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We investigate cellular automata in four and five dimensions for which Chate and 
Manneville recently have found nontrivial collective behaviour. More precisely, though being 
fully deterministic, the average magnetization seems to be periodic respectively quasiperiodic, 
with superimposed noise whose amplitude decreases with system size. We confirm this 
behaviour on very large systems and over very large times. We analyse in detail the statistical 
properties of the “noise”. Systems on small lattices and/or subject to additional external 
noise are metastable. Arguments by Grinstein et al. suggest that in the periodic case the 
infinite deterministic systems should be metastable too. These arguments are generalized to 
quasiperiodic systems. We find evidence that they do indeed apply, but we find no direct 
evidence for metastability of large systems. 

1. Introduction 

Recently, much attention has been paid to extended homogeneous systems 
far from equilibrium. In particular, the question arose whether such systems 
can show global collective behaviour when governed by short range interac- 
tions and subject to noise. Naively, one could expect that the noise would 
affect different parts of the system in different ways, whence distant parts of 
the system would run out of phase. Then, any globally averaged observable 
would not show any non-trivial time dependence in the limit of infinite system 
size. 

In ref. [l], this argument was made sharp for chaotic systems such as coupled 
map lattices. There, amplitudes of small fluctuations blow up exponentially, but 
they spread only with fixed velocity. Thus, it is impossible to have any 
mechanisms which could synchronize the motion over large distances: at 
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sufficiently large distance, any suppression of a desynchronizing fluctuation 

would come too late. 

For periodic and quasiperiodic collective behaviour, the situation is more 

subtle. Yet, in refs. (2. 3) convincing arguments were given that no periodic 

behaviour with period ~3 should be expected in isotropic systems. These 

arguments arc reviewed in section 3, where also the generalization to 

quasiperiodic systems is given. 

Very surprising in view of this were thus numerical observations by Chate and 

Manneville [4], who found a five-dimensional deterministic cellular automaton 

(CA) which seemed to show noisy quasiperiodic behaviour. Later, Chate and 

Manneville ref. [5] found noisy quasiperiodic and periodic behaviour also in 

four-dimensional CA’s. These automata and some basic results arc described in 

more detail in section 2. 

A priori. there arc several possibilities how the observations of rcfs. (31 and 

12. 31 could be reconciled: 

- While Bennett ct al. assume the noise to be random, this is obviously not 

true in the CA which are strictly deterministic and not even chaotic since phase 

space is discrete. 

- The arguments of Bennett et al. hold only for isotropic systems, thus they 

might not hold on a regular lattice. 

-These arguments use in a crucial way the notion of a phase boundary or 

Bloch wall. The fact that (quasi-)periodicity is only observed in ~4 dimensions 

might suggest that this notion has to be taken with care in high dimensions. 

This would indeed be in line with the experience from critical phenomena. 

- Finally, it might be that the (quasi-)periodic states observed by ChatC and 

Manneville are only metastable. This would indeed be the easiest way out. 

since metastable periodic states are not forbidden by the arguments of Bennett 

et al. It would of course diminish somewhat the interest in these states. but not 

very much since the lifetimes would have to be extremely large. 

In sections 3-6 we shall discuss each of these possibilities in more detail. WC 

find no evidence that any of them can explain the findings of Chate and 

Manneville. 

In section 3 we shall see that the arguments of Bennett et al. can be extended 

to quasiperiodic behaviour. Indeed, in agreement with the naive view that 

quasiperiodicity is “between” chaos and periodicity we find that the argument 

there is even stronger than for periodic behaviour: while the latter could arise 

from anisotropy on small length scales. only anisotropy which survives also in 

the long wavelength limit could explain quasiperiodic behaviour. Also. we do 

not need sharp phase boundaries (Bloch walls) for quasiperiodic behaviour. 

