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Abstract

In 1963 Myrberg determined a period-doubling cascade of the quadratic map to accumulate
at 1.401155189... As found later, the geometric way with which model parameters approach
this value has universal behavior and several characteristic exponents associated with it. In
the present paper we discuss the existence of an infinite number of points characterized by
the simultaneous accumulation of two or more bifurcation cascades. We present an accurate
numerical determination of the vertices of a doubly infinite nonlinear lattice which lead to a
point of double accumulation. In addition, we discuss the number-theoretic nature of irrationalities
characterizing vertices. Novel classes of universality with characteristic exponents are conjectured
to exist near points of multiple accumulations.

PACS: 05.45.+b; 02.10.Gd; 02.10.Nj

1. Introduction

A recent paper in this Journal has shown that the parameter space of dynamical
systems contains generically an infinite quantity of certain nonlinear lattices [1]. Such
lattices appear whenever there is an intersection of families of curves, more precisely
varieties, delimiting domains of stable physical behaviors. Since dynamical systems are
well known to contain many different bifurcation cascades, whenever these cascades
intersect (i.e. coexist), they produce a nonlinear lattice in parameter space. One example
of a nonlinear parameter lattice is shown schematically in Fig. 1.

The lattice seen in Fig. 1 (which is a realistic blow-up of the parameter space of the
Hénon oscillator defined in Eq. (2) below) results from the coexistence of two infinite
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Fig. 1. Two families of parabolic-like arcs, u; and v;, delimiting regions of stable periodic motions of

periods 1 x 2™ and 3 x 2", respectively. The black dot indicates the point of intersection of u; and v;.
Numbers represent the periodicity inside the region. For a more detailed picture see Fig. 3 in Ref. [1].

period-doubling cascades of stable motions beginning with the lowest possible periods:
a period 1 x2™ cascade and a period 3x2" cascade. The letter u= {uy,uz,..., U} de-
notes collectively the family {u;} of curves which delimit domains of stability belonging
to the 1x2™ cascade. Similarly, v ={v1,v2,...,05 } denotes curves separating stability
domains belonging to the 3 x2" cascade. Each family contains an infinite number of
curves. The intersection of these two families of parabolic-like arcs defines a mesh of
points, “vertices”, a doubly infinite sequence of points. The parameter values defining
each of these vertices are special in that they belong simultaneously to three different
domains of stability, i.e. three different stable motions coexist for each vertex. The over-
lap of several bifurcation cascades as shown in Fig. 1 is a very common phenomenon
in realistic dynamical systems.

The coordinates of the first few vertices were determined analytically in Ref. [1],
with the interesting result that parameter values defining such vertices are invariably
units or simple functions of units in specific algebraic number fields.

The units of a system of algebraic integers are those algebraic integers whose
reciprocals are also algebraic integers [2]. For example, the first intersection point
of the nonlinear lattice shown in Fig. 1 (the black dot in the figure) is the point p;;,
with coordinates

pu (anLbia) =(-389), (1)

where the number ¢ = —2 + /3 is a unit in the real quadratic field Z(+/3) because
its reciprocal, ¢* =1/¢ =—2 — /3, is an integer in the same field. Notice that £¢* =
(=2 4+ V3)(—=2 — V3)=1. The product of a guadratic unit and its reciprocal (the
so-called “norm” of the unit) is always equal to either +1 or —1. Thus, the norm of
units can be either positive or negative.

The fact that bifurcation points belonging to overlapping cascades involve units in
their definitions seems to indicate that without too much difficulty it should be possible
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to find analytic expressions for the specific towers of algebraic numbers characterizing
the cascades. If one succeeds in learning about the number-theoretic symmetries behind
specific towers of numbers involved in bifurcation cascades, one will have opened the
door to the analytic computation of scaling properties, in general, for these systems.

While it is not difficult to recognize the presence of specific towers of algebraic num-
bers, their explicit determination (even for cascades with the lowest possible periods
like 1x2™ and 3 x2") is far from trivial. An indication of the difficulties involved
might be obtained by noticing that while the properties of quadratic number fields are
essentially known since the middle of the last century, cubic number fields are still
today object of active research. Results for number fields of higher degrees exist only
for a few specific cases. See, for example, Refs. [3-5] and references therein.

The present paper, which might be considered an extension of Ref. [1], serves two
different purposes. The principal purpose is to obtain precise numerical approximations
for the locations of several vertices forming the nonlinear lattice. These parameter
values are required as input for number-theoretic procedures aiming to uncover the
analytical characteristic of the algebraic numbers composing the lattice. A prelimi-
nary use of these precise values is made at the end of the paper, where we discuss
certain “linear dependences” involving parameters. Accurate parameter values are also
important to understand the exact nature of the sequence of orbits ruling the dynamics
observed in sets living on the basin boundaries in phase space when the periodicity
increases without bounds [6].

As a secondary purpose we use our accurate parameters to obtain as a by-product
some metric properties of bifurcation cascades depending simultaneously on two
parameters. Notice that while it is possible to find interesting papers in the literature
discussing methods for the accurate determination of bifurcation parameters, systematic
results derived from such methods do not seem to exist [7,8]. We emphasize that an
accurate determination of long sequences of bifurcation parameters is a prerequisite for
the determination of number-theoretic relationship between different points in parameter
space.

