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Abstract

We describe a novel mechanism for inducing traveling-wave attractors in rings of coupled
maps. Traveling waves are easily produced when parameters controlling local dynamics vary
from site to site. We also present some statistical results regarding the distribution of periodic
time-evolutions. c© 2001 Elsevier Science B.V. All rights reserved.
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Wave activities and traveling waves are a common and rather crucial atmospheric
phenomena. They are associated with phenomena in the ocean–atmosphere system
[1–3], namely the well-known interannual oscillations such as the El-Niño-Southern
Oscillation and the North Atlantic Oscillation [4–6]. Wave dynamics underlies atmo-
spheric evolution ruled by a number of collective phenomena and depends on global
interchanges among natural oscillations mediated by traveling waves. Thus, it is im-
portant to understand the subtleties of traveling wave generation to improve our ability
of forecasting long-term behaviors of the atmosphere (climatic changes).
Traveling waves in rings of di;usively coupled maps were observed by Kaneko

[7,8] while varying initial conditions in a lattice composed by identical oscillators
(homogeneous lattice). The detailed structure of parameter space and the dynamical
characteristics of wave propagation in homogeneous lattices were described recently by
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us [9,10]. However, for meteorological purposes a more realistic hypothesis is obviously
to allow for parameter $uctuations along the ring (heterogeneous lattice). The main
point here is to report that traveling waves may be easily produced by varying the
parameters controlling local oscillators.
To this end, we consider a di;usive ring of coupled maps with time-evolution up-

dated in parallel according to xt+1(i)=f(xt(i))−�’(t; i), where ’(t; i)=fi(xt(i))−[fi−1

(xt(i−1))+fi+1(xt(i+1))]=2 represents the feedback from the nearby environment and
� is the coupling strength between neighbors. The local oscillators are fi(x)=1−aix2,
where ai is chosen randomly and uniformly in the interval I(a∗; �)=[a∗−�=2; a∗ +
�=2], with i=1; : : : ; L, L being the lattice size. A ring is obtained by enforcing pe-
riodic boundary conditions, i.e., xL+1=x1. In this model, the homogeneous limit is
attained by taking �=0. We will Lx the set of initial conditions in the ring, {x0(i)},
chosen randomly from a uniform distribution in [−1; 1], and investigate the time
evolution of the patterns formed when varying the distributions {ai} in the interval
I(a∗; �).
As discussed elsewhere [9,10], the time-evolution of patterns may be characterized

by Lve classes, three periodic (Static, Positively or Negatively moving) and two aperi-
odic (Hesitating and Chaotic). Illustrative examples of time-evolutions in each of these
classes are shown in Fig. 1. Although this Lgure was obtained for a heterogeneous

Fig. 1. Examples of modular time-evolutions found in heterogeneous rings of maps. There are three periodic
classes, (a) class S (‘static’), (b) class P (‘positively’ moving), (c) class N (‘negatively’ moving) and two
aperiodic classes, (d) class H (‘hesitating’), (e) class C (‘chaotic’). Classes P and N consist of, respectively,
positive and negative traveling waves.
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Fig. 2. The a∗×� distribution of time-evolutions for (a–b) heterogeneous ring (� �= 0) and (c) homogeneous
ring (�=0). The remaining Lgures show representative a∗×� distributions of the (d) weak, (e) intermediate
and (f) strong coupling regimes. For �=0, n gives the quantity of periodic time-evolutions out of 100 dif-
ferent initial conditions; in the remaining cases, the initial condition is 9xed and the periodic time-evolutions
are counted out of 100 di;erent distributions of a in an interval I(a∗; �) (see text).

lattice, it is similar to what one observes for homogeneous rings when varying initial
condition [9,10].
Heterogeneity implies a more complicated parameter space: instead of the a×� di-

agram of the homogeneous case, we must consider now the distributions of periodic
classes in diagrams involving either a∗×� and a∗×�.

Fig. 2(a–c) show in detail the distribution of periodic time-evolutions in the a∗×�
plane, on a 50×50 mesh, for �=0:01; 0:001 and 0 (homogeneous limit), while
Figs. 2(d–f) show similar distributions but in the a∗×� plane for �=0:1; 0:5 and 0:9, all
computed for L=64. The Lrst row shows that periodic time-evolutions are easily
found in parameter space when varying local non-linearities. Further, the distribution of
periodic time-evolutions for heterogeneous rings (� �=0) was obtained by varying the
a-distributions, always with the same initial condition; surprisingly, for � = 0:001 one
sees a distribution quite similar to the distribution for � = 0, obtained by varying ini-
tial conditions. Table 1 presents a summary of the features of periodic time-evolution
not recognizable from Fig. 2. This summary is valid both for homogeneous and for
heterogeneous rings.
Fig. 2(d–f) show typical distributions of periodic time-evolutions in the a∗×� plane,

for Lxed �. As one sees, the absolute frequency, n, decreases with increasing �. Further-
more, the plateau of periodicity (see Table 1) has its upper boundary, in the a∗ axis,
decreasing when � increases. These features remain valid for both weak and strong
coupling regimes.
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Table 1
Main features of the distributions of time-evolution for heterogeneous rings of maps for L=64. Numerical
values are approximate; a∞ =1:401155 : : : is the accumulation point of 2‘ cascade of the uncoupled local
map. Domains containing only class S form the ‘Plateau of periodicity’

a\� (0:0; 0:1) [0:1; 0:2] (0:2; 0:4) [0:4; 1]

[−0:25; 1:27] S S S S
[1:27; a∞] S S S S + Low velocity
[a∞; 1:6] H + C H + C H + C H + C
[1:6; 1:9] H + C S + P + N H + C S + High velocity
[1:9; 2:0] H + C H + C H + C H + C

To conclude, it is plausible to argue that generic traveling waves observed in natu-
ral phenomena may be modeled as a combination of two complementary procedures,
(i) variation of the initial conditions and (ii) $uctuations of local parameters, since
both reproduce observed behavior. A few points need to be further investigated. For
instance, instead of working with random distributions of local parameter, ai, we could
also use random distributions of coupling strength, �i, to induce traveling waves or
other time-evolutions. One could also consider parameter $uctuations both in space
and in time. Finally, from a meteorological point of view, interesting open questions
concern the reasons for the great symmetry between P and N time-evolutions and for
the relatively low magnitude for the velocities. These questions are currently being
investigated and will be reported in due course.
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