Instead, it is sufficient if phases can be defined locally in the weak sense that 

systems can support phase gradients. This is verified numerically for the 

S-dimensional Chat&Manneville CA. 
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In section 4 we show that the “noise” superimposed on the collective motion 

behaves indeed exactly like bona fide stochastic noise, and that its strength 
scales with system sizes exactly as predicted by naive arguments. 

In section 5 we study metastability in finite systems and in systems subject to 
external noise. In the limits of large system size respectively small noise level, 
the lifetimes are described by scaling laws which again could have been guessed 
easily, but which are hard to reconcile with the nucleation picture suggested by 
ref. [2]. 

Finally, anisotropy is studied in section 6, where we show that it most likely 
does not explain periodic oscillation. 

The paper finishes with conclusions in section 7. 

2. The Chat&Manneville automata 

All three CA studied in this paper are defined on d-dimensional hypercubic 
lattices (d = 4,5) and have 2 states per site, denoted as si = 0, 1. They are 
totalistic in the sense of ref. [6], i.e. the “spin” at site i and time t + 1 is given 
by the sum of all spins in the von Neumann neighbourhood of i at time t, 

f+l = 
Si fb .> 

s; . 
(1.1) 

Here, the symbol (i, j) means that site j is in the von Neumann neighbourhood 
of i, i.e. eitherj=iorj=i+e,, where e, is the nth unit vector on the lattice. 
Since the sum in eq. (1) can take values from 0 to 2d + 1, the CA is uniquely 
defined by giving f(x) for x = 0, . . . ,2d + 1. Out of this class which is still 
extremely large for large d, only rules are considered for which (similar to 
Conway’s Game of Life [7]) 

1 
s:+’ = 

for k G ($, s: s 1, 
I. (2) 

0 otherwise . 

More precisely, we consider the rules with k = 5, I= 9 in d = 5, with k = 3, 
1= 8 in d = 4, and with k = 4,1= 9 in d = 4. They are denoted as Rz.,, Ri,, and 

R:,,. Rule R:,9 was studied in ref. [4], rules Ri,, and R:,, in ref. 151. In addition 
to these deterministic CA, in ref. [4] also probabilistic rules were considered. 
They show similar behaviour, but we shall not discuss them here. In all cases 
(with one exception mentioned below), we used periodic boundary conditions 
on hypercubes of size Ld. 
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If we start with random initial configurations where S, = 0 and s, = 1 with 

equal probability, Rf,, runs very fast (after less than 100 iterations) into a noisy 

period-3 orbit, as measured by the average value of s (or “magnetisation”). 

while Rz,, and R:,, lead after similarly short transients to quasiperiodic 

behaviour. This is illustrated in figs. 1-3. In these figures m,+ , is plotted 

against m,. While fig. 1 shows three diffuse clouds indicating a noisy period 3, 

figs. 2 and 3 show fuzzy closed loops indicative of quasiperiodicity. In all cases 

the fuzziness decreases with system size L, suggesting that the “noise” might 

disappear in the limit L- x. 
In order to exclude that these states are only metastable with not too large 

lifetimes, we performed very long iterations: up to 500000 time steps for RG.<, 

on a lattice with L = 16, and 100 000 steps for the 4-dimensional rules on 

lattices with L = 32 and L = 64 (these large simulations were possible by using 

the Connection Machines of Wuppertal University and of GMD; smaller 

lattices were simulated on a Cray and on workstations). The resulting plots of 

m , +, against m, were indistinguishable from those in figs. l-3. 

