities are only possible when all parameters involved belong
to the same ground field and are connected by certain relatively simple relations of
linear dependence in the ground field.

3. How to obtain the boundaries between domains of stability

We now discuss a general procedure to obtain analytical expressions for the varieties
defining boundaries between domains characterized by different stable motions in pa-
rameter space of generic two-dimensional algebraic dynamical systems. This procedure
is essentially a simple generalization of the approach discussed in Section 3 of Ref. [6],
and has its origins in works by Euler (1707-1783), and with much more amplitude and
accuracy by Bézout (1730-1783), [in his Théorie générale des équations algébriques,
Paris, 1779] and Sylvester (1814-1897) among others. Euler mentions [in chapter XIX
“de intersectione curvarum” of Introductio in analysin infinitorum, Lausanne, 1748] that
the same method of elimination was already used by Newton (1642-1727). The proce-
dure for obtaining varieties discussed here may be further extended to higher-dimensional
systems with no difficulty. The procedure consists of two steps.

First step (“iteration step”): it consists of evaluating the k-fold composition of the
equations of motion as well as computing the determinant M; of the 2 x 2 matrix
Je(x,y,a,b) —m-1,ie.

Mi(x,y,a,b,m) = |Je(x,y,a,b) —mi|, (7

where Ji(x,y,a,b) is the Jacobian matrix of the composition, / represents the standard
2 x 2 identity matrix and m is the “multiplier”, i.e. the eigenvalue-parameter which
controls the stability of the k-periodic solution [6]. Notice that more generally one would
need to write 1y instead of m in order to account for the fact that multipliers associated
with different orbits, in particular orbits with different periodicities, are independent
quantities. For simplicity, we omit one or more additional indices here.

For every generation k one obtains in this way three equations, each one of them
involving the variables x and y and parameters a and b, equations which may be written
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formally as
Xk(—xﬂyaa’b) Ex*fk()f,y,a,b) = O,
Yoe(lx,y,a,b) =y —gi(x,y,a,b) = 0, (8)
M (x,y,a,b,m) = 0,

where k in f; and g labels the number of compositions to be performed in order to
obtain the equation, and f(x,y,a,b) and g(x,y,a,b) define an arbitrary dynamical
system. In other words, k represents the periodicity of the solution-set (x,y,a, b) under
consideration. For a given period k and parameters a and b, the first two equations,
X, =0 and ¥, =0, define the physical solutions (x,y) while the last equation, M; =0,
through the magnitude of m, defines the relative stability of these solutions. As discussed
in Ref. [26], a given solution is stable for all m values in the interval —1 < m < 1.

Second step (“elimination step”): it consists of eliminating variables. For example,
we may eliminate y between X; and M, and between ¥ and My, ending up with two
further equations, each one of them involving only the quantities (x, a, b, m). Eliminating
x between these two equations we obtain, finally, a single equation involving only the
parameters a and b, the multiplier m and several integer numerical coefficients resulting
from rather complicated combinatorial problems, i.e. an equation that we write as

Wi(a,b,m) =0. (9)

The equation W, (a, b, m) = 0 is the important equation in the present context: it contains
the maximum possible information concerning the parameter space and, simultaneously,
the stability of the system for every period k. This equation defines the ground field for
all k-periodic dynamics in phase space. The above procedure to obtain Wi(a, b, m) is
general and applies, mutatis mutandis, equally well to multiparameter higher dimensional
systems.

Having determined W (a, b, m), one may easily delimit intervals of stable k-periodic
motions in parameter space by simply plotting the varieties defined by

W, = Wi(a,b,m=-1) =0, W, = Wi(a,b,m=+1) =0. (10)

In the current literature it is costumary to work with the absolute value of m, searching
numerically for those (a, b) for which [m| = 1. It is also costumary to address questions
of stability by formulating them as eigenvalue problems. Rather than working with the
absolute value of m, we prefer to investigate two cases separately by setting either
m = —1 or m = +1 right at the beginning of the calculations. [Eventually, one may
also set m = 0 whenever this additional case might be of interest, always after suitable
divisions in order to avoid false zeros.] After fixing the value of m we study the
corresponding varieties in the a x b plane. In other words, rather than computing |m| for
every (a, b), we fix m suitably (not |m|) and compute the corresponding (a, b) varieties.
As it will be seen in the next Section, for the lowest periods this procedure may be
performed analytically using softwares presently available to do algebraic manipulations
with computers. This allows one to obtain important number-theoretic insight about the
precise dynamics on the ground field and to pose and investigate new problems.



134 JA.C. Gallas/Physica A 222 (1995) 125-151

Note that in our alternative approach, rather than investigating stability by computing
eigenvalues in the familiar manner, the stability problem is reformulated in a way to
have the eigenvalue embedded as an “additional parameter” (the stability parameter )
at the level of the equation Wy (a, b, m) discussed above. The parameters a and b solving
Wi(a,b,m) = 0 will be obviously implicit functions of m and, at least formally, may
be always written as a = a(m) and b = b(m). These solutions may be used to embed
m directly into the original equations of motion, allowing one to work in phase space
exclusively with the equations of motion [i.e. without having to consider subsequently
eigenvalue problems], looking for specific solutions having their stability fixed ab initio
by m. Similar treatment is possible when the number of parameters and/or variables is
greater than two.

We conclude this Section observing that by eliminating either x or y between
Xy (x,y,a,b) and Yi(x,y,a,b) one obtains polynomial equations defining all possi-
ble solutions x = x(a,b) [and/or y = y(a,b)] in phase space as functions of the
parameters. The polynomials defining solutions will be denoted either by Py (x, a, b) or
Pr(y,a,b), depending on which variable remains after the elimination. For the Hénon
map, the polynomials obtained by eliminating x are identical with those obtained by
eliminating y, a trivial simplifying consequence of the equation y,;; = x;.

