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Abstract

We introduce a class of models composed by lattices of coupled complex-amplitude oscillators
which preserve the norm. These models are particularly well adapted to investigate phenomena
described by the nonlinear Schr6odinger equation. The coupling between oscillators is parame-
terized by the mass, while their local dynamics is illustrated for two area-preserving maps: one
obtained from the exact local solution of the Schr6odinger equation, the other obtained from its
Crank–Nicholson discretization. In both cases, we determine all periodic orbits and show how
to detect artifacts introduced by the discretization.
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1. Introduction

The interplay of nonlinearities in spatially continuous nonlinear systems is nowadays
a subject of intensive research [1,2]. Paradigmatic systems consist of either lattices
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of nonlinear oscillators, governed locally by an ordinary diBerential equation (ODE)
[3], or partial diBerential equations (PDEs). While lattices of coupled ODEs are most
suitable for phenomena in the scale of interoscillator distances with a small number of
oscillation modes, PDEs are more convenient for phenomena with large length scales
or with a large number of oscillation modes.
One model studied in these two diBerent contexts is the nonlinear Schr6odinger equa-

tion [3,4], Eq. (1) below. The nonlinear Schr6odinger PDE is used to model the for-
mation of vortex lattices in a weakly interacting Bose condensed gas [5] and to model
the evolution of monochromatic waves in pulse propagation along optical Ibers [6],
while its discretization in space yields the so-called discrete nonlinear Schr6odinger
equation [7], which can be used to study the processes underlying the localization of
energy in nonlinear lattices [8,9], to study pairwise soliton collisions [10], to model
three-dimensional Josephson–Junction arrays in the quantum regime [11] and dis-
crete breathers in discrete nonlinear extended systems [7,12]. However, the continuous
approximation of coupled ODEs into PDEs is frequently diKcult to handle.
To overcome this diKculty it has been proposed [13] to discretize time as well,

obtaining a lattice of coupled oscillators evolving with discrete time, the so-called
coupled map lattices (CMLs). CMLs have been widely used to study reaction-diBusion
systems [13], self-organized behavior spatial extended systems [14], diBusive transport
in Hamiltonian systems [15], information capacity and pattern formation in networks
[16], transport phenomena due to the competition between diBusion and advection [17],
universality classes in spatial extended discrete systems [18], and also to model spiking–
bursting neural behavior [19] and other synchronization phenomena [20].
In all these applications the local amplitudes of CMLs are assumed to be real and,

in general, there is no need to impose physical constraints on them such as, e.g.
norm preservation. However, for certain speciIc models in quantum physics, such as
the nonlinear Schr6odinger equation, one works with complex amplitudes which must
preserve the norm during evolution. Moreover, although one-dimensional discrete maps
have already been occasionally used in quantum chaos (as, for example, in Ref. [21]),
as far as we know there is no complete formulation of spatially extended quantum
systems evolving with discrete-time local dynamics.
In this paper, we introduce a CML model in which local amplitudes are complex and

the norm is preserved all over the system. The CML model is introduced in Section 2,
while in Section 3 two possible local dynamics are studied, namely the area-preserving
exponential map and its Crank–Nicholson discretization. Discussion and conclusions
are given in Section 4.

2. The norm-preserving CML model

The model we introduce below is well adapted to handle the nonlinear Schr6odinger
equation, namely

i
9�tx
9t = −�∇2�tx + (�|�tx|2 + U (x))�tx ; (1)
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where �tx is the wave function, x and t label space and time, respectively, i is the
imaginary unit, and � = ˝2=(2m), with m symbolizing the mass. Here � = g=˝; g a
real constant, represents the potential created by the boson density in the system, and
U (x)=(V (x)−�)=˝, where V (x) and � represent the external and chemical potentials,
respectively. As usual, we conIne the system to a box of size L and assume periodic
boundary conditions: �t0 ≡ �tL.

DiBerently from the usual reaction–diBusion equations for chemical or hydrodyna-
mical systems, here the norm is preserved:

∫ |�t+Nt
x |2 dx = ∫ |�tx|2 dx. Nevertheless,

Eq. (1) may be still regarded as a sort of reaction–diBusion equation, whose Irst term
on the right is the diBusive ‘non-local’ contribution, while the second term represents
the local evolution. The standard way of discretizing Eq. (1) is to consider a sort of
splitting method [22] where local and non-local terms are discretized separately in two
successive steps. The ‘local’ step corresponds to the exact solution of Eq. (1) when
the diBusive (non-local) term is removed

�t+Nt
x = e−iNt(�|�tx|2+U (x))�tx: (2)