In spite of the fact that one of the rules gives periodic behaviour and the 

other ones lead to quasiperiodicity, all three rules are very similar. This is seen 

most clearly by the fact that the winding numbers in the latter are very close to 

:. The winding number w is defined by first defining an angle variable for the 

position on the circle as 

m 1+1 
-m” 

4, = arctan 
m,-m” 

with (m*, m’k) a point in the interior of the loops in the m,+n,+, plane (we 

used rn’@ = 0.705 for R:,, and m” = 0.76 for R:,,) and with 4,, , - 4, E [0, 2n), 

and writing then 

# 
u’ = lim -L . 

I-% 2Tt 

As for any quasiperiodic motion characterised by a single winding number, 

there exists a conjugacy (a smooth invertible map Cc, = G‘(4)) which maps 4 

onto a variable (lr whose evolution is a pure shift, 

9 ,L, = lb1 + u’. (6) 
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Fig. 1. m,,, wxsus m, for rule R:,, for 1000 < t < 5000: (a) for L = 16; (b) for L = 64. 
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Fig. 3. m,, , against m, for rule R:,, for 1000 < t < 5000: (a) for L = 16; (b) for L = 32. 
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The most precise determination of u’ would presumably involve an explicit 

construction of this map. In a somewhat simpler approach, we used the well 

known fact that optimal delay coordinates are such that successive points have 

4 r+lr - 4, = 2 $rr [S]. Th‘ IS is not true for At = I as in figs. l-3 and in eq. (4), 

but it happens to be true for At = 5, i.c. if one uses m,+5 versus m,. With this 

embedding, we computed the average number of windings during T iterations. 

and their fluctuation 

AW,.= & ]((qb. ,.- 4,)‘) -4n’W;j’ ‘. (8) 

AW,. gets essentially two contributions: for large T, statistical fluctuations 

should dominate if the jitter seen in figs. 2 and 3 is equivalent to random noise. 

They should give AWr 3: -\Tr. For small T, on the other hand, WC have 

nonrandom fluctuations which arise from the fact that the winding is not 

uniform in the variable 4. They would bc absent if we could use the “natural” 

phase +!I, and they should be minimal if W,. is close to an integer. To check this 

for rule Rz,,, we plotted in fig. 4 AW, against T for such 7‘ for which the latter 

is true. Wc find exactly the predicted behaviour, giving thus a first hint that the 

jitter in figs. 1-3 can indeed be considered as intrinsic noise. From fig. 4 (and 

an analogous figure for rule R:,,), we also obtain the errors in our estimates of 

the winding numbers, 

0.6519153 * 0.0000007 for Ri 5.1, . 
M/ = 

0.6532260 i 0.0000009 for R’ 
(9) 

4.x 

These are the values obtained for our largest lattices, but they agreed also 

within the errors with the values obtained from lattices with L half as big. The 

very small errors in eq. (9) arc surprising in view of the visible jitter in figs. 2, 

3. They suggest that underlying the data shown in these figures them is a much 

more regular process. 

Let us now discuss briefly the behaviour when the initial configuration is such 

that again all spins are independent, but prob(s, = 1) = UZ,, f 0.5 (a more 

complete discussion is found in ref. [S]). 

For m,, very close to 0 or 1, all three rules lead to stationary states with small 

m,. In these states, one has essentially a dilute “gas” of stable or periodic local 

subconfigurations [S] similar to the various “blocks”, “loaves”, “beehives”, 
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Fig. 4. log-log plot of the variation AW, of the number of windings during T iterations for rule 
R:,, and for lattice sizes 8’ to 3Z5. For large T, the fluctuations in these curves are mostly statistical, 
while they are systematic for small T. The dashed line indicates a scaling law AW, afi as 
expected from statistical fluctuations. 

“blinkers” etc. in the Game of Life [7]. For Rl,, this seems to happen for 
m,, < m_ = 0.097 and for m,, > m, ~0.992. The closeness of these values to 0 
respectively 1 might however suggest that the asymptotic thresholds (for L * 30) 
are indeed 0 and 1, analogous to the case of bootstrap percolation [9]. For Rl,,, 
a similar dilute state is reached for m, < m_ = 0.291 and for m, > m, = 0.965, 
while for Rz y we found m_ = 0.33 and m, =i: 0.90. If m,, S m, or m,, b m_, m, 
first drops sharply to a value close to zero and increases after this very slowly 
(see fig. 5). 

