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Abstract

We report the exact analytical expression of the surface W4(a; b; �) = 0 de/ning stability
domains for period-4 motions in the H#enon map, valid for arbitrary eigenvalues � and parameters
a and b. For �=+1 (fold bifurcations) the expression reproduces all previous results and gives a
new one. For �=−1 (4ip bifurcations) it gives analytically the missing boundary needed for the
rigorous delimitation of all period-4 stability domains and for the investigation of the arithmetic
nature of parameters and trajectories. c© 2001 Elsevier Science B.V. All rights reserved.
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An outstanding open problem in chaotic dynamics is determining accurately the lo-
cation and extent of domains of stability for period k motions as well as determining
the sequences of bifurcations that result in the creation of a Smale horseshoe in the
system [1–4]. Despite the work done over the last 15 years or so, much still remains
to be done. In this context, of particular interest are explicit analytical results to com-
plement the impressive body of information already accumulated in so many theorems
in the literature and by the plethora of very detailed numerical simulations.
Conceptually, the computation of stability domains in parameter space is a quite

trivial task since what one needs to do is to simply eliminate the dynamical variables
between (i) the equations of motion and (ii) the eigenvalue equation ruling the stability.
Computationally, however, the diAculty lies in the fact that for nonlinear systems
this task becomes impracticable very quickly. For the H#enon map, for instance, a
brute-force computation of stability domains for periods higher than 3 is not yet feasible
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with present day commercial software and hardware. This computation, however, may
be performed using special purpose routines developed to handle certain symmetries
imposed by the equations of motion [5].
Our main purpose is to report analytical results obtained with the aforementioned

routines for the paradigmatic H#enon map (x; y) �→ (a− x2 + by; x). More speci/cally,
we report the exact analytical expression for the surface W4 ≡ W4(a; b; �) de/ned by
all parameters (a; b) which lead to period-4 motions, valid for arbitrary eigenvalue �.

As is known, bifurcations occur for nonhyperbolic periodic points, i.e., for points
where at least one eigenvalue has modulus 1. At folds, when � = +1, the particular
cut Wk+ ≡ Wk(a; b; +1) reproduces all previous results [6–13], and gives a new one.
For :ips, �=−1; Wk− ≡ Wk(a; b;−1) yields an analytical expression for the missing
boundary which allows the rigorous delimitation of all period-4 stability domains and
the investigation of the arithmetic nature of boundary curves in parameter and in phase
space. We omit derivations and write down the /nal result of a long computation:

W4 =W4(a; b; �) =
6∑

i=0

diai ; (1)

where d1 = 0; d6 =−4096�3; d5 = 4096�3(3b2 + 2b+ 3), and

d4 =−256�2[(1 + 48�)b4 + 68�b3 + 38�b2 + 68�b+ (�+ 48)�] ;

d3 = 256�2[(1 + 48�)b6 + (6 + 68�)b5 + (�2 − 82�)b4 − 212�b3 + (�2 − 82�)b2

+ (6�2 + 68�)b+ �2 + 48�] ;

d2 =−16�[(32�+ 1)b4 − 60�b3 − 186�b2 − 60�b+ �2 + 32�]

×[(16�− 1)b4 + 12�b3 − 6�b2 + 12�b− �2 + 16�] ;

d0 =−[(16�− 1)b4 + 12�b3 − 6�b2 + 12�b− �2 + 16�]3 :

This surface has degrees 6, 12 and 6 in a; b and �, respectively. From this expression
it is possible to obtain now a number of interesting results.
Fig. 1 displays two curves in parameter space, solutions of W4+ = 0 and W4− = 0.

