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Abstract

We investigate the parameter space of two coupled quadratic (logistic) maps. Of special
interest is the analytical characterization of the precursors leading to riddled basins. We delimit
stability domains for orbits with the two lowest periods. In addition, we study the singularities of
the phase-space surfaces obtained by eliminating all parameters from the equations of motion.
c© 2001 Elsevier Science B.V. All rights reserved.
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Riddled basins are a very intricate and relatively abundant type of fractal structures
in phase-space of physical systems which attract enormous attention nowadays [1–5].
The sensitivity to initial conditions in phase-space with riddled basins is so extreme
that no matter how small a volume is chosen, it will always contain initial conditions
leading to di?erent @nal states, implying unpredictability at all scales of resolution.
Riddled basins were observed very early in lattices of coupled maps [6–8] and shown
to arise when a chaotic motion is restricted to an invariant subspace of the total phase
space [9]. Here we report an investigation of the parameter space of a simple system
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Fig. 1. Stability and multistability domains. Numbers like 2; 4; 4; 3 indicate coexistence of periods 2, 3 with
two di?erent orbits of period 4. The dashed line goes from p1 ≡ (−1=4; 0) to p2 ≡ (3;∼ 0:8).

composed of two coupled quadratic maps interconnected by linear terms:

xn+1 = a− x2n + b(xn − yn) and yn+1 = a− y2n + b(yn − xn) ; (1)

where a is the local parameter and b represents the coupling. Particular emphasis is
given to the arithmetical structure (number @elds [10,11]) de@ning parameter boundaries
and vertices of stability domains of motions with low periods.
Algebraic equations of motion imply an in@nite family of polynomials [12,13] whose

zeros de@ne the orbital points. Here, all orbital points with periods 1 and 2 are zeros
of P1(x) ≡ p(1)

1 (x)p(2)
1 (x) and P2(x) ≡ P1(x) p

(1)
2 (x)p(2)

2 (x)p(3)
2 (x), where p(1)

1 (x) =
x2 + x− a, p(2)

1 (x)= x2 + (1− 2b)x+2b2− b− a, p(1)
2 = x2− x− a+1, p(2)

2 = x2− (1+
2b)x + (b+ 1)(1 + 2b)− a, and p(3)

2 is an octic polynomial. Following Ref. [14], we
determined stability boundaries, parameterized by the eigenvalue �. The boundaries of
domains of lowest periodicity directly related to the 1→2→4→· · · cascade are

W+
1 = (4a+ 1)(4a− 4b2 + 1)3; (2)

W−
1 = (4a− 3)(4a− 4b2 − 3− 8b)(−3 + 4a+ 4b− 4b2)2 ; (3)

W+
2 = (b− 1)8(4a− 3)2(−3 + 4a+ 4 b− 4b2)2

×(4a− 4b2 − 3− 8b)2(4a− 4b2 − 3− 12b)2 ; (4)

W−
2 = (b− 1)8(4a− 5)2(4a− 4b2 + 4b− 5)2

×(25− 40a+ 16a2 + 100b− 80ba+ 144b2 − 32ab2 + 80b3 + 16b4)2;

(5)

where + and − refer to � = +1 and −1, respectively. The W2 surfaces contain
additional factors of higher degrees which are not interesting here.
Fig. 1 shows the location of several stability domains for orbits of periods 1 and 2.

Sequences of numbers indicate coexistence of the periods indicated by the numbers.
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From the expression for P1 one sees that there are four period-1 @xed points, some
of them being real only to the right of the c1 curve. The four vertical lines, for
a=− 1

4 ;
3
4 ;

5
4 ;

7
4 , correspond to the symmetric xt = yt bifurcations of the quadratic map.

Relevant boundaries are

c1 = 4a− 4b2 + 1 (Birth of period 1) ; (6)

c2 = 4a− 4b2 − 3− 8b (Bifurcation 1→2) ; (7)

c3 = 4a− 4b2 − 3 + 4b (Bifurcation 1→2) ; (8)

c4 = 4a− 4b2 − 3− 12b (Birth of a new period 2) ; (9)

c5 = 4a− 4b2 − 5 + 4b (Bifurcation 2→4) : (10)

The curves c2 and c5 intersect at (a; b) = (109 ;
1
6 ) while c4 and c5 intersect at ( 6564 ;

1
8 ).

Notice that c2; c4 cross the line a= 5
4 for b=−1 +

√
6=2 and b=− 3

2 +
√
11=2.

If instead of eliminating x and y from the equations of motion we eliminate both
parameters, a and b, we obtain high-degree surfaces which, among others, include the
following factors:

Q+
1 = (x − y)3; (11)

Q−
1 = (x − y)(−2xy + 2y + 2x − 2 + x2 + y2) ; (12)

Q+
2 = Q−

1 (−2xy − 2y − 2x + 2 + x2 + y2)3 ; (13)

Q−
2 = (x − y)12[11x4 − y4 − 24x3y + (32y − 8 + 14y2)x2

+(−8y − 4− 16y2)x] : (14)

Similarly to the W curves, which inform about singularities in parameter space, Q
curves provide useful information concerning singularities of the orbits when they
bifurcate.
Fig. 2 shows the loci Q+

1 = 0 and Q−
1 = 0. The reference curve Q0

1 corresponds
to � = 0. Q−

1 indicates the location of the (degenerate) period-1 @xed points when
the bifurcation 1→2 takes place. Inside the parabola Q−

1 = 0 one has two period-1
points that coincide along the Q+

1 diagonal like, say, at p1. By varying a and b along
the dashed line in Fig. 1 (i.e., (− 1

4 ; 0)→(3;∼ 8
10 )), one @xed-point of period 1 moves

from p1→p2 along y=x diagonal. Simultaneously, the other period-1 @xed-point moves
outside the diagonal, from p1 to p3 (which corresponds to the crossing point of the
curve c3 and the dashed line shown in Fig. 1) where it bifurcates into two period-2
points p5 and p6. At p3 the period-1 point is unstable and it moves until p4, where
a= 3 and b ∼ 0:8. The curve Q+

2 = x2 + y2 − 2(x + y + xy − 1) = 0 in Fig. 2 shows
the location where period-2 points are born along c2.
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Fig. 2. Bifurcation loci for periods 1 and 2.

In conclusion, bifurcations of two coupled quadratic maps were found analytically
to evolve continuously along the xn = yn line up to a point where it is possible to
move out of this line of symmetry. While the expressions alone for stability boundaries
in parameter-space do not give information concerning the position of @xed points in
phase-space (and vice-versa), the simultaneous investigation of stability boundaries in
both spaces provides relevant informations regarding complex dynamical aspects of
novel bifurcations.
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