2. Nonlinear lattices of parameters

In this section we define more precisely the subject of our main interest, namely
the nonlinear lattice of parameters shown schematically in Fig. 1. Lattices like this are
seen commonly in dynamical systems but for definiteness we will present results for
one of the standard models in dynamics, the Hénon oscillator, which is defined by the
equations

X =a—x+by,  ya1=x. (2)

Recall that one of the lessons that has emerged from the study of nonlinear systems
in recent years is that most properties found in these systems have a large degree of
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universality. In other words, the particular system chosen for study, within wide limits,
seems to be relatively irrelevant.

The lattice in Fig. 1 is formed by the intersection of the two bifurcation cascades
which start with the lowest possible periodicities: 1 x 2™ and 3 x2”". The black dot
denotes the intersection p;,; of the pair of curves (more precisely, algebraic varieties)
defined by the equations

u: —-4a+3-6b+3°=0 (bifurcation | — 2), 3)
v;: —4a+7+ 10b+7h* =0 (birth of period 3). 4)

This pair of varieties defines the two leftmost boundaries of the nonlinear lattice.
Adjacent to u; and v, one finds the varieties characterizing the next bifurcations in
both cascades. Such varieties are defined by the equations
uy: —4a+5—6b+5b* =0 (bifurcation 2 — 4), (5)
vyr 64a® — 32(4 + b+ 4b*)a’ + (72 — 216b — 252b% — 216b° + 72b%)a
—81 — 54b — 186 +905° — 18b* — 54b° — 81° = 0,
(bifurcation 3 —6). (6)
The expressions for u; and u, are well-known. Those for v; and v, were obtained
recently [1], after relatively long algebraic manipulations. *

As might be recognized from Fig. 1, the nonlinear lattice is delimited by four vari-
eties: u; and vy, as mentioned above, and, additionally, by u, and v.,, where

Uoe = lim u; (accumulation of the 1x2" cascade), )
je

Voo = lim u; (accumulation of the 3 x2" cascade). (8)
j—oc

The varieties u,. and v, are defined by those parameters for which aperiodic (i.c.
“chaotic”) motion appears for the first time while bifurcating along the cascades 1x2™
and 3 x 2", respectively. While all points lying on varieties «; and/or v; having finite
values of j imply parameters and orbits defined necessarily by algebraic numbers,
points lying on u,, and/or v, require the existence of units characterized by fran-
scendental numbers. Thus, as discussed in Ref. [1], parameter values defined by tran-
scendental units seem to be the number-theoretic hallmark characterizing the precise
location of the transition from periodic to aperiodic, “chaotic”, motions in phase space.

Ideally, one would like to derive analytical expressions for all varieties v; and uy, for
J.k =1,2,...,0c and, from them, to extract exact coordinates of all intersection points
p;.x embedded in the lattice. This is a quite difficult task. In spite of this, the many
symmetries displayed [1] (see also Refs. [9,10]) by the numerical values defining the
coordinates of the intersection points make it plausible to hope to find sequences of

3 Note added in proof: We found recently that the analytical expression for v; was already known to D.L. Hitzl
and F. Zele, in: An exploration of the Hénon quadratic map, Physica D 14 (1985) 305-326.
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analytical expressions within suitable towers of number fields, sequences that should
allow one to take the limit of period length going to infinity analytically. It would be
very nice, of course, to obtain the towers of numbers parametrically, i.e. as an explicit
function of the physical parameters of the model.

Notice that the algebraic varieties discussed in this section are defined physically
in parameter space as the frontiers between domains of stable motions of different
periodicities. Since generically such frontiers are very seldom straight lines, the more
realistic situation in models involving more than one parameter is to consider bifur-
cation cascades occurring under the simultaneous variation of such parameters, a new
and slightly more complicated situation.

3. Accumulation points of single cascades

Before considering simultaneous points of accumulation for two bifurcation cascades,
we start by reconsidering briefly the points of accumulation for two bifurcation cascades
of great practical and historical relevance: (i) the cascade for =0, considered earlier
by Myrberg [11,12], and (ii) the cascade for b = 0.3, considered earlier by Derrida
et al. [13] (see also Refs. [14,33]). The purpose of this is to compare our numbers
with those available in the literature as well as to produce numbers which will appear
below as limiting cases of a more general setting.

When b=0 in Eq. (2) the dynamics of x and y is the simplest possible: x is
ruled by the quadratic map x — a — x* while y simply lags x by one time step.
Thus, the dynamics observed when measuring any one of the variables is simply that
corresponding to the one-dimensional quadratic map. Notice, however, that even for
b = 0 the Hénon map remains a two-dimensional system.