These curves delimit the stability domain for period-4 motions. From its shape one
sees that, instead of a single domain, it is sometimes convenient to consider it as made
of two distinct domains: one belonging to the period-doubling 2‘ cascade, the other
corresponding to the birth of a ‘new’ period-4 stability island. The boundaries of this
new island contain a much richer structure, broadening considerably near b=−1 and
+1. Along b=+1 there is a cuspidal structure. By smoothly changing parameters along
any loop enclosing this cuspidal structure it is possible to move continuously between
diPerent Riemann sheets, a simple consequence of the algebraic structuring of the or-
bital equations which manifests itself ‘macroscopically’ through a sort of histeresis in
the symbolic coding plane of the orbits. A similar phenomenon was observed numer-
ically by Hansen [14] in a more complicated setting, involving circulation around a
period-6 cuspidal structure.
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Fig. 1. Left side: The two period-4 stability domains of the H#enon map. For reference, stability domains for
periods 1 and 2 are also indicated. Right side: The cuspidal structure existent along b=1. Smooth change of
parameters along a loop enclosing this structure changes an orbit into another one, with diPerent symbolic
dynamics. See Ref. [5].

The � = +1 boundary is particularly tame since W4+ may be readily decomposed
into three factors, W4+ ≡ w(1)

4+ w
(2)
4+ w

(3)
4+ , where

w(1)
4+ = 4a− (5b2 − 6b+ 5) = 4a− 4(1− b)2 − (1 + b)2 ; (2)

w(2)
4+ = 64a3 − 144(1 + b)2a2 + 108(1 + b)4a− 27(5− 6b+ 5b2)(1 + b)4;

= [4a− 3(1 + b)2]3 − 27[2(1− b)(1 + b)2]2 ; (3)

w(3)
4+ = 16a2 + 8(1 + b)2a+ (5− 6b+ 5b2)(1 + b)2

= [4a+ (1 + b)2]2 + 4(1− b)2(1 + b)2 : (4)

For �=−1 no factorization is possible and one has to deal with Eq. (1) directly.
The expressions for w(1)

4+ and w(2)
4+ are well-known [6–13]. Except for b = ±1, all

solutions of w(3)
4+ = 0 are complex: 4a=−(1 + b2)± i2(1− b2). The factor w(3)

4+ seems
to be new. This factor is rather interesting because the lines b = ±1 correspond to
the nondissipative (Hamiltonian) limits of the map. Solutions are degenerate and the
dynamics of such complex, ghost [15,16], orbits is very rich but we will not go into
this here.
From w(1)

4+ and w(2)
4+ we obtain two conjugate intersections (aD; bD) = (−9�1; �1) �

(1:5441558;−0:1715728); and (a QD; b QD) = (−9�2; �2) � (52:4558441;−5:82842712);
where �1 =−3+2

√
2 and �2 =−3− 2

√
2. The last intersection is physically meaning-

less since it lies outside the interval −16 b6 1. Notice that �2 = 1=�1, i.e., they are
reciprocal numbers. To each physical solution b there is a corresponding unphysical
conjugate 1=b, and vice-versa. Moreover, since w(1)

4+ and w(2)
4+ are factors of W4+ , one

sees that both intersections are, in fact, self-intersections of W4+ .
From the coordinates involving �1 and �2 we recognize that coordinates of intersec-

tion points are not algebraically independent of each other [12,13]. In both cases, a
and b are functions of an underlying ‘fundamental constant’, �1 or �2. Both coordinates
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Fig. 2. Left side: The multistability domain de/ned by the intersection of both period-4 domains, inside
the rectangle. Right side: Esquematic view of the multistability domain CDEF where two diPerent period-4
orbits coexist. Small numbers near each vertex refer to the degree of the algebraic numbers de/ning the
vertex. Full (dashed) lines indicate a �=+1 (�=−1) boundary. Large numbers indicate the periodicity in
the domain. Multistability also exists in ABCD, where periods 2 and 4 coexist.

are quadratic numbers [17] while their ratio � = a=b is an integer, i.e., an arithmetic
quantity of degree half that of �1 (or of �2). Furthermore, both �1 and �2, are units
[17] in Q(

√
2), since their product (norm) is 1. These arithmetical properties are very

helpful to locate interesting behaviors in phase-space [12,13].
Particularly noteworthy in Fig. 1 are the points � and �. The /rst corresponds to a

discontinuity in the derivative of the �=+1 locus, while at � there is a self-intersection
of the � = −1 locus. The � = −1 locus intersects b = 1 at the zeros of 4a2 − 16a +
13 = 0 and 4a2 − 8a − 13 = 0. The zeros corresponding to � and � are (a�; b�) =
(2 +