4. Prime factors define classes of physical trajectories

We now return to the specific example of the Hénon map (Eq. (1)).

Apart from simple constant multiplicative factors, by eliminating y between
Yi(x,y,a,b), one obtains for the Hénon map the following polynomial equations which
define all possible solutions x = x{a, b), stable or not, for the first generations k =1, 2,
3 and 4:

Pr=a—(1—b)x—x%,
Pr=a—ad> —2ab+ ab® — (1 —3b+3b> — b’ )x + 2ax’ — x*,
=la—(1=bWx-x*1[1—-a—2b+b — (1 —b)x+ x*],
6
Pi=la—(1-bx—x"] ch,-x-" , (11)
=0
12
Pa=la—(1=byx~x][1 —a—2b+b — (1 =b)yx+x*] [ Y _dw
j=0

Explicit expressions for the coefficients ¢; and d; are given in the Appendix. In general,
as the periodicity k increases, all polynomials Px(x, a, b) consist of products of a certain
number of prime factors py ;(x,a, b) appearing with multiplicities gy j:

Pr= Py P Pes e Pes's (12)

where all dependencies in (x,a,b) are omitted for simplicity. Clearly, the new prime
factors contribute additional ground fields and zeros of the polynomials, zeros that for
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suitable “in-phase” combinations (see Section 7b, below) build new possible physical
trajectories as iterations proceed. Notice that the polynomial P;(x,a,b) divides all
subsequent polynomials Py(x,a, b), i.e. the prime factor P;(x,a, b) defining the fixed
points plays the same role played by the number 1 in the factorization of integer numbers.
Notice further that Py is a divisor of P»; (and necessarily of all other P; belonging to
the infinite k x 2" cascade).

All possible trajectories with periods less than or equal to 4 [stable or not, real or
not] involve points which must be necessarily zeros of the prime polynomial factors
above. Thus, all possible phase space dynamics will be ruled necessarily by the ground
field enforced by the parameters appearing in these factors, here a and b in Egs. (11).
Further, one recognizes the mathematical property which underlies the two possible
regimes, periodic or not, for phase space dynamics: the only way for a motion to be
periodic or to become periodic [after a finite number of iterates] is if it starts from
initial conditions belonging to the ground field enforced by the parameters. For initial
conditions not in the same field the motion must remain transient forever, i.e. will be
always just asymprotic to one of the possible motions corresponding to exact zeros.
From an experimental point of view this rather strict reality will be frequently subtle, if
not impossible, to detect since observations limited by finite resolutions make it hard to
distinguish accurately between “moving toward the final attractor” and “actually being
on the final attractor”. While the difficulty in distinguishing between these possibilities
is certainly very familiar, the new thing that emerges from the discussion above is that
the physical ability to discriminate between possible final states, “predict the future”,
seems to be fundamentally associated with (and limited by) the ability of ascertaining in
practice numerical values of parameters and initial conditions with precision right at the
beginning. In the absence of perturbations, there is absolutely no mechanism allowing
changes of the underlying ground field.

An important quantity discriminating physical motions in phase space is the length of
time, the “transient”, needed to go from a given initial condition to the final attractor.
Transient times will vary between zero [for dynamics starting from initial conditions
given exactly by appropriate combinations of zeros of the polynomials] and infinite [ for
example, for all initial conditions not in the field of the coefficients]. Finite transient
times of any arbitrary length occur for initial conditions defined over the ground field
and which are pre-images of the zeros of the polynomials. The actual length of the
transient is defined in a simple way by the “embedding-depth™ of the pre-images in
the ground field, this depth being clearly related to the actual “distance” in number of
iterates needed to go from the initial condition to the final orbit or, at least, very close
to it.

From the equations above one recognizes that the family of polynomials P are
invariably defined by products of certain prime factors py, in perfect analogy with the
familiar factorization of integer numbers in terms of prime numbers. Thus, to study
domains of k-periodic motion means studying the algebraic varieties defined by each of
the p; factors. In particular, to study a particular “route to chaos” means looking for
the possible ways of connecting degenerate varieties [i.e. varieties which are common
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to two consecutive p; factors] as the iteration proceeds.

From the equations above one may also recognize that it is possible to regard the
Hénon map as being one-dimensional rather than a two-dimensional dynamical system.
This statement is also valid for other dynamical systems of dimension two or higher.
The effect of the extra dimension is simply to produce the specific coefficients appearing
in an “one-dimensional equivalent” system obtained by eliminating all but one variable.
Analogously, higher-dimensional systems may be interpreted simply as allowing more
flexible and complicated interconnections between all parameters appearing in the coef-
ficients of the one-dimensional equivalent map. The specific relations among parameters
are obviously of fundamental importance in determining the prime factors composing
the several P; and their respective ground fields.

Instead of embarking now on a generic investigation of the parameter-dependence of
the zeros of the prime factors introduced in this Section, we proceed, first, to deter-
mine “important” parameter values and their corresponding ground fields and only then,
second, to investigate the dynamics generated by the zeros corresponding to these pa-
rameters. Here, particuiarly important parameters are those common to as many regions
of different physical behaviors as possible. It is clear that the prime factors discussed in
this Section are generic characteristics of all dynamical systems defined by polynomial
equations of motion, not a particularity of the Hénon map.