The dynamics of a quadratic map was considered almost 40 years ago by Myrberg
in a remarkable series of papers reporting calculations done already with a computer
(with an Elektronenmaschine, as he writes). Myrberg used the essentials of what is
presently known under the name of “symbolic dynamics” [34,35] applying it in prac-
tice to extract with remarkable numerical accuracy (10 decimal places), among other
results, the accumulation point of the 1x2™ cascade for the quadratic map. Myrberg
reports [12] this accumulation point (“der Endpunkt des Spektrums”) to be located
approximately at

Myrberg point :  (a,b) = (1.401155189...,0.0). (9)

Table 1 presents our results for the first 26 “superstable points” [13] calculated
using a slightly modified version of the computer program given in Ref. [15]. These
superstable points happen to be the same points used previously by Myrberg [12]
in the definition of his “Nulizyklen” (see also Ref. [16]). The work of Myrberg is
cited in the epoch-making paper of May [36]. It is discussed quite passionately in
the inspiring book of Mira [16]. Table 1 displays also the characteristic geometric
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Table 1

Superstable points for the quadratic map x,,| = a —x,z. The symbol oo refers to an extrapolated value. See

text

m 2m a o8,
0 1 0.0
1 2 1.0 3.2185114220380
2 4 1.310 702 641 336 832 883 563 570 797 4.3856775985683
3 8 1.381 547 484 432 061 469 540 693 562 4.6009492765380
4 16 1.396 945 359 704 560 641 672 477 987 4.6551304953919
5 32 1.400 253 081 214 782 797 325 012 282 4.6661119478285
6 64 1.400 961 962 944 841 040 296 116 315 4.6685485814468
7 128 1.401 113 804 939 776 123 900 879 658 4.6690606606482
8 256 1.401 146 325 826 946 178 647 288 239 4.6691715553795
9 512 1.401 153 290 849 923 881 474 672 291 4.6691951560300
10 1024 1.401 154 782 546 617 841 218 612 538 4.6692002290868
11 2048 1.401 155 102 022 463 975 894 064 914 4.6692013132942
12 4096 1.401 155 170 444 411 263 765 357 879 4.6692015457809
13 8192 1.401 155 185 098 297 290 530 984 480 4.6692015955374
14 16384 1.401 155 188 236 710 941 543 786 461 4.6692016061981
15 32768 1.401 155 188 908 863 038 563 264 270 4.6692016084808
16 65536 1.401 155 189 052 817 434 492 244 661 4.6692016089697
17 131072 1.401 155 189 083 648 057 794 617 719 4.6692016090744
18 262144 1.401 155 189 090 251 033 181 770 570 4.6692016090969
19 524288 1.401 155 189 091 665 188 307 196 808 4.6692016091015
20 1048576 1.401 155 189 091 968 057 029 478 934 4.6692016091002
21 2097152 1.401 155 189 092 032 922 235 061 798 4.6692016091126
22 4194304 1.401 155 189 092 046 814 375 734 471 4.6692016090573
23 8388608 1.401 155 189 092 049 789 646 848 429 4.6692016089171
24 16777216 1.401 155 189 092 050 426 858 809 522 4.6692016103177
25 33554432 1.401 155 189 092 050 563 330 098 251
00 0 1.401 155 189 092 050 600 523 82
scaling [17-20]
o= lim 0, where o, = %—‘ﬂ, (10)
{—00 ary — Ay

of one-dimensional systems. The last line in Table 1 shows an extrapolated value, in an
attempt to guess the location of the accumulation point marking the “end point of the
cascade”. Here and in similar tables below, extrapolated values were obtained (from
the last three parameter values shown in the tables) using the 6° process described
by Todd [21] which, according to him, has been popularized in numerical analysis by
Aitken, Shanks and others during this century, but dates back at least to Kummer in
1837. This 6% process has nothing to do with the & in Eq. (10), at least as far as we
can see.

Comparing Eq. (9) and Table 1 one sees that there is perfect agreement between the
accumulation value calculated by Myrberg [12] and the new one being reported here.

Table 2 shows results analogous to those in Table 1, but for » = 0.3 now (see
Fig. 1). It contains also a comparison between our numbers and those calculated by
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Table 2
Comparison of bifurcation points along the line & = 0.3 with those reported by Derrida et al. [13]
m Ix2m apresenr(top) and aDGp(bottom) 6301) 6£resent
0 I —0.122 5
—~0.122 5
1 2 0.367 5 0.89908256880
0.367 5
2 4 0912 5 4.80788719025
0912 5 4.844
3 8 1.025 855 405 073 781 052 448572427447
1.026 4.3269
4 16 1.051 125 662 035 171 236 464689413113
1.051 4.696
5 32 1.056 563 758 158 788 020 4.65956869798
1.056 5(36) 4.636
6 64 1.057 730 839 594 022 683 4.66732531586
1.057 730 83 4.7748
7 128 1.057 980 893 180 660 019 466875332603
1.057 980 893 1 4.6696
8 256 1.058 034 452 143 658 301 466911064458
1.058 034 452 15 4.6691
9 512 1.058 045 923 056 873 958 4.66918147101
1.058 045 923 04 4.6691
10 1024 1.058 048 379 785 807 469 4.66919737588
1.058 048 379 80 4.6694
11 2048 1.058 048 905 942 389 797 4.66920069257
1.058 048 905 931
12 4096 1.058 049 018 629 039 391 466920141394
13 8192 1.058 049 042 763 069 946 5 4.66920156718
14 16384 1.058 049 047 931 840 282 982 4.66920160019
15 32768 1.058 049 049 038 832 608 235 552 4.66920160718
16 65536 1.058 049 049 275 916 465 045 292
[e's) o0 1.058 049 049 340 531 02