For rule R:,8, the period-3 state is only obtained for 0.434~ m,, ~0.524, 
while a different strictly periodic state with short period (e.g. period 2 or 6, 
depending on the precise initial configuration) is reached otherwise. This state 
is characterized by localized oscillators embedded in an otherwise stationary 
sea [5]. Its global amplitude of oscillation seems to tend to zero for L * 03, with 

m, = 0.791 independently of mo. In the following we shall refer to this state as 
“state 4”, while the three phases of the periodic pattern are called states 1, 2 
and 3, and the dilute state with m =O is called state 0. 

For the two rules with quasiperiodic behaviour, the fixed points in the 
centers of the circles required by topology are essentially the analogs of state 4. 
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But in contrast to rule R:,,, they arc unstable and go over to the yuasiperiodic 

state (see fig. 5). Quasiperiodic behaviour was thus observed in essentially the 

entire intervals wz < MZ,, < uz _. The phase of the state after the initial transient 

period depends of course on t~z,,. 

The function F was found to be very irregular for Rz.<,, indicating that the 

phase depends quite strongly on the initial configuration (this conforms with 

the rich zoo of transients observed in ref. [S], depending on the detailed initial 

configuration). But apart from this strong phase dependence, the same state (in 

a statistical sense) seems to be reached in a very large range of WZ,,. The latter 

also holds for R:,,. But on small lattices (L s 16) and for WZ,, = m , rule Ii:,, 

leads to a variety of different states. They depend on the precise value of Mu,. 

and actually might be very long transients with lifetimes >SOOO. 

The behaviour of rule R:,, on small lattices will be discussed in detail in 

section 5. 
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3. Why collective behaviour is surprising 

(a) Let us first recall the arguments of ref. [2] against periodic behaviour with 
period 3 in noisy systems. Assume we are at time t in phase 1, and we consider 
only the state at times t + 3, t + 6, . . . . Due to spontaneous fluctuations, there 

will be a nonzero chance that in some region (“bubble”) a phase fl will 
appear, similar to nucleation in an equilibrium situation. Phase 1 can only be 
stable, i.e. strict periodicity can only be maintained throughout the whole 
system, if such a bubble is erased again. Whether this happens depends on the 
velocity of the boundary (Bloch wall) between phase 1 and the new “wrong” 
phase. Generically, in an isotropic system this velocity will only depend on the 
curvature and on higher derivatives of the boundary, 

u = u,, + u,lR + . . . + noise, (11) 

where R is the radius of curvature and the dots stand for higher derivatives. We 
can assume that the sign of u, is such that small bubbles of wrong phase are 
eliminated, since otherwise even no metastable oscillations would be possible. 
For large enough R, the sign of u will be that of u,,. Assume now that the 
bubble has phase 2, and that u,, is such that phase 1 loses against phase 2. In 
this case the oscillatory state is only me&stable, since a large enough bubble 
will always win, and in a large system a mixture of different phases will arise. 
So we must have the opposite sign of u,, if we want strict stability. But then we 
consider just times t + 1, t + 4, t + 7, . . . . For these times, phase 2 is the 
“correct” one, and as we have just argued it will lose against a bubble with 
phase 1. Thus no stable oscillations are possible, unless ug = 0. But this is not to 
be expected generically. 

Notice that this argument would not apply to period 2, since there ug = 0. 
Indeed, essential use was made of the fact that periodicity with period >2 
implies broken detailed balance. The fact that breaking of detailed balance can 
wipe out structures expected from mean-field arguments was also observed in a 
different context in ref. [lo]. 

For anisotropic systems these arguments need not hold if the velocity 
depends strongly on the orientation of the boundary [2]. Assume, for example, 
that phase 1 wins on a boundary perpendicular to one of the axes in 2 
dimensions, while phase 2 wins on a diagonal boundary. In this case, a bubble 
of phase 2 will first become diamond-shaped, before it will shrink and finally 
disappear. 