The ‘non-local’ step, solution of Eq. (1) when the ‘local’ term is removed, is obtained
from the Crank–Nicholson discretization [22], given by the mean of the explicit and
implicit schemes computed between t and t +Nt, namely

i
2
[�t+Nt

x −�tx] =− �Nt
(Nx)2

[�tx+Nx +�
t
x−Nx − 2�tx +�

t+Nt
x+Nx

+�t+Nt
x−Nx − 2�t+Nt

x ]: (3)

Although this expression is useful to study the nonlinear Schr6odinger equation, it is
not adequate for our purposes, since for CML models one must have each �t+Nt

x as
functions of �tx alone, and from Eq. (3) one clearly sees this not to be the case. So,
instead of the above usual procedure, we compute the explicit scheme between t and
t +Nt and the implicit scheme between t − Nt and t, i.e., �t±Nt

x = [1 ± i�Nt∇2]�tx.
Thus, after performing the discretization of the diBusive operator, the ‘non-local’ step
reads

i
2
[�t+Nt

x −�t−Nt
x ] = − �Nt

(Nx)2
[�tx+Nx +�

t
x−Nx − 2�tx] (4)

which still preserves the norm, now between t−Nt and t+Nt, and is unconditionally
stable. Finally, substituting t → t+Nt with Nt= 1

2 and x → j, one arrives at the CML
equivalent of the nonlinear Schr6odinger equation, namely,

�t+1
j =�tj + �[F(�

t
j+1) + F(�

t
j−1) − 2F(�tj)] ; (5)

where F(�tj) = i�t+1=2
j with �t+1=2

j deIned either by Eq. (2) for Nt = 1
2 , or by

another suitable discretization. Here j = 1; : : : ; L and periodic boundary conditions im-
pose �j ≡ �tj+L. Eq. (5) deInes a CML with complex local amplitudes, whose cou-
pling parameter � is parameterized by the mass of each oscillator and where the norm
is globally preserved, i.e.,

∑L
j=1 |�t+1

j |2 = ∑L
j=1 |�tj|2.

Similarly as for reaction–diBusion equations, where a CML is obtained when one
interprets diBerent contributions of the discretized operator as systems by themselves



540 M.V. Vessen Jr. et al. / Physica A 338 (2004) 537–543

[13], one could regard Eq. (5) as a system of coupled quantum systems (‘oscillators’).
Of course, this latter case requires imposing norm preservation for individual oscillators,
in other words, the map F(�tj) = i�t+1=2

j must be area-preserving.

3. Area-preserving local dynamics

In the remainder, we study two area-preserving maps, the exponential map

�t+1=2 = F1(�t) = ie−i(a|�t |2+bj)�t ; (6)

obtained directly from Eq. (2) with a= �=2 and bj = Uj=2, and the map

�t+1=2 = F2(�t) = i
1 − i(a|�t |2 + bj)
1 + i(a|�t |2 + bj)�t (7)

which we call the Crank–Nicholson map since it is deduced from the Crank–Nicholson
scheme of Eq. (2) with a = �=4 and bj = Uj=4. Both maps involve parameters which
are suitable scalings of the potentials.
Now, we determine analytically all periodic orbits for the maps above and compare

them. The diBerences between both maps are due to artifacts eventually introduced
by the Crank–Nicholson scheme when discretizing the exact solution in Eq. (2). For
simplicity, we set b ≡ bj.
To determine all periodic orbits we separate real and imaginary parts on both sides of

the map and change to polar coordinates, obtaining a two-dimensional area-preserving
map of the form

rt+1 = rt ; �t+1 = �t + 2��(rt) ; (8)

where, for �t ≡ xt + iyt , one has rt =
√
x2t + y2t and �t =arctan(yt=xt). While rt+1 = rt

assures norm preservation, the other equation determines whether the orbit is periodic
or not: for rational �(rt) one Inds a periodic orbit on the circumference centered at
the origin with radius rt , while for irrational �(rt) the corresponding orbit Ills densely
the circumference, being quasi-periodic. Periodic orbits with period k are solutions of
�(rt) = p=k, with p an integer between 1 and k − 1 and k and p are relative primes.
For the exponential map in Eq. (6) one obtains �(rt) = (�=2 − ar2t − b)=(2�) and,

therefore, period-k orbits are deIned by

x2t + y
2
t =

�
2a

(
1 − 4p

k
− 2b
�

)
: (9)