Derrida et al. {13]. As seen from the comparison in Table 2, apart from small dif-
ferences in the last decimal places, the overall agreement between the numbers of
Ref. {13] and the present ones is quite good. While recalculating the values given in
Table 2 we noticed an inversion between two digits in the fifth bifurcation value re-
ported by Derrida et al. [13]. This inversion, indicated by the parenthesis in Table 2,
is responsible for the apparent maximum for m=6 in the convergence of their d,.
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4. Points of multiple accumulations

This section reports an accurate numerical determination of the coordinates of a
point in parameter space where two bifurcation cascades accumulate simultaneously.
We begin by introducing a convenient notation to simplify the discussion to follow.

The particular points in parameter space where two bifurcation cascades accumulate
simultaneously will be called points of double accumulation and will be denoted by
oy, «, Where k; and k; indicate the lowest possible periods characterizing each cascade.
Since cascades starting with the lowest possible different periods are 1x2™ and 3x2”,
we have that the point of double accumulation with lowest possible nondegenerate
indices is .27 3. When more than two cascades accumulate simultaneously one simply
appends more sub-indices. It is possible to find in parameter space more than one
point of double accumulation characterized by the same indices x; and x,. However,
since this situation will not be discussed presently, there is no necessity to overload
the notation with extra indices here.

We determine the coordinates of .o/ 3 by computing coordinates for several vertices
lying along specific directions in parameter space and studying how these coordinates
evolve as the periodicity increases without bounds. The availability of exact expressions
for the varieties u; and v, (see Egs. (3) and (4)) make it not too difficult to compute
vertices along these two directions. The computation of points of multiple accumulation
involves generically tuning more than one physical parameter simultancously.

Tables 3 and 4 present accurate coordinates for the first 16 vertices lying along the
varieties v1 and u;, respectively. These tables also display extrapolated values aiming
at guessing the coordinates a and b marking the point of double accumulation.

Comparing parameters values for last few vertices among themselves and with their
extrapolated values one obtains a good idea of the speed with which one is approaching
the end of the cascade and of the accuracy of the parameters. For example, all b values
for vertices beyond the 12th in both tables have at least 5 correct decimal places. While
this accuracy is certainly limited in absolute terms, it is well beyond the accuracy
presently obtained experimentally in real physical systems [19].

As an additional byproduct, Tables 3 and 4 present some J, values as defined
in Eq. (10) above. As expected one finds no noticeable difference between the o,
sequences obtained along the varieties u; and v, and those obtained along the cut
b = 0.3. This is due, in part, to the very high accumulation speed of the cascades.
Notice that the limiting values obtained for 4 seem to be independent of the parameter
used to compute them.

Although the several scalings and limiting values of & shown in these tables seem all
to agree, any finite-precision computation prevents one from ruling out the possibility
that real differences in the final limits do indeed exist. A definite answer to this question
requires obtaining analytical expressions for the sequences of points, i.e. for the tower
of algebraic numbers, characterizing bifurcations, a quite challenging task.

We now describe a numerical experiment devised to find the approximate location of
a point of double accumulation in parameter space. The particular example discussed
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Vertices along the variety ¢, defined in Eq. (3). The symbol oo refers to an extrapolated value. See text

m 1x2m a1, m (top) and by, (bottom) 82 1
1 2 1.205 771 365 940 052 179
0267 949 182 431 122 706
2 4 1.460 691 518 614 705 820 4.03309655299
—~0.127 016 653 792 583 4.70001361011
3 8 1.523 898 572 878 143 334 4.41969063011
~0.097 031 094 104 990 76 4.55387553843
4 16 1.538 199 812 388 608 817 4.61432794102
—0.090 446 469 770 292 36 4.64408077140
5 32 1.541 299 123 857 853 781 4.65700859704
—0.089 028 616 666 778 63 4.66342832232
6 64 1.541 964 639 371 656 920 4.66661355162
—0.088 724 580 021 307 39 4.66799086482
7 128 1.542 107 251 462 082 084 4.66864369524
—0.088 659 447 793 272 81 4.66893878076
8 256 1.542 137 798 254 627 055 4.66908253250
—0.088 645 497 679 319 09 4.66914573579
9 512 1.542 144 340 609 004 454 4.66917605413
—0.088 642 509 956 351 53 4.66918959057
10 1024 1.542 145 741 788 634 766 4.66919614243
—0.088 641 870 075 937 68 4.66919904153
1 2048 1.542 146 041 878 754 686 4.66920043746
—0.088 641 733 033 072 69 4.66920105836
12 4096 1.542 146 106 148 884 859 4.66920135820
—0.088 641 703 682 684 21 4.66920149118
13 8192 1.542 146 119 913 579 341 5 4.66920155532
—0.088 641 697 396 729 632 4.66920158380
14 16384 1.542 146 122 861 555 418 225 4.66920159775
—0.088 641 696 050 470 649 46 4.66920160385
15 32768 1.542 146 123 492 921 619 706 4.66920160663
—0.088 641 695 762 143 201 29 4.66920160794
16 65536 1.542 146 123 628 140 925 847 94
—0.088 641 695 700 392 291 318 §
oo o 1.542 146 123 664 993 44