(b) Let us now generalize these arguments to quasiperiodicity. In this case, a 
spontaneous fluctuation will not lead to a homogeneous bubble of “wrong” 
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phase and with sharp boundaries, but rather to a region with a small phase 

deviation S(cl(~) varying smoothly with x (we use here a continuous space 

variable x E IF’). Instead of eq. (ll), we have now a dependence of the 

winding number w on the gradient of $(x), 

f&x, f) = 237&J,, + 2 [V$(X, t,]’ + wlIv%(x, I) + . . . + noise , (12) 

where wC, is the winding number for constant phase discussed in the previous 

section. Just like the curvature term in eq. (ll), the term proportional to V’$ 

can be neglected for sufficiently smooth fluctuations except when the dominant 

term vanishes, i.e. when IQ, = 0. 

Assume now that S@(x) > 0 (see fig. 6). Then the bubble will spread with 

velocity u = w ,V4, and S+( x will grow if w, > 0. Similarly. a fluctuation with ) 

8$(x) < 0 will grow if w, < 0. Stability will be reached only if neither happens. 

i.e. if u’, = 0. But this is not to be expected generically. We should point out 

that eq. (12) is formally just the Kardar-Parisi-Zhang equation [ll] for the 

growth of a surface. Simulations and heuristic arguments [12] show that it leads 

indeed to unbounded fluctuations of Q on an infinite lattice. 

Notice that here only the behaviour of the winding number with respect to 

long wavelength perturbations is needed. This should depend less on any 

lattice anisotropy than the velocity of the sharp kinks discussed in the context 

of periodicity. 

In order to estimate w, for rule Rz,,,, we performed simulations on a 

bar-shaped lattice of size L’ x L’, with L’% L. The initial configuration was 

’ phase 

X 

Fig. 6. Schematic drawing of B positive phase Huctuation in a one-dimensional system. If the 

winding number grows with the gradient of the phase, then the boundaries of the fluctuation will 

move apart and the Huctuation will grow. Similarly. ;1 negative fluctuation would grow if the 

winding number would decrease with (OtiI. 
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carefully constructed such that the phase increased in small steps along the long 

axis with $(L’) - (cl(O) = 2 n, implying a gradient d$ldx = 27~1 L’. Due to the 
periodic boundary conditions, this gradient is maintained during the evolution, 
provided q(x) stays everywhere well defined. We checked that this was indeed 
the case for L’ = 112 and L’ = 198, and we obtained in this way w,. 

Unfortunately, these results are not very precise since these simulations 
could not be done efficiently on the Connection Machine. Yet we obtained a 
nonzero value w, = -0.4 % 0.1. Thus the quasiperiodic motion should be 
unstable against fluctuations with S$ > 0. Notice however that w, is small, 
indicating that this process should be very slow. On the other hand, these 
simulations showed that a phase gradient is maintained during the evolution 
(for 2 x lo4 time steps at least), stressing again the robustness of the 
quasiperiodicity. 

Before leaving this section, we should point out that a term proportional to 
(V$)* should also be generically present in models describing extended oscilla- 
tory phenomena with non-constant amplitude. Such phenomena are usually 
modeled by the complex Ginzburg-Landau equation (see e.g. refs. [13-151) 
which does not contain such a term. Including it should change the behaviour of 
the phase transition observed in this model. Thus we conjecture that the 
behaviour at the onset of chaos found in refs. [14, 151 is not the generic one. 

4. Statistical properties of the intrinsic “noise” 

We studied quite thoroughly the statistical properties of the jitter seen in 
figs. l-3. On the one hand, the arguments of the last section depend on the 
assumption that it is equivalent to true noise without any hidden determinism. 
On the other hand, a priori it might appear strange that a deterministic and 
discrete system could show stochastic behaviour. 

