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Abstract

We simulate a 2D coupled map lattice formed by individual units consisting of a multi-attractor
quartic map. We show that the interesting recently discovered non-trivial collective behaviors
(where macroscopic quantities show well-de�ned, usually regular, temporal evolution in spite of
the presence of local disorder in space and time) also exist, over wide parameter domains, in
the presence of local periodic order, in systems having more realistic units allowing coexistence
of more than one attractor. c© 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since the last decade di�erent systems composed of coupled map lattices (CML)
have been studied as simple toy models used to unveil basic properties of spatially
extended nonlinear dynamical systems. Conceived as far from equilibrium systems
with many degrees of freedom, such systems can also be used to construct a statistical
mechanics for irreversible process.
In the beginning of the decade, studying systems of locally coupled logistic maps,

xt+1 = �xt(1− xt), on spatial dimensions greater than one, Chat�e and Manneville [1–4]
found a characteristic temporal dynamics on spatial averages over the system emerg-
ing out of the local chaos, the so-called non-trivial collective behavior (NTCB). They
found that such behavior happens when the single logistic map parameter � is set
to any value beyond the chaotic onset, that is for �¿�c. When �¡�c the whole
system synchronizes to the local periodic behavior. So, their interesting �nding was
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that the basic ingredient to produce NTCB is local chaos competing with di�usive
coupling.
Most works found in the literature [5] use the well-known logistic map to describe

the local dynamics. A characteristic feature of the logistic map is the presence of, at
most, just a single attractor at �nite distances. In this respect, the logistic map is rather
unique: modulo simple changes, it is perhaps the only map to consistently display this
unique feature. Over rather extended parameter domains, generic maps usually display
coexistence of more than one attractor at �nite distance.
On a CML composed of such units the e�ect of the local coupling is to average

the variable (�eld) over the neighborhood producing a new value inside the basin of
attraction of the very same attractor. The motivation of this work is to investigate a
CML possessing two non-in�nite attractors. In order to do that we use for the local
dynamics the one-dimensional quartic map xt+1 = (x2t − a)2 − b, introduced by one
of us in 1992 [6]. This map might be thought as the second iterate to the quadratic
(logistic) map in which the parameter a was replaced by an arbitrary parameter b. Its
characteristics have been discussed at length in Ref. [7].

2. Model and simulations

Starting from random initial conditions we simulate a system composed of N indi-
vidual units whose dynamics at the site i follows the quartic map [6,7]

yt+1i = [(xti )
2 − a]2 − b ;

where xti is a real variable representing some quantity of interest measured at time t;
a and b are real parameters. After each generation t the value of yti is averaged over
the �rst neighbors,

xti =(1− �)yti +
�
2D

n∑

j=1

ytj ;

where D=2 is the spatial dimension of the system and n=5 is the number of �rst
nearest neighbors of site i, including the site i itself. The geometry used for the sim-
ulation presented here is that of a square lattice of sizes up to N =512× 512 units.
We �rst explored the system scanning the space of parameters a× b in the inter-

val {−1; 2}×{−1; 2} dividing it with a resolution of 512× 512. For each point (a; b)
of parameters we iterated a small lattice of 64× 64 sites, up to one thousand times
departing from initial conditions randomly chosen from the basins of attraction of the
uncoupled quartic map. We used periodic boundary conditions. From such experiment
we could easily discriminate the set of parameters for which the lattice rapidly syn-
chronizes from those which present either a long transient or a non-trivial collective
behavior.
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3. Results and discussion