√
3=2; 1) � (2:86602540; 1), and (a�; b�) = (1 +

√
17=2; 1) � (3:06155281; 1). The

�=+1 locus intersects b=1 at the zeros of (a− 3)3(a− 1)(a+1)2 = 0. Points � and
Q� seen in Fig. 1 are located at (a�; b�) � (3:03646342; 0:998381041) and (a Q�; b Q�) �
(3:04631917; 1:001621584), and depend on zeros of the reciprocal polynomial

6749(b12 + 1) + 66096(b11 + b) + 137160(b10 + b2)− 7776(b9 + b3)

− 228585(b8 + b4)− 58320(b7 + b5) + 169344b6 = 0 : (5)

Fig. 2 shows the domain CDEF where both period-4 orbits coexist. Point D was already
de/ned. Another particularly interesting boundary point is the �=−1 self-intersection
vertex F located at (aF ; bF)= (−(87 + 20

√
399)b∗=15; b∗) � (1:60817868;

−0:14453378), where the ‘fundamental quantity’ is b∗=−(�−(�2−152)1=2)=15, where
�=33+

√
399. The minimal polynomials [17] are now 225a4 − 17868a3 + 42442a2 −

26860a + 6241 = 0, and 15b4 + 132b3 + 214b2 + 132b + 15 = 0, the reciprocal one
decomposing as (b2−�+b+1)(b2−�−b+1)=0; where �±=−(66±2

√
399)=15. This

peculiar decomposition in reciprocal quadratic factors is a characteristic of the H#enon
map.
The location of the remaining vertices C and E may be readily obtained from Eq. (1).

Here, we give only the minimal polynomials for b and approximate values of the rele-
vant zeros. The vertex E is located near (aE; bE)=(1:60754787;−0:144189025), where
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bE is a zero of Eq. (5). The vertex C lies near (aC; bC) = (1:54486140;−0:1719385),
both coordinates now being functions of a zero of the reciprocal octic p8(b)=261(b8+
1) + 648(b7 + b)− 3372(b6 + b2) + 7896(b5 + b3)− 9710b4.
From a theoretical point of view, several interesting results emerge from Eq. (1)

and from the exact expressions of intersection coordinates obtained after disentangling
properties which are purely number-theoretical from those depending on the nature of
the equations of motion. First, intersection coordinates (a; b) are not independent of
each other: they are all rationally interconnected by the relation a= �b where, � is an
algebraic number of degree half that of b. Physically, the analogous situation in a phase
diagram of water, say, would be to have temperature and pressure at the triple point not
really independent of each other but depending both on a more fundamental quantity
of pure arithmetical nature, a suitable numerical constant imposed by the number-/eld
underlying the equation of state [15,16]. Second, intersection coordinates are functions
of very speci=c units [17] in characteristic number =elds enforced by the equations of
motion, corroborating earlier /ndings [12,13]. Third, b-coordinates of all intersection
points are roots of reciprocal quadratic equations of the form b2−�b+1=0. In other
words, it is always possible to /nd suitable number-/elds allowing one to factor the
high-degree minimal polynomials de/ning b coordinates into a product of reciprocal
quadratic factors. Physically, this means that to every physical intersection bp lying
in the interval −1¡b¡ 1 there is an associated unphysical conjugate intersection
bu = 1=bp lying outside this interval.
Having found W4(a; b; �), an interesting question now is to investigate the parameter

dependence of the family of quartics x4−S(a; b)x3 +U (a; b)x2−V (a; b)x+P(a; b)=0,
constructed with points of period-4 orbits. A natural question is to inquire about the
arithmetical signature of the number-/elds involved in orbits involved in the nucleation
of period-4 stability and the properties of the minimal polynomials in the domains of
multistability. Do coexisting orbits share similar Galois group? Is it possible to /nd
an ‘arithmetical equivalent’ of the symbolic dynamics underlying the construction of
generating partitions [18–20]? If so, would it be applicable for arbitrary changes of
parameters? We intend to address some of these questions in a future publication.
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