5. Prime factors define boundaries between domains of stability

We now apply the procedure described in Section 3 to the equations derived in Section
4, obtaining in this way all important varieties delimiting in parameter space stability
regions of periods 1, 2 and 3. To reduce the size of the formulas, we present here only
those irreducible prime factors that survive divisions by factors of lower orders. These
are the only factors explicitly needed for our present purposes. The factors are:

W/ = —4a—1+2b—17, (Birth of period 1)

W, = —4a+3 — 6b+ 3b%, (Bifurcation 1 — 2)

Wy =-—4a+5 — 6b+5b%, (Bifurcation 2 — 4)

Wy = —da+7+ 10b+ 78, (Birth of period 3)

Wy = 64a’ —32(4 + b+ 4b*)d? (13)

+(72 — 216b — 252b* — 216> + 126 a
—81 — S4b — 18b% +90b° — 18b* — 54b° — 814°
(Bifurcation 3 — 6)

All expressions above are exact. The expression for W, coincides with that for W,
Notice the conspicuous fact that all polynomials in the parameter b [i.e. all coefficients
of the equations defining a] are reciprocal polynomials, i.e. polynomials p(b) =0 of
degree n which satisfy

B'p(1/b) = £p(b). (14)
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Table |

Approximate locations of the four intersections marked by large dots in Fig. 3b. The exact value of the
parameter indicated by the asterisk is defined by b, in Eq. (17). Points @ and 8 are defined in Eqgs. (2) and
(3). respectively. a’ is the point represented by the black dot located near a

Point Equation Approximate location
a RIW ™, W;r, h] =0 a >~ 1.20577136594005
RIW ,W}.al=0 b >~ —0.267949192431122
a’ RIW . W bl =0 a =~ 1.232588541359
RIW Wy, al =0 b~ —0.281971680061195*
B RIW,  Wi,b]=0 a =~ 1.4606915186147
RIW,, W;, al=0 b~ —0.127016653792583
B RIW; Wy, b] =0 a~ 1.47441076259914
RIW, Wi ,al =0 b~ —0.134526112591863

In general, as the periodicity k increases, all varieties defined by W, = 0 originate
from certain prime factors wy ; appearing with multiplicities v ; in Wj:

We = Wi Wi it o, (15)
where the multiplicities v, ; of each factor might increase quickly when the period &
increases. In fact, rather than Wy, what is given in Eq. (13) are simply the appropriate
wy. required for the present applications. Doubling bifurcations correspond to parameters
defined by zeros of “degenerate” prime factors w, namely by factors w appearing simul-
taneously in both W,” and W,. Parameter values defined by zeros of non-degenerate
prime factors produce invariably new regions in parameter space, regions in which inde-
pendent k x 2" cascades are typically born. Here “independent cascades” means clusters
of bifurcations not sharing a common boundary with any previously existing cascade.

In Refs. [25,26] we had the opportunity to discuss the great regularity with which
shrimp-like regions [characterized in phase space by having isoperiodic attractors] ap-
pear in parameter space. We use the word “shrimp” [25,26] to denote the union of
all adjacent cells in parameter space corresponding to the interval between creation and
annihilation of a full k x 2" cascade in phase space. In this case, odd values of k imply
necessarily the birth of a new shrimp independent of all previous shrimps while even
values might imply either the birth of a whole new shrimp or just a mere bifurcation
between adjacent cells within a pre-existing shrimp.

6. The precise number-theoretic nature of multiple intersections

In the previous Section we have determined all relevant prime factors defining the
boundaries of stability regions in parameter space for motions of the three lowest possible
periodicities. We now proceed to determine the multiple intersection of these regions.
To this end we start by defining an operator to represent the operation of computing the
resultant [27] between two polynomials with respect to an indeterminate common to
them.
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Given a pair of arbitrary algebraic functions f = f(a,b) and g = g(a, b) depending
on two indeterminates a and b we will use the symbol R[ f, g,v] to represent the result
of the evaluation of their resultant, where v represents either one of the indeterminates,
v = a or v = b. Explicit algorithms for the computation of resultants are discussed in
standard texts of algebra, for example in Ref. [27].

It is a simple exercise to show that the resultants of interest are given by the following
expressions (apart from “normalization”, i.e. overall multiplicative constants):

RIW, ,Wi,al =1+4b+b* =(b—bs)(b—by),
RIW, , W3, b] =81 — T2a+4a* =4(a—a,)(a—ay),
RIW; ,Wi,al =1+8b+b>=(b—bg)(b—bs),
RIW, , Wy, b] =529 — 368a + 4a” = 4(a — ag) (a — as),
RIW Wy ,al =[1 + b+ b°1(1+2b — 56> + 26° + b*),
RIW,, Wy ,b] =[81 — 36a + 164}

x (81 + 1080a + 3888a* — 4224a® + 256a*),
RIWy , Wy ,a] =33 4 226b — 114b> +2006° — 114b* + 2265° + 330°,
RIW, , W, ,b] =61168041 — 368275248a + 108906901242,

~878940000a” + 3344974724"

—948270084° + 11151364, (16)
where the precise numerical values of a4, ag, ay, ds, ba, ba, by and bs are those already
given in Egs. (2)-(5). The approximate numerical location of the four intersections
indicated by large dots in Fig. 3b are given in Table 1.

All points of multiple intersections are defined by the zeros of the resultants above
and similar ones. These same zeros define also the specific ground fields enforcing phase
space dynamics.

Notice the existence of simple relations among the apparently independent parameters
for which multiple intersections occur:

2a, +9b, =0, 2ap+23b =0.
Identical relations are satisfied by their conjugate values a, and as:
2a,+9b, =0, 2as + 23bs = 0.