—0.088 641 695 683 562 7
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Vertices along the variety u), defined in Eq. (4)

n Ix2" an41,1 (top) and b, ;1 (bottom) oF 6,?
0 3 1.205 771 365 940 052 179
—0.267 949 182 431 122 706
1 6 1.232 588 541 359 191 903 2.37746301233
—0.281 971 680 061 194 853 2.39599377657
2 12 1.243 868 285 893 604 145 4.27424448656
—0.287 824 152 253 719 28 428624971215
3 24 1.246 507 289 013 305 654 4.58111243943
—0.289 189 558 864 175 54 458408115858
4 48 1.247 083 349 144 510 858 4.64939011431
-0.289 487 417 100 045 92 4.65004264877
5 96 1.247 207 249 294 216 748 4.66499935792
—0.289 551 472 047 143 86 4.66514005735
6 192 1.247 233 808 815 494 158 4.66829320428
—0.289 565 202 598 919 46 4.66832338078
7 384 1.247 239 498 158 497 082 4.66900797706
—0.289 568 143 815 852 32 4.66901444194
8 768 1.247 240 716 692 076 564 4.66916001931
—0.289 568 773 759 702 23 4.66916140398
9 1536 1.247 240 977 666 978 782 4.66919271636
—0.289 568 908 675 545 87 4.66919301291
10 3072 1.247 241 033 559 917 470 4.66919970289
—0.289 568 937 570 441 25 4.66919976640
11 6144 1.247 241 045 530 478 218 4.66920120033
—0.289 568 943 758 845 44 4.66920121393
12 12288 1.247 241 048 094 205 980 931 4.66920152229
—0.289 568 945 084 212 228 59 4.66920152520
13 24576 1.247 241 048 643 277 969 084 4.66920159036
—0.289 568 945 368 065 211 76 4.66920159098
14 49152 1.247 241 048 760 872 375 221 4.66920160498
—0.289 568 945 428 857 828 57 4.66920160512
15 98304 1.247 241 048 786 057 495 951 58 4.66920160836
—0.289 568 945 441 877 745 463 8 4.66920160839
16 196608 1.247 241 048 791 451 377 570 54
—0.289 568 945 444 666 212 952 9
00 00 1.247 241 048 792 921 419 8

—0.289 568 945 445 426 178
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here is the point 7 3 for the Hénon map. The Hénon map contains just one double
accumulation point with indices 1 and 3.

We started by calculating the values of a corresponding to the bifurcations 14, 15
and 16 for a few values of b, equally spaced by 4b=0.05. For the cascade 1 x 2™
we considered the interval —0.15<5<0.3, while for the cascade 3 x 2" the interval
chosen was —0.3 <b<0. From these three set of values we computed the extrapolated
limit using the well-known &2 process [21]. Finally, to the extrapolated values we
least-square-fitted a polynomial curve, producing the following approximations for the
varieties W', and W},

Wi e = —a+ 1.4011551890920506 — 1.48961113368203419582 b
+ 1.13805356609191002051 5% + 0.0045753246074933386593 b*
+0.167698775122310152061 b* — 0.0165585284378030431004 b°
—0.1343991534224862198 »° + 0.0053165726740057564385 b7
+0.115164204953878464332 b® + 0.0091758951419627119784 b°

— 0.03378519540020504978 5'°,  —0.15<bh<0.3, (1)

Wyt e = —a + 1.7798180758349913642 + 2.40551820628136011662 b
+1.90576027714566027866 67 — 0.173695324319433534266 b*
+0.063979016662725881135 b* + 0.057427841974605767408 b°

—0.64542593292313477241 b° + 0.050995000879048155136 b’
+0.39567237258602803995 b° — 0.42909097875424947066 b°

+0.293752862435369338483 ', —03<b<00. (12)

For b=0 one sees that the value of a obtained from W% ,.. agrees well with that in
Table 1. The vaiue in Eq. (11) was obtained from a fit, i.e. totally independent of the
way in which the value in Table 1 was obtained. Thus, the number of correct digits
of a for b=0 in Eq. (11) gives an idea of the accuracy that we hope to have in all
other coefficients.