Since the left-hand side of Eq. (9) is non-negative, for a¿ 0 period-k orbits exist
only when b¡�k;p ≡ (�=2) − 2�p=k, while for a¡ 0 one must have b¿�k;p. When
b → �k;p all period-k orbits converge to the origin, i.e., to the Ixed point rt = 0. The
same occurs when a → ∞ and, since a is a scaling of the boson density potential,
one concludes, as expected, that when the density diverges all oscillation modes vanish
and the oscillators ‘freeze’ at rt = 0. Moreover, when a → 0 the amplitudes of local
oscillators diverge, due to the vanishing of boson density.
Next, we determine which period-k orbits are observed for each pair (a; b), in order

to characterize the entire parameter space. Since we want to determine the existence



M.V. Vessen Jr. et al. / Physica A 338 (2004) 537–543 541

Fig. 1. Distribution of all period-k orbits in parameter space for (a) the exponential map F1(�t), Eq. (6).
The regions where period-k orbits are observed have an upper boundary �Mp;k for a¿ 0 and a lower boundary
�mp;k for a¡ 0, both illustrated in (b) as functions of k, where solid line indicates the boundary for a¿ 0
and dashed line the boundary for a¡ 0. For (c) the Crank–Nicholson map F2(�t), Eq. (7), both boundaries
(�Mp;k and �mp;k) depend quite diBerently on the period k (see text).

of at least one period-k orbit, for a¿ 0 we take the maximum of �p;k with respect
to p, namely �Mp;k = �1; k , while for a¡ 0, we consider the corresponding minimum
�mp;k = �k−1; k . Fig. 1a shows an illustrative scheme of the entire parameter space, indi-
cating the distribution of periodic orbits for the exponential map. Notice that even in
the regions of ‘no period’ there is always the Ixed point at the origin (x; y) = (0; 0).
In Fig. 1b both boundaries, �Mp;k and �mp;k , are plotted as functions of the period k,
emphasizing the convergence towards the ‘no-period’ region, namely �Mp;k → �=2
(a¿ 0) and �mp;k → −3�=2 (a¡ 0).
The distribution of periodic orbits for the exponential map is signiIcantly changed

when one considers the Crank–Nicholson discretization of Eq. (6), i.e., when one
considers the Crank–Nicholson map in Eq. (7).
Written in the form of Eq. (8) the Crank–Nicholson map reads

�(rt) =
1
2�

arctan
(
1 − A2t
2At

)
; (10)

where At = ar2t + b and, as above, equating �(rt) = p=k yields

x2t + y
2
t = − 1

a

(
tan

(p�
k

∓ �
4

)
+ b

)
: (11)

Using the same procedure as for the exponential map, Eq. (11) shows that when a¿ 0
period-k orbits are observed only for b¡�Mp;k , where �

M
p;k ≡ maxp[tan(−p�=k ±�=4)],

while when a¡ 0 one Inds b¿�mp;k with �mp;k ≡ minp[tan(−p�=k ± �=4)]. Fig. 1c
shows both the maxima �Mp;k and minima �mp;k as functions of period k.
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Comparing Fig. 1c with 1b, one concludes that the Crank–Nicholson scheme in-
troduces several changes in the distributions of periodic orbits. First, when k → ∞
(quasi-periodicity), the boundaries of the Crank–Nicholson map diverge (�Mp;k ; �

m
p;k →

∞), while for the exponential map one Inds Inite limits, namely �Mp;k → �=2 and
�mp;k → −3�=2. Second, while for the exponential map the boundaries vary mono-
tonically with k, for the Crank–Nicholson map one observes an alternating increase
and decrease of the boundary. Finally, notice the divergence of the lower boundary
for period-4 orbits of the Crank–Nicholson map, meaning that, diBerently from the
exponential map, for a¡ 0 one observes period-4 orbits for any value of parameter b.

4. Discussion and conclusions

In this paper, we derived a CML model characterized by complex amplitudes and by
norm preserving local dynamics. The model was obtained with suitable changes in the
usual Crank–Nicholson scheme of the nonlinear Schr6odinger equation to guarantee that
at each time-step local states depend on local and neighboring states of the previous
time-step alone. Identifying each site in the lattice as a quantum system by itself,
we also imposed local norm preservation and compared the distribution of periodic
orbits for two possible local dynamics, one ruled by the exponential map and another
by its Crank–Nicholson discretization. It should be very interesting to investigate the
possible behaviors of global states (patterns) emerging in a lattice of inhomogeneous
(nonidentical) maps, for instance, one governed by Eq. (5) with bj varying randomly
along the lattice.
In conclusion, this paper provides an important bridge showing that the familiar

Crank–Nicholson discretization scheme may be in fact quite naturally identiIed with a
coupled map lattice having norm-preserving complex local amplitudes. This fact opens
a number of new possibilities for applications that we hope to report soon.
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