The prime factors 1+ b+ b?* and 81— 36a+ 16a%, which appear inside square brackets,
produce only complex parameters and orbits and therefore will not be considered here.

The next prime factor of special interest for the present purposes is given by 1+2b —
5b% + 2b* + b*, which factors into the following parameters:

bi=—1 —v2+11/5+4v2 ~ 02819716801 . ..,

by=—% — V2 - }\/5 +4V2 = -3.5464554447 . .,
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by=—1 + V2 +1/5 - 4v2 ~ 091421 +i0.4052,
by=—1+V2—1y/5-4v2 ~0.91421 - i0.4052. (17)

Notice that b1by = bsbs = 1, i.e. being zeros of an irreducible reciprocal equation, all
parameters above are automatically units.

The zeros of 81 + 1080a + 30884 — 42244a> + 256a4* lead to similar expressions for
the parameters.

We conclude the determination of the multiple intersections by observing that using
the substitution B = b+ 1/b [or, eventually, B = b — 1/b] and the fact that in general
(with the sum running over all j < n/2 which are non-negative integers)

b”+~——Z(—l)’ ( >B" Y (18)

all zeros of the sextic 33 + 226b — 114b% + 200b> — 114b* 4 226b° + 335° might be
analytically expressed in terms of the zeros of a cubic. Since this sextic is an irreducible
reciprocal polynomial, all its zeros are automatically units.

As noticed above, for the first few prime factors it is quite easy to show that both
parameters a and b are not independent from each other, being connected through simple
rational factors, while the transformation of a polynomial in a into the corresponding
one in & in this case is a simple exercise. An interesting open problem is the determi-
nation of specific transformations that would allow one to pass generically, for arbitrary
periodicities, from polynomials in one parameter (usually reciprocal polynomials) into
the corresponding polynomial in another parameter (usually “cousin” of a reciprocal
polynomial), i.e. to determine the nature of the dependency between parameters under-
lying the multiple intersections. It seems that multiple intersections imply the existence
of subtle but not too complicated interconnections, linear dependencies, between param-
eters. Parameters defined by multiple intersections seem to be always expressible by
specific linear combinations on the characteristic ground field.

7. About the actual computability of physical trajectories

So far we have worked exclusively in parameter space, a characteristic of the approach
introduced in Section 3. In the present Section we wish to fix parameter values and
consider phase space dynamics. Our main purpose will be to call attention to the
need of using just all possible combinations of the zeros of the prime factors defining
trajectories to probe properties of dynamical systems and of their corresponding ground
field. We also discuss some intrinsic properties of algebraic numbers that will necessarily
limit the accuracy of experiments, both in the laboratory and with computers. We will
consider one single very specific point in parameter space: the first multiple intersection
occurring at

(Garba) = ((9/2)[2 — V3], -2 + V/3). (19)
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The discussion is similar for other analogous points in parameter space.

7.1. Determination of the three stable attractors at finite distances

The fixed points (period-1 orbits) of the equations of motion for (a,, b,) are given
by

Xt =yy=-3/2+(V3/2) £ V61/2 — V3. (20)

Observing that 48 — 241/3 = (6 — 2v/3)? is a perfect square in Z(+/3) one may also
write the fixed points in a simpler form:

xo=y,=(1/2)3-V3), x =y_ =-(3/2)(3-V3). (21)

The stable fixed point is located at s = (x,,y;) while the unstable fixed point lies at
u=(x_,y_) where x; =y, ~0.6339746---and x_ = y_ ~ ~1.9019238 - - -.

From the second quadratic factor in P, in Eq. (11) one obtains the two zeros which
define the period-2 orbit. For (a,, b.) this different quadratic factor has a double zero
identical to x,:

I = Gy —2ba + 0% — (1 = ba)x +x* = {x - 1(3 - V3)}2 (22)

The last stable orbit of interest that remains to be computed is the period-3 orbit. As
discussed in Appendix A, the sextic prime factor in P degenerates into a cubic equation
along the variety W}+ = 0. The specific cubic for (a,, b, ) is

9 —5v3-18(2— vV3)x — 23— V3)x2 +4x° =0. (23)

Exact analytical expressions for the zeros may be obtained from the known formulas but
are too long to write down explicitly here and we give just numerical approximations
to them, which already indicate their proper “in-phase” combinations leading to the
period-3 orbit (x on top, v bottom):

1.433682753 —0.867963956 0.0682557999 _
RN - — .
0.0682557999 1.433682753 —0.867963956

<

The underlying ground field enforced in phase space by the parameters in this case

is clearly Q( V3).

7.2. In-phase and out-of-phase dynamics in a field

The prime factors obtained by eliminating x or eliminating y between the equations of
motion will be always identical for dynamical systems involving an equation of motion
of the type y,1 = x; in their definition. This is the case of the Hénon map. Such
degeneracy between the polynomials defining all possible x and y values is welcome
because it simplifies the analysis enormously. For example, instead of having to consider
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the following four combinations of zeros as possible candidates that might lead to fixed
points:

) (0 R 3 I o N
Vit y- Y+ y-

we only need to consider the pair of combinations s = (x4,y4+) and u = (x_,y_).
But for generic dynamical systems, after determining all zeros of both polynomials in
x and in y, one still needs to investigate which are the proper in-phase combinations
of these zeros that when used as initial conditions will produce fixed points. In other
words, in order to solve completely the problem concerning existence of periodic orbits,
stable or not, one still needs to investigate the dynamics for the lattice of all possible
combinations of the zeros when used as initial conditions. Obviously, the reduction of
the number of initial conditions to just all possible combinations of the zeros of the
prime factors corresponding to each individual variable is a generic property of all the
“equivalent one-dimensional systems” discussed in Section 4, not a particularity of the
degenerate prime factors being presently considered.