Now, by equating W%, and W', to zero one obtains the equations providing
approximations for u.. and v, respectively. The intersection of u., and ve, gives,
finally, the following approximate location for the point .27 3

1,37 (Boo,00s boo,00) = (1.56012804937528, —0.099195603261691) . (13)
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Table 5

Coordinates of 17 vertices along the main diagonal
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Dm.n+1 A, 41 b, v

IZR 1.205771365940053 —0.267949192431122
P22 1.474410762599143 —0.134526112591863
P33 1.541043584260103 —0.106940716349456
Paa 1.556005301873558 —0.100862440058850
Ps.s 1.559243397607871 —0.099552999236862
Pé.6 1.559938507113985 —0.099272164788758
P 1.560087451694554 —0.099212001259090
Ps.s 1.560119354447116 —0.099199115257573
P9.9 1.560126187194619 —0.099196355433690
210,10 1.560127650567009 —0.099195764362221
JZIRE 1.560127963976888 —0.099195637772734
P22 1.560128031099702 —0.099195610661139
P33 1.560128045475354 —0.099195604854666
Pla1a 1.560128048554122 —0.099195603611064
P15,15 1.560128049213568 —0.099195603344762
Pl16.16 1.560128049354789 —0.099195603287722
Poc. oo 1.56012804937528 —0.099195603261691
(Poc.o0 — P16.16) 2.0491 x 10~ 2.6031 x 10~

All digits in Eq. (13) are believed correct. We conjecture the dynamics measured near
points of multiple accumulations to produce new classes of universality as well as new
characteristic exponents.

Accumulation points analogous to .o/} 3 are generalizations of the accumulation point
reported by Myrberg [11,12], although the number-theoretic issues related with such
numbers were of no concern to him,

An additional interesting sequence of points on the lattice is the “diagonal sequence”
pr.t, 1.6. the sequence defined by the intersection of the varieties u, and v, for all
£=1,2,...,00. This sequence starts with p; ;, defined in Eq. (1), ending with 2/ 3,
defined in Eq. (13). Accurate approximations to the first sixteen points of this se-
quence are given in Table 5. The accurate determination of diagonal points requires
considerable investment of computer time due to the necessity of investigating limiting
processes for each parameter involved in the process.

The nonlinear lattices leading to points of multiple accumulation involve non-
homogeneous compressions of more than one parameter. Therefore, as might be
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Two rows of off-diagonal vertices, one above and one below the main diagonal

Pm.n+1

Am,n+1

bm,n+1

P32
P23
P43
P34
Ps.a
P45
Pe.5
Pse
Pre
Po.7
P87
JZR
P98
JZX]
Pro.9
Py.10
P
Pt
P21
Pz
JAERY
P13
P14a.13
P13a
Pis.14
P14a.15
Ple.1s

P1s.16

1.480783754928471
1.535559829218792
1.542335882525508
1.554755236308571
1.556279318829526
1.558971332926447
1.559301941742203
1.559880052647120
1.559951039308359
1.560074923614321
1.560090135414580
1.560116670915810
1.560119929204602
1.560125612445789
1.560126310289461
1.560127527472564
1.560127676930127
1.560127937613789
1.560127969623060
1.560128025453532
1.560128032308939
1.560128044266117
1.560128045734279
1.560128048295197
1.560128048609644
1.560128049158046
1.560128049225447
1.560128049342910

—0.137988484966247
—0.103785572524048
—0.107682309952744
—0.100135908697606
—0.101021602877239
—0.099394537329761
—0.099587093413353
—0.099238102885625
—0.099279467200613
—0.099204700328724
—0.099213565228717
—0.099197551355911
—0.099199450212877
—0.099196020481503
—0.099196427170897
—0.099195692625157
—0.099195779726135
—0.099195622408826
—0.099195641063214
—0.099195607370659
—0.099195611365859
—0.099195604149945
—0.099195605005562
—0.099195603460167
—0.099195603643421
—0.099195603312405
—0.099195603351685
—0.099195603280799
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recognized from Fig. 1, the “cells” composing the mesh of the lattice contain curved
sides. In Table 6 we give two “off-diagonal” sequences of coordinates for the first few
curved cells. These are the cells that, when the periodicity increases without limit, will
“collapse” to form the vertex . ;. It would be interesting to investigate the rate with
which the area of such cells decreases as the periodicity increases without limit and to
study what kind of universal behaviors exist for this generalized situation.

5. Digression on periodic representations of parameter values

It is not difficult to show that the polynomials generated by finite compositions
of arbitrary polynomial equations of motion can always be solved in terms of finite
chains of radicals. What is not so easy is to find these solutions explicitly, for specific
dynamical systems. These solutions contain the physics and need to be obtained.

Several aspects of the nature of the difficulties involved in computing exact repre-
sentations for the algebraic numbers defining vertices in parameter space and/or orbits
in phase space are best explained by reference to definite examples.