Indeed, the latter is not really forbidden. It is true that the above CA on 
finite lattices cannot behave stochastically. But on infinite lattices, one can find 
similar stochastic behaviour as in deterministic chaotic systems [16, 171. For the 
times feasible in our simulations, this might lead to effectively chaotic motion 
even on the finite lattices studied in this paper. The essential question then is 
whether this is a low dimensional attractor or not. In the latter case its 
randomness would resemble that of a pseudorandom number generator. 

The most straightforward test for randomness in time sequences consists in 
looking at power spectra. For rule Z?:,*, the spectrum is shown in fig. 7. In 
order to suppress the trivial period-3 component, we show in this figure indeed 
the sum of the 3 spectra of the sequences { m3,}, { m3,+ ,} , and { mjr+*}. We see 
no peak indicative of any additional discrete frequency, though the noise is not 
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at all white. The enhancement of the low-frequency region is also seen directly, 

in rather strong correlations. 

It is well known that looking at power spectra can be misleading if the 

system is chaotic. In order to test for hidden deterministic bohaviour in the 

noisy quasiperiodic cases. we used a method due to Badii and Politi [18J. We 

first represented the state at time t by a D-dimensional delay vector m, = 

(rn, . m, , . . III, ,, , ,). Then. we measured the average distances between 

kth nearest neighbours among N such vectors. Let us denote by Y)” the 

(Euclidean) distance of the kth neighbour from m,. On large scales, the 

fuzziness of the loops in figs. 2 and 3 can be neglected and these vectors are 

lined up on curves. Their distances should then scale with N as 

(Y’“‘) - 1 /N (small N) (131 

A different scaling law should hold on small distances where the fuzziness of 

the lines in figs. 2 and 3 dominates. If that fuzziness is due to random noise. 

then the vectors should fill up a D-dimensional volume, in which case 

($“)) - N ’ ” (large N) (14) 
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on small scales. If, in contrast, the jitter is due to low dimensional chaos with 
dimension D’ < D, we would have ( rCk)) - N-‘lD’ for large N respectively 
small r. 

A certain problem in verifying eq. (14) is that we have to go to very small 
distances in order to avoid the trivial scaling of eq. (13). This implies that we 
need very large N, not too large lattice sizes, and not too large embedding 
dimensions D. Results for Rz,, with L = 16 and k = 3 are shown in fig. 8 for 
various D. The high statistics there were possible due to the fast neighbour 
search described in ref. [19]. We see nice agreement with eqs. (13), (14) which 
suggests that the jitter behaves indeed like stochastic noise. Similar results 
were obtained for R,“,# and Rl,,. 
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Fig. 8. Average third nearest neighbour distances among delay-space reconstructed states of R: 4r 
plotted versus the number N of points. Embedding dimensions range from D = 2 to D = 6. Data 

are from 500 000 iterations on a 165 lattice, cut into pieces of length N after discarding the first 1000 
iterations. 
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Next, we studied the dependence of the noise amplitude on the lattice size L, 

by comparing the cloud sizes (for I?:,,) as well as the third nearest neighbour 
distances (for Rz,, and Rz,,) for different L. Results for the 4D rules embedded 
in D = 2 are shown in figs. 9 and 10. 

For rule R:.* we found that the shapes of the clouds are independent of L. 
and that their diameters (radii of gyration) scale as 

R-L-“, a = 2.003 c 0.010 . (15) 

This can be easily understood if we assume that distant parts of the lattice 
are only weakly coupled. In this case, nt is an average of n x L” essentially 
independent contributions. According to the central limit theorem, we should 
then expect the fluctuations 6m of m to scale as L“‘?. This argument is further 
evidence that the jitter is essentially stochastic noise. It should of course not be 
taken too literally, as it could not explain why different parts of the lattice 
remain coherent. 