Fig. 4 shows basins of attraction and corresponding attractors for the parameters
(aa, be). In this figure there are two rectangular lattices of points formed by combina-
tions of zeros of prime factors: four larger points indicated by the letters s, u, p and ¢
and nine smaller points, three of which are indicated by the numbers 1, 2 and 3. The
four larger show initial conditions as defined in Eq. (24), s representing the stable and
the unstable fixed points. The nine smaller points form the rectangle of initial conditions
defined by combinations of the zeros of the cubic in Eq. (23) . The cubic defines the
stable orbit of period 3: --- — 1 — 2 — 3 — | ---, where the numbers correspond to
the points labeled in the figure. These rectangles of points display typical characteristics
that are observed for other parameter values: (i) very few initial conditions need to be
considered in establishing appropriate in-phase combinations of zeros leading to stable
dynamics, and (ii) some points forming the lattices will lie in the basin of attractors de-
fined by points of the same lattice while others will lie in basins belonging to attractors
defined by points of a different lattice.

Since all points belonging to each generic lattice are defined on a common ground
field, from a number-theoretic point of view one is naturally induced to ask several
questions about the exact dynamics, the most basic ones being: (i) Which are the
precise conditions characterizing those very specific combinations of zeros that when
iterated move away from the attractor defined on the same lattice? In other words, which
properties distinguish points like ¢ from points u, p and s? (ii) For those points lying
inside the basin of attractors belonging to the same lattice, how many iterates are they
“away” from the stable attractor? More precisely, when starting iterations from points
like p, how many iterates are necessary in order to enter a circle of an arbitrary radius
€ centered in s? Under which conditions may this circle have radius zero, i.e. may we
end up precisely on the stable attractor after just a finite number of iterates? (iii) What
properties are present in the sequences of algebraic numbers generated by the dynamics
while moving either towards or away from attractors belonging to a common lattice?
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a=1.20577136594, b=-0.267949192431
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Table 2

The first few exact values of x, for (a4, bo) when started from the initial combination of zeros denoted by
p in Eq. (24) and in Fig. 4. The actual points of the orbit are (x;41, ¥r4)), where w41 = x1, £=0,1,2,...
and vg = (-9 + 3\/§) /2. All x, are given in the form x, = (U + L\/§)/2, where U and L refer respectively
to the “upper” and “lower” integer “coordinates” shown in the table. For example, x; = (39 — 21\/§)/2‘
The factorizations indicated were obtained with the commercial software Mathematica. Mathematica did not
produce any factorization for the last numbers (although one is obviously not a prime) after running during
100 hours on a SUN Sparc {0 workstation, when the run was manually interrupted. The last column shows
finite-precision approximations of the exact numbers

t Exact values of x; Approximation

0 3 0.633975
-1

1 3x 13 1.313467
-3x7

2 —32 % 157 —0.689296
5 x 163

3 -3 x5x%x 71 x 1873 0.3787002
32 % 11 x 11633

4 —3 x 1326336373519 1.247054
1103 x 1949 x 1068629

5 —32 % 5897 x 9931 x 30038846397282763 —0.4508442
3 % 59 x 163 x 316831512884100490553

6 —2506684863079296 10494856984 164329220908603061584373 0.6683638

144723518047239180806763148686067870696534906168415

(iv) Which is the nature of the set of pre-images leading to points like p and g?

We have investigated these and related questions and will report the results elsewhere.
Here, to give an idea of the sort of insight provided by the exact dynamics, we would
like to mention briefly two results: first, that the exact dynamics is an efficient generator
of quite large prime numbers and, second, that trajectories started from almost all initial
conditions will require an infinite amount of time (i.e an infinite number of iterates) in
order to reach their respective final attractors, totally independent of whether or not one
starts from initial conditions in the ground field.

Table 2 shows the first five exact iterates when fixing parameters at (a,,b,) and
starting the iteration from the combination of zeros denoted by p in Fig. 4. Instead
of small prime numbers raised to ever increasing powers, one observes the appear-

Fig. 4. Basins of attraction for parameters corresponding to the multiple intersection of the three lowest possible
periods. The basin of the attractor at infinity is indicated in black, yellow indicates the basin of the stable
fix-points while the color purple [ which appears to be embedded inside the yellow basin and to accumulate
on the boundary of the black basin of infinity ] indicates the basin for stable period-3 motion. u indicates the
unstable fix-point while p and ¢ are the two additional combinations of the zeros defining fix-points. The
nine smaller dots indicate all possible combinations of the zeros obtained from the cubic (degenerate sextic),
defined in Egs. (23). The subset of three points indicated by the numbers | — 2 — 3 — | indicates the
points belonging to the stable orbit of period-3. The “color” (periodicity) of the stable orbit living in the
purple basin evolves continuously with changes in parameters, eventually “maturing” into black, i.e. with the
region in purple turning into black and becoming part of the basin of ~oc.
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ance of sequences of prime numbers of ever increasing sizes. We have also con-
sidered the sequence of exact iterates started from rationals relatively close to the
point p = (0.633975...,—1.90192...) like, for example, from the point (xg,yo) =
(63/100, —19/10). This case also generates large prime numbers. But the difference
is that while in the first case one finds the denominator to be the number 2, the de-
nominator for iterates started from rational approximations contain powers of 10 that
increase rapidly. It is curious that apparently independently from the numbers used to
start iterations, numerators seem to invariably involve huge prime numbers rather than
combinations of relatively moderate primes raised to powers that would increase with
the iteration.