In Ref. [1] it is shown that the intersection of v; and u; (the point p;,; in Eq. (1)
here) may be written in three different forms:

E=-2+V3=1-v6\2-V3
:{~5+\/6 38—21\/5} /7. (14)

Similarly, that the intersection of v; and u, occurs at
pia (ar2.b12) = (-2, (15)

where 7 is the unit

,1:—4+\/1_5:[3—\/§ 452—115\/1_5} /5

:[—5+\Fz 632—161\/3}/7. (16)

The difficulty is that it is not completely trivial to recognize that the representations
of ¢ and 5 on the right might be simplified to give the much simpler forms shown
on the left. More technically, to recognize that ¢ and y are quadratic, not quartic
irrationalities. Even less obvious is to obtain, for example, the following simplified
representation of the number 8, where

64 x 0= -4+ 417 — (3= VIT)\/ 170 + 38V17 + 4,/a_
+4\/3\/68—4\/T—(3— V1T 170 + 38V17 — dy/ay,

~ 64 x 1.55816..., (17)
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where a4 =68 + 12v/17 + 41/170 + 38y/17. This point 0 belongs to one of the total
of 30 possible period-8 trajectories of the Hénon map. The particular analytical rep-
resentation above is for a=2 and b=0. A point §* ~ —1.93959... belonging to the
corresponding conjugate trajectory of period-8 is obtained by considering the negative
branch in all square-root functions which appear in 0, i.e. by reverting signs in front
of all the square-root functions which appear in 6.

Thanks to a well-known result [almost invariably attributed to Lagrange (1736—
1813) but, according to Weil [22], already known to Euler (1670-1743) and in part
even to Huyghens (1629-1695)], one knows that every quadratic algebraic number
has a periodic representation in terms of continued fractions [23-25]. The first two
bifurcations along the variety v; involve parameters which are simple functions of
quadratic algebraic numbers. Their exact periodic representations may be easily
determined:

E=-2+V3={-1,1,2,1,2,1,2,..} = {-1,1,2}, (18)
n=—4+v15={-1,1,6,1,6,1,6,...} = {-1,1,6}, (19)

where the over-line indicates the period which repeats ad infinitum.

Motivated by this strong result above we try to see whether the next bifurcations also
have periodic representations in terms of continued fractions, i.e. whether they might
also be reduced to quadratic irrationalities. Since the precision with which we know
the additional parameters is not infinite, we first consider the continued fractions that
one would obtain for ¢ and # if we did not know that they were quadratic algebraic
numbers:

£~ —-02679={-1,1,2,1,2,1,2,1,6,1,2,2,2,1, 180749466, 1,8,...} ,
—0.267949 = {-1,1,2,1,2,1,2,1,2,1,2,1,5,10,2,10,38229,.. .},
—0.26794919 = {-1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,574,.. .},

—0.2679491924 = {—1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,.. .}, (20)

N~ —0.1270 = {—1,1,6,1,6,1,15,16166966871,5,1,1,2,14,1,3,...} ,
~0.127016 = {—1,1,6,1,6,1,7,31,2,1,1,1,1785679,1,1,1,1,...}
~0.12701665 = {—1,1,6,1,6,1,6,1,6,1,13,6,3,2,2,3,23,.. .},

—0.1270166537 = {-1,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,...} . 21)

From these expansions one sees that for these two vertices a relatively small number of
decimal places is already enough to recover the underlying periodicity of the quadratic
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numbers and to recover the numbers. The analogous expansion for the next vertex
along v; gives

b3 ~ —0.0970 = {—1,1,9,3,4,3,2,157556662026, 1,2,12,15,2,5,5,...} ,
-0.097031 = {-1,1,9,3,3,1,2,1,2,3,2,6,1,3,1,30115,2, ...},
—-0.097031094 = {-1,1,9,3,3,1,2,1,2,11,1,6,1,1,1,2,161,...},

—0.097031094104 = {-1,1,9,3,3,1,2,1,2,11,1,8,1,6,3,9,2,...} . (22)

As is clear from these expansions, there is no detectable periodicity in Eq. (22).
This absence of periodicity persists when we start expansions using all digits given
in Table 3 and also when we compute the above expansions as long as the number
of digits present in the original numbers permit. Absence of detectable periodicities
occurs also for all other numbers in Tables 3 and 4, including the extrapolated values.
Such finite expansions are obviously not a proof that they are not periodic, i.e. that
they do not define quadratic irrationalities. But after experimenting numerically with
several quadratic irrationalities we believe the detected absence of periodicity to be
a overwhelming evidence in favor of irreducibility to quadratic irrationalities of all
parameters characterizing higher bifurcations in Tables 3 and 4. Of course, to de-
cide the nature of the irrationality one should simply investigate the minimal poly-
nomials [2] defining vertices. The practical problem of implementing such approach,
however, is that the determination of these polynomials from the equations of mo-
tion is not trivial computationally as the periodicity of the orbits increases more and
more.

Periodic representations of algebraic numbers might be efficiently used to uncover
an analytical relation between the coordinates of the point

Pt (ani,bay) =(1.23258...,—0.28197...), (23)

where the numbers are those for n =1 in Table 4. To this end, notice that although
the coordinates of p|, and p, , [as defined in Eqs. (1) and (15), respectively] involve
quadratic irrationalities, the ratios of their coordinates, namely,

ag 9 a2 23
ra=E=—~—=—2- ad r,=-—"-=—-——, (24)
L1 )2 brs 3
are rational numbers in both cases. Motivated by this fact we compute the continued
fraction corresponding to the ratio between a3 ; and b; 1, obtaining
az1
b2

={-51112316,1,3,2,1}, (25)

a periodic expansion. This periodic expansion allows us to obtain an exact analytical
representation for ay 1/b2 1:
a | 9+ 6\/5 -

== = ~ —4, 26
r2,1 by 2 43713203 (26)
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which, when combined with the results from Ref. [1], yields

byi=—5 —vV2+1/5+4V2 > -0281971...,

az‘lzrg’lbz,l ~ 123258... . (27)

defining analytically the location of the vertex p,;. We observe that although one
knows expressions giving the analytical solutions of quartic polynomials, two popular
commercial softwares with which we tried to factor the polynomial 81+1080a+ 3888a>
—42244° + 256a* returned such zeros in terms of those of the cubic resolvent instead
of the considerably simpler analytical expression a, ; above.