For R:,,, the third neighbour distances scale as 

(p) - L-” , 
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Fig. 9. Average root mean squared radii of the three clouds for rule H: h, plotted on a log-log plot 

versus lattice size I_. 
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1o-4 
IO 20 40 60 80 100 

lattice size L 

Fig. 10. Average third neighbour distances among 32000 points for rule f?:,,, plotted on a log-log 
plot versus lattice size L (dots; the error bars are smaller than the dot sizes). The dotted line 
corresponds to eq. (14) with p = 1. 

An argument analogous to the previous one gives here that the width of the 
curves in fig. 2 should scale -Lvdi2, giving p = d/4 = 1. This time the 
agreement is not perfect, suggesting that the loose coupling of different parts of 
the lattice might lead to small phase differences between them. For very large 
lattices, this would suggest that coherence could be lost completely. 

We do not show the analogous plot for rule R:,Y, as it would look very much 
like fig. 10. Instead, we show in fig. 11 immediately the local slopes in this plot, 
which should give -/3 in the limit L * a. The above argument would give 
p = 1.25. For small lattices, we see that the observed value is slightly smaller 
(as for rule Ri,,), but it becomes larger for large lattices. If this would hold also 
for L-+w, it would suggest that distant parts of the lattice are strongly 
coupled, and that the coherent behaviour is more stable in 5 dimensions than 
in 4 dimensions. Though this agrees with our intuition that fluctuations are less 
important in higher dimensions we should point out that the effect is statistical- 
ly barely significant. 

Let us finally come back to the fluctuations of the winding numbers shown in 
fig. 4. According to the above naive arguments, they should scale like 
AW, x L -5’2 for large T. This is indeed seen in fig. 4. 



1 / (lattice size L) 

5. Metastability 

As we have already noted. the collective bchaviour seems to bc mctastable 

in all three rules, if we consider small lattices or systems corrupted by external 

noise. In this section. WC shall study in detail only rule Ri,,. 

Let us first consider the case without external noise. A typical decay of ;I 

metastablc state on ;I lattice with L = I I is shown in fig. 12. From this wc SW ;I 

rather sharp transition, giving a rather well defined lifetime. The exact lifetime 

will of course depend on our exact criterion for when the state has definitely 

decayed. but this criterion will not affect the constant 7’,, in the lifetime 

distribution, 

P(f) = prob( T > 1) -e ’ ‘II, I+%. (17) 

This distribution is shown in fig. 13 for I, = 10. where indeed an exponential 

decay as postulated in eq. (17) is seen, except for very small I. 

The dependence of T,, on L is shown in fig. 14. For L 2 9. WC set ;L perfect 

straight lint when plotting T,, versus L’, suggesting 
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Fig. 12. m, versus t for R:,, and L = 11. Notice the rather sharp transition from periodic to fixed 

point behaviour typical for the decay of a metastable state. 
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Fig. 13. Survival probability P(t) versus I for rule R:,, 
runs, on a logarithmic plot. 

with L = 10. based on 5375 independent 
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Fig. II. Decadic logarithm of the inverse decay rate T,,, defined in eq. (IX). versus the square of 

the lattice size L. The numhcr of lattices simulated varied between X000 (for L = X) and 708 (for 

L = 13). The error bars arc smaller than the dots. The rule is R: x. 

log T,,, x LZ for L-+x. (18) 

This would mean that the collective behaviour is stable on infinite lattices, in 

contrast to what is suggested by the arguments of section 2. 

According to these arguments, we would expect that the decay of metastable 

states occurs via the formation of bubbles of radius R > R,,. provided of course 

L > R,,. If L is less than the critical radius R,,, then the decay occurs via a 

coherent Hip of the entire lattice. If this Hip occurs due to stochastic noise - the 

main conclusion of the last section was that the observed jitter is indeed like 

noise - and if the noise level scales as 1 /L’, then we obtain immediately eq. 

( 18). From this we can conclude that R,, + L. 