To obtain a rough idea of the relative speed with which one approaches the fixed point
when starting from p we performed iterations with quadruple precision, measuring the
distance of the fixed point as iteration proceeds. After 10° iterates the distance is still
9.6 x 103, Increasing the number of iterates to 10° reduced the distance to about 1074,
meaning a rather low rate of convergence. From the specific law underlying the iteration
it seems possible to show that in spite of starting from initial conditions given by zeros
in the field, the infinite sequence of iterates is just asymptotic [not pre-periodic] to the
periodic attractor although we have not been able to prove this.

We observe that our Fig. 4 has some similarity with Fig. 2 of Refs. [28,29] or
with Fig. 1 of Ref. [30]. These references describe how a smooth basin boundary
can become a fractal basin boundary when a system parameter is varied continuously.
They describe a basin boundary “metamorphosis” in which the extent of a fractal
basin can grow discontinuously by “suddenly sending a Cantor set of thin fingers into
the territory of another basin” [29]. When (a) changing parameters smoothly enough
and/or (b) changing more than one parameter simuitaneously, we also observed the
sudden appearance of additional basins in territory previously occupied by another
basin. But the sudden appearance occurs apparently only for those specific parameters
where cascades of some definite periodicity, say , are born. For such parameters, fingers
(more precisely, the whole additional basin that is then born) appear suddenly in place.
Once this additional basin has appeared, further changes of parameters to the right of
line II in the setup defined in Fig. 1 produce only a quite smooth evolution of the
basin. As bifurcations proceed, the most abrupt phenomena that we observe are the
familiar changes of the periodicity of the attractor living in the basin. The basin evolves
rather continuously during the whole bifurcation process and also between changes
among chaotic attractors. Only at the “end of the bifurcation cascade” [i.e. after the full
alternation of all doubling cascades and all chaotic motions] is that the bounded attractor
living inside the additional basin turns into an unbounded attractor. This means that the
additional basin becomes now, in fact, part of the basin of the attractor at infinity. But
rather than being an isolated and discontinuous phenomenon, the eventual “enlargement
of the basin of infinity” seems to be the last step of a quite continuous evolution of an
already pre-existing basin of an attractor living at finite distances.

For example, Fig. 4 shows precisely a situation where the sudden appearance of a
new basin occurs. The basin in purple is the basin of a stable attractor of period three
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(indicated by the three green dots). The parameters (a, b) = (da, b, ) corresponding to
this figure lie by construction precisely on the line II discussed previously in Fig. 1.
Any parameter variation to the left of line II will transform the stable orbit of period-3
existing over the reals into an orbit over the complex numbers. In other words, the
basin in purple will suddenly change into yellow indicating that all initial conditions
in the region that formerly constituted the period-3 purple basin must now converge
asymptotically to the fixed point s. This because the period—3 orbit is no longer real.
Moving smoothly to the right of line II one observes a continuous evolution of the
purple basin. As parameters change, the period of the stable orbit that lives in the
purple basin displays the usual doubling cascade 3 — 6 — 12 — --- as indicated in
Fig. 3. Eventually, beyond all familiar alternations of periodic and chaotic phenomena,
one reaches parameters where the stable attractor corresponding to the purple basin is
the fixed point at infinity. At this parameter, after displaying a full rainbow of colors,
from the birth of the first to the death of the last attractor living in the (initially) purple
basin, the basin changes from being a basin of an attractor located at finite distance into
being the basin of the attractor located at infinity. From this parameter on the basin of
infinity will indeed display a Cantor set of thin fingers. But they seem to originate from
a rather continuous evolution of the purple basin, not from any sudden phenomenon.

The above observation is not necessarily in conflict with the sudden metamorphosis
described in Refs. [28-30]: it might still be possible for fractal fingers to be sent abruptly
into foreign territory, because in parameter space there is a profusion of parabolic arcs
like the one corresponding to period-3 in Fig. 3, each of these new arcs having a period
k and an associate cascade k x 2". The accumulation points of these cascades need to be
investigated with detail in order to understand what is really going on in these regions
of parameter space which are characterized by the coexistence of several different stable
motions that appear and disappear within small parameter intervals.

We have also observed that within specific parameter intervals it is rather easy to find
additional basins of stable trajectories living inside the territory of the purple basin of
period-3 (and inside the basins which evolve from this period-3 basin as the periodicity
of the attractor in it evolves). As one comes closer and closer to accumulation points,
one finds a sort of “basin splitting effect”: every basin seems to contain embedded in
it additional basins for intervals of parameters that are not easy to predict in advance
but are certainly large enough to be numerically detected. A clear understanding of
the simultaneous interplay of the many coexisting stable attractors certainly requires
additional investigation.

7.3. How close to attractors can we ever hope to get?

It is clear that all possible physical attractors will be defined by numbers belong-
ing to the ground field enforced by the parameters and by the irreducible equation
characterizing the periodicity of the attractor. For polynomial equations of motion, all
phase space dynamics corresponding to periodic motions will necessarily involve alge-
braic dependence on parameters and, therefore, “algebraic attractors”, i.e. even if one
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chooses, say, a transcendental parameter, all attractors in phase space will be algebraic
over the extended field. The reciprocities enforced by the dynamics will have the effect
of making interesting points in parameter space to be necessarily defined by algebraic
numbers very frequently. In practical applications we will always be forced to work with
approximations to algebraic numbers and, therefore, an important question that needs
to be considered in order to understand the physics is “how well can we approximate
algebraic numbers?”.