Notice that all three analytical values of a and b defining vertices [which are given
by Eqgs. (1), (15) and (27)] obey the simple parameterization

a=r(w+ VvV -1), b=w+vVwr-1, (28)
and, since bb* = (v + V? — 1) (w — Vw? — 1) =1, that b is a unit.

From the three analytical expressions for the vertices given above we see that while
all four numbers which define the vertices (ay 1,b1,1) and (aj2,b12) are quadratic
irrationalities, the ratios ry,; and r; in Eq. (24) are simply rational numbers. We
further see that while both a, | and b, | are quartic irrationalities, their ratio given
in Eq. (26) is just a quadratic irrationality. From this it is very tempting now to
conjecture that all similar ratios r;, will have an algebraic degree which is half that
of the a4 and b;; from which they originate. That such degree-halvings are related
with the quadratic degree of the underlying equations of motion seems also to be a fair
guess and an interesting question for further study.

We tried to determine the algebraic degree of additional ratios 7;; from the numbers
given in Tables 3 and 4 but were not able to detect any other showing a quadratic
signature and, therefore, believe them all to be irrationalities of higher degrees.

In order to obtain exact representations for additional vertices it would be of great
help to have the aforementioned powerful result concerning quadratic irrationalities
extended to situations involving higher irrationalities. A promising possibility in this
direction seems to be the so-called Jacobi—Perron algorithm [26-31], among others [30].
The consideration of irrationalities of higher degrees, however, is a relatively compli-
cated subject that will not be pursued here.

6. Conclusions

This paper considered nonlinear lattices generated by the coexistence of bifurcation
cascades in the parameter space of dynamical systems. Bifurcations cascades generate
an infinite number of families of “adjacent” algebraic varieties which overlap, i.e. co-
exist, in certain regions. This overlap produces parameter lattices containing a 2D mesh
of vertices defined by very specific numbers. We presented tables containing accurate
numerical approximations of the coordinates of some of these vertices.
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By considering the double limit of accumulation formed by the cascades starting
with the lowest possible periods we obtained the first double accumulation point, the
vertex /) 3, defined by Eq. (13), which is the unique point on its doubly infinite 2D
lattice characterized by producing in phase space two different stable chaotic motions.
It is possible to find infinitely many points similar to =, 3 but always for cascades
other than the lowest possible ones, 1 x 2™ and 3 x 2".

Using the accurate parameters given in Tables 3 and 4 we attempted to determine the
underlying number field in which such parameters are defined and to reconstruct their
exact analytical form in the field. We presented analytical coordinates for three points
for which the ratios r;x = a;/bj of their coordinates are at most quadratic num-
bers and argued that all remaining vertices should involve irrationalities higher than
quadratic. Several open problems were also indicated. A particularly interesting one is
the investigation of the evolution of basins of attraction along the varieties and vertices
forming the lattice. Especially, to investigate the precise number-theoretic mechanism
leading to transitions smooth = fractal of basin boundaries as the periodicity increases
without limit.

The present paper discussed vertices that are seen before and precisely at the “be-
ginning” of chaos, i.e. when chaos appears for the first time while tuning parameters
(from low to high periods). An interesting open problem is, of course, the number-
theoretic characterization of what happens at the “last frontier” of chaos, where one
finds phenomena and vertices analogous to those discussed in Refs. [10,32].

The characterization of the number-theoretic nature of parameter values defining
points of multiple accumulations [like .o/, ;3 here] is a quite interesting (and apparently
not simple) problem. Both varieties uo, and vy, are at the “end” of infinite sequences
of bifurcations characterized by periodic motions in phase space. Thus, all parame-
ter values defining u., and v, cannot be algebraic, being therefore transcendental.
Three relevant questions now are: (i) will ¢ and b remain always multiples (or simple
functions) of some basic unit as above? (ii) if so, how does the algebraic degree of
their ratio varies along each variety v; and/or u; and between varieties? (iii) what is
the specific number-theoretic characteristic that will tell us precisely when we finally
“arrived” at points of accumulation and of multiple accumulations? Building on the
discussions of Ref. [1] and on the evidence reported in this paper we offer the follow-
ing tentative answers: @ and b will remain multiples forever with their ratios being
always given by algebraic irrationalities of degree lower than that of a and b, the only
exception being the point of double accumulation for which not only a and 5 would
be themselves transcendental, but its distinctive characteristic with respect to all other
points of the lattice would be to have a transcendental ratio ¥, .. Of course, this is
just an educated guess that remains to be demonstrated.
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