In Fig. 1 we show the parameter sets obtained by painting the parameter space
according to the magnitude of the Lyapunov exponents of the local map. Black domains
show sets of parameters where the coupled system does not synchronize up to 1000
iterations and the local uncoupled map is periodic, the white color represents regions
where the system does not synchronize and the local uncoupled map is chaotic, the dark
gray shows the regions where the coupled system synchronizes to the local uncoupled
map and the pale gray color shows parameters for which orbits are attracted to in�nity.
The striking novel result being reported here are the black domains in Fig. 1. In

the black domains we �nd NTCB without chaos on the local uncoupled oscillator.
This absence of synchronization of the variable over the space could well be just a
very long transient [3]. To clear out this possibility we explored in detail the point
a=0:35, b=1:35 in the black region. For these parameters, the local uncoupled map
has two �xed points, x1 =−1:227591, x2 =−0:011399 and negative Lyapunov expo-
nents L1 = L2 =−1:200. After a small transient the coupled system presents a period
two NTCB with the instantaneous average over the variable jumping consecutively
from inside the interval {0:125144; 0:815711} to the interval {−1:349951;−1:245386}.
Fig. 2 shows two snapshots, recording the typical appearance of the lattice in each of
these intervals. We have performed 2:5× 105 iterations with large lattices of 512× 512
sites and up to 106 interactions with smaller lattices of 128× 128 sites without observ-
ing synchronization on the system. Thus, it seems that the novel phenomenon is robust
over relatively long periods of time.

Fig. 1. Characteristic behaviors as seen in parameter space. Black: region where the single quartic map is
periodic and the coupled system does not synchronize. White: the single map is chaotic and the coupled
system does not synchronize. Dark gray: coupled system synchronizes to the local uncoupled map. Light
gray, i.e. the domains containing the symbol “∞”: parameters having orbits attracted to in�nity.
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Fig. 2. Two consecutive snapshots of the spatial variable (x) showing a period two NTCB for a=0:35 and
b=1:35. The gray level scale on the left, (a), is in the interval {0:125144; 0:815711} while that on the right,
(b), is in the interval {−1:349951;−1:245386}.

Fig. 3. Time uctuation of the mean deviation of the lattice spatial average for di�erent lattice sizes N . See
text.

In order to con�rm the stability of the NTCB for the point (a; b)= (0:35; 1:35) in
parameter space we studied the dependence of the time uctuation of the spatial average
of the �eld variable with the lattice size during the same time interval. These results
are shown in Fig. 3. For large systems this average is expected to become more and
more de�ned [1,3]. In fact, for increasing lattice sizes the uctuation decreases with
the

√
N (see Fig. 3) and the NTCB becomes better and better de�ned. Another test

of the robustness of the NTCB is to verify whether or not it is stable for changes of
the parameters. To this end, we performed several additional simulations of the system
inside a region of radius 0:01 centered around (a; b)= (0:35; 1:35) in the parameter
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space. We have found the same period two NTCB with small changes on the spatial
averages showing that, indeed, the novel phenomenon is also robust to changes in
parameters.
From the original work of Chat�e and Manneville [1] it was already clear that NTCB

existed for lattices of logistic maps driven inside the so-called periodicity windows
which abound when �¿�c. A similar result has also been remarked by one of us in
a collaboration with Chat�e and Manneville [8] when exploring the robusticity of the
NTCB for the coupled continuous-time R�ossler system. In both cases, NTCB for peri-
odic parameters emerges on a small window surrounded by chaos in parameter space.
In the situation being presently reported, however, NTCB emerges on the boarding
region between periodic and chaotic behavior.
From these results we conclude that sensibility to initial conditions (SIC) on the

local attractor is not a necessary condition to see NTCB: we found NTCB even when
the local dynamics is periodic over rather extended domains in parameter space. Never-
theless, the existence of spatial dispersion clearly indicates that the di�usive coupling,
which forces the system to synchronize, is counterbalanced by some kind of SIC. This
means that knowledge of dynamics of the local attractors does not imply knowledge
of the global attractor which emerges for the coupled system. We may try to gener-
alize summing up the simulations presented here and the previous results: for NTCB
to exist on a periodic local base we need either (i) a phase space containing many
di�erent basins of attraction, i.e. allowing coexistence of more than one attractor at
�nite distances, or (ii) a small window of periodicity surrounded by chaos. The �rst
of these two conditions is the main message of the present paper.
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