A quite elementary way of approximating algebraic numbers is by using rational
numbers. As already remarked by Liouville in 1844, there is an obvious limit to the
accuracy with which algebraic numbers can be approximated by rationals. This fact is a
consequence of the definition of algebraic number [31]. If « is an algebraic number of
degree n > 2 and p/q any rational approximation to it, then

le — p/ql > C/q", (25)

where C is a positive constant depending only on «. By iterating further and further with
absolute precision arithmetics it is possible to get arbitrarily close to algebraic numbers
starting from rationals. But strictly, when starting from rationals and even from almost
all numbers, algebraic or not, one will never be able to reach the precise ground field
corresponding to an arbitrary periodic attractor with just a finite number of iterates, no
mattering how large this number might be. For almost all initial conditions it will be
impossible to reach algebraic attractors precisely in a completely analogous way as it
is totally impossible to actually reach attractors located at infinite distances with just
a finite number of iterates. What happens is that one remains “spiraling” indefinitely
towards the attractor without ever reaching it, with the dynamics in phase space being
ruled by ever increasing prime numbers. We recognize that already at this “classical
level” of the dynamics there is a quite strong mechanism preventing one from reaching
stable attractors from almost all initial conditions. These are simple consequences of the
algebraic closure of the precise dynamics.

8. Conclusions

The basic new result reported in this paper is that points in parameter space defined
by multiple intersections of boundary curves which delimit domains of macroscopically
different physical behaviors are defined by specific mathematical entities: units. The
familiar cascades of bifurcations imply the existence of an infinite quantity of points of
accumulation of sequences of units in parameter space. Units corresponding to intersec-
tions of neighboring domains characterized exclusively by periodic behaviors need to be
always defined by algebraic numbers. The existence of “mixed intersections”, i.e. in-
tersections which involve simultaneously domains of periodic and domains of chaotic
behaviors seem to require the existence of a sort of “transcendental unit”, i.e. a non-
algebraic number that is a unit. In particular, the accumulation points (beyond which
one finds chaos to be stable following every cascade) mark precisely the transition
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from algebraic to non-algebraic units. An interesting question now is whether or not it
is possible to find analytical expressions allowing to generate all units belonging to a
sequence and expressions allowing to move from one point of intersection to all sub-
sequent ones. In particular, such formulas would be of interest to establish a sort of
measure of the “proximity” of an accumulation point which after any finite number of
steps will invariably look like a mirage, impossible to reach in practice.

We observed that by eliminating all variables but one, the dynamics of systems
defined by polynomial equations of motion can be effectively reduced to the investigation
of one-dimensional equivalent systems. These equivalent systems involve invariably
certain prime factors which rule the dynamics by imposing specific ground fields for
all attractors in phase space. To answer stability questions, rather than investigating
all possible initial conditions, we observed that for each periodic motion it is enough
to consider just the set of all possible combinations of the zeros of the prime factors
defining the periodic orbit. The precise ground field cannot be reached from almost all
initial conditions after just a finite number of iterates. Even when starting from initial
conditions in the set of combinations of the zeros of the prime factor, it is necessary to
use appropriate “in-phase” combinations in order to be able to reach attractors precisely.

In contrast with the familiar approach where one investigates stability questions by
dealing with eigenvalue problems, we write the equations of motions in such a way as
to incorporate a stability parameter m in them. In this way we could investigate more
comfortably all solutions sharing common boundaries in parameter space by constructing
and factoring the W; surfaces as discussed in Section 5.

Units seem to pervade dynamical systems and certainly provide remarkably interesting
parameter values where to probe with absolute numerical precision phase space dynamics
of physical models and to address rather new questions, for example, the number-
theoretic origin of periodicity, of aperiodicity and of the physical stability in general. So
far, determinism has been almost invariably confused with effective computability. But
it seems important to notice that from the mere existence of physical laws it does not
follow automatically that the consequences of these laws can be always computed with
sufficient accuracy, or even at all. It would be nice if the realization of the presence and
important role in physics of relatively sophisticated mathematical entities and structures
could prove beneficial for both fields: to understand the intricacies of the exact dynamics
and to construct number-theoretic relations of interdependence among particular sets and
lattices of numbers and to construct continuous functions with them and on them. The
ability of predicting the future seems to depend critically on the precise number-theoretic
knowledge of the numbers defining parameter values and initial conditions and on their
relative commensurabilities and phase dependences.

It is certainly possible to use sequences of points (i.e. orbits generated by certain
simple dynamical systems) to construct the basic functions of trigonometry, in essence
the exponential function, similarly as done recently for the arccos function [6]. Ex-
ploiting certain peculiarly regular lattices of points produced by combining suitably
the zeros of equations of motions as they appear generation after generation in certain
dynamical systems one may also find, for specific choices of parameters, an alterna-
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tive way of producing elliptic and continuous but non-differentiable functions as done
by WeierstraB(1815-1897) and, according to Spalt {32], decades earlier by Bolzano
(1781-1848). It would be nice to find a general framework based entirely on functions
constructed directly from discrete cycles generated via dynamical systems and containing
free “lattice-parameters” [defining the algebraic structure characterizing the dynamics]
which could be “tuned” at will. Such functions would constitute rather privileged basis-
functions to be used for expansions in physical theories.
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Appendix. Parameter symmetries defining ground fields

This appendix provides explicit expressions for the coefficients ¢; and d; appearing
in Egs. (11). These coefficients define the ground field for motions of period 3 and 4.
From them one may recognize which symmetries are generated by the dynamics and
enforce the appearance of units in parameter space.