For a more precise estimate. we need an assumption on what happens for 

L = R,,. A simple ansatz is 

log T,, x 

Using this ansatz, we find that within 95%) confidence level R,, > 40 and 
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Fig. 15. Logarithms ;f average lifetimes versus inverse noise amplitude p-l, for lattice sizes I, = 8, 
12, 16. The rule 1s R,,,. 

lim L-m T,, > lo”‘, showing that the periodic behaviour is stable for all practical 
purposes. Our best estimate from this fit is R, = m. 

If our picture is correct that the observed jitter is equivalent to intrinsic 
stochastic noise, then addition of external noise should just add to the total 
noise level and should thus suppress the lifetime. This was indeed seen. We 
added external noise by modifying eq. (1): we used eq. (1) only with 
probability 1 - p, while we did the opposite move, s:+’ = 1 -f(CCi,j, s:), with 
probability p. Results for the average lifetime are shown in fig. 15. We now do 
not see simple scaling with the inverse noise amplitude, and also the lifetime 
distributions were far from exponential. But we do observe the expected 
monotonic decrease of the lifetime with the noise amplitude p. 

6. Phase boundaries 

In this section, we finally report on simulations of rule R:,, where we first let 
the system run into the period-3 state, and then iterated only part of the lattice 
one step further. In this way, we produced artificially boundaries between two 
different phases. According to the arguments of ref. [2] recalled in section 3, 



stability of the oscillation is to be expected only if these boundaries do not 

move. or if it depends on the orientation of the boundary which of the two 

phases wins. 

In thcsc simulations. WC verified results found also in ref. [5]: if the boundary 

is perpendicular to one of the axes. neither phase wins. Instead, it is state -1 

which is formed along the boundary and then spreads with equal speed in both 

directions. More precisely, we measured a velocity of spreading c’ = 0.013 F 

0.003 lattice units per time unit. WC should add that the spreading was rather 

regular. without the large fluctuations which would be cxpccted if state -1 wcrc 

only marginally more stable than the periodic states. The same effect (with 

similar speed of spreading) was observed when the boundary was oriented 

perpendicular to the vector ( 1. I. 0, 0). 

Though we have not looked at all different orientations, we thus find it 

unlikely that there exist directions for which state 4 will not spread. 

We might add that we have also printed out cuts through the lattice. On 

these. we did not see any conspicuous anisotropy. Nor did WC see any patterns 

or any regularities in any of these cuts. 

7. Conclusions 

In the last section. we have seen that the arguments of ref. 12) should apply 

to rule R:,,, though with an important modification. It is not bubbles with 

wrong phases which should ruin the coherence, but bubbles with the stationary 

state 4. The result should. however, be the same: the periodic state should only 

be metastable. 

This argument gives us no estimate for the lifetime of this metastable state, 

since we do not know how the velocity of spreading depends on the curvature 

of the bubble’s boundary. Yet it seems hard to believe that the radius beyond 

which state 4 wins should be as large as estimated in section 5. The lifetimes on 

small lattices presented in that section clearly are most easily explained if the 

lifetime diverges as L + x. We consider this as a puzzle which cannot easily bc 

solved by numerical simulations. 

The other conclusion of this paper is that the jitter seen in the simulations is 

statistically indistinguishable from stochastic noise. Its lattice-size dependence 

shows scaling relations which can be understood by very naive arguments. But 

these arguments seem to be mutually inconsistent. In particular. except for very 

small deviations which might not be statistically significant. these scaling 

relations would follow if large lattices effectively decouple. If this were true, 

coherence would be lost very soon. 

Regardless of these problems, we found that the periodic and quasiperiodic 
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behaviour found by Chat6 and Manneville extends to much longer times and to 
much larger lattices than studied by these authors. Whether they represent true 
asymptotic behaviour or just metastable states is somewhat irrelevant in view of 
their very long lifetimes. We conclude thus that this behaviour is very interest- 
ing, and it would be nice to observe it also in lower dimensions and in realistic 
physical systems. 
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