All possible non-trivial period-3 orbits in phase space involve necessarily points which
are suitable combinations of zeros of the following polynomial of degree 6:

6
pila,b,x) = Zc_;x-ﬁ (26)
=0

where the coefficients c; are given by

co=—1—b-0 —b"—b - +d° -242(1 +b%)
+a(1 —4b— 5% —4b° + bY),
a=l+b+ b =0 —b*— b +d*(1 - b) —2a(1 - ),
cr=—142b+b*+20° — b* - 3a> + a(3 — 2b+3b%),
ea=1—b+ b —b —2a(1 —b),
cy=—1+2b— b+ 3a,
cs=1-—0b,
ce=—1. (27)

Similarly, all non-trivial period-4 orbits involve combinations of zeros of the following
polynomial of degree 12:
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12
paa, b, x) = Zd_,-xj, (28)

J=0
where the coefficients d; are given by

do=1+43b+3b> +4b* +9b* + 96 + 6b° + 95 + 9b°
+4b° +3p'0 4+ 3" + 52 4 4°
+a*(—3 — 2b — 3b%) + a* (3 + 4b + 2% + 4b° + 3b*)
+a* (=3 — 4b + 7b* + 16b° + 7b* — 4p° — 3b%)
+2a%(1 — b —8b% — 76 —2b* —7b° — 8b° — b + b},
di=a*(—1 b+ b+ ) +2a3(1 +3b+2b* - 26> — 3b* — b°)
+a?(—1 — 5b—9b% — 5b° + 5b* +9b° + 5b° + b)
+2a(1 +4b+ 50+ b° —b* +b° — b — 50" — 4b® - b°),
dyr = —6a° + 4a* (3 + 2b + 3b%) + 2a° (=3 — 4b — 2% — 4b° — 3b%)
+a* (5 +4b — 13b% — 24> — 13b* + 4b° + 5b%)
+a(—1+2b+8b% —2b° — 14b* — 2b° + 8b° + 2b7 — b%),
dy = —1—5b—6b* +2b° +4b* — 4b® — 2b° + 66" + 5b% + ¥’ (29)
+4a (1 +b— B2 — b*) +4a*(—1 = 3b — 2% +20° + 36* + b°),
dy = 15a* — 6a°(3 + 2b 4 3b%) + a*(3 + 4b + 2b* + 4b° + 3b*)
+a(—4 —2b+ 8b% + 12b° + 8b* —2b° — 48%),
ds=6a°(—~1 — b+ b+ b)) +2a(1+3b+2b° —26° — 36* - p°),
de=1-—b"—~b* +b° —20a° + 4a°(3 + 2b + 387),
d7=4a(l+b—-b - b)),
dg = 154> — a(3 + 2b + 3b%),
do=~1-b+ b+,

dyo = —6a,
dn =0,
dip = 1.

As one recognizes without difficulty from the above expressions, all dependencies in
one of the parameters, the parameter b here, appear invariably in the form of reciprocal
polynomials. By introducing the simple change of variable B = b+ 1/b one sees that
whatever the numerical value of the zeros of the reciprocal polynomials, these zeros will
necessarily be defined by units. A precious property resulting from the generation of
reciprocal polynomials by the dynamics is that the mere existence of the transformation
B = b+ 1/b is enough to guarantee that even in those cases for which one could not
possibly solve the polynomials in B analytically in terms of radicals, such solutions
would still necessarily produce units.

By factoring b instead of a in the expressions for c¢; and d; one sees that although
the parameters a are simply connected with units in the ground field, this fact is not so
obvious to recognize from such alternative factorization. The most convenient way to
proceed with the analytical work seems to be by seeking always to work with numbers
and functions defined as linear combinations over the simplest possible field, Z in the
present example (not Q).
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From the results presented in Section 5 we know that period-3 orbits are born along
the line Wy = —4a + 7+ 106 + 7b* = 0. Therefore, substituting the value of a defined
by this equation into the sextic polynomial, Eq. (26) , one sees that along Wy =0 the
sextic might be factored into the square of a cubic polynomial:

[14+b—b —b —18(1+2b+b)x —4(1 —b)x* +8x*)? =0. (30)

The zeros of this equation are the points which define (degenerate) period-3 orbits
living on Wy = 0. In a perfect analogous way, there is a point along the variety
W, = —4a+5— 6b+ 567 =0 for which the polynomial of degree 12 factors into

8
pa(a,b,x) = [1=2b+ b —4(1 —b)x + 4x°]> Y e,/ (31)
/=0

where

eo = 1021 + 2584b — 12852 + 31784b° — 38674b* + 31784b°
—128525° + 258467 + 102158,
e = 1672 +4904b — 21944b% + 4036056 — 40360b*
+219445° — 4904b° — 16720,
e = 2336 — 5632b + 1072062 — 117765% + 10720b* — 56325° + 233655,
2912 — 13280b + 247685 — 24768b° + 13280b* — 29120°, (32)

€3 =

es = —96 — 11526 + 1984b% — 1152b° ~ 96b*,
es = —2688 + 5504 — 55045% + 26885°,

e = 1024(—1+ b — %),

e7=512(1 = b),

es = 256.

Notice that in this case the quadratic factor in ps(a, b, x) coincides with the prime factor
determining the ground field for orbits of period two.

A particularly interesting point in parameter space defining degenerate prime factors
and orbits of period 4 is defined by the zero near by ~ —0.178101074 - - - of the equation

1 — 1567 + 64b° — 128b% + 164b° — 128° + 645" — 15b% + 5% = 0. (33)
The corresponding value of a is ay = (5 — 6b; + 5b§)/4 ~ 1.5568016033 - - -,
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