
Physica A 189 (1992) 437-446 
North-Holland ~ ~  ~Z~ 

Molecular dynamics simulation of powder 
fluidization in two dimensions 

J.A.C. Gallas a'b, H.J. H e r r m a n n  a and  S. Soko towsk i  a'c 
"H6ehstleistungsrechenzentrum, KFA, W-5170 Jiilich, Germany 
bLaborat6rio de Optiea Qu(mtica da UFSC, 88049 Florian6polis, SC, Brazil 
CDepartment of Theoretical Chemistry, MCS University, 20031 Lublin, Poland 

Received 22 July 1992 

We report model calculations of a fluidized state in a two-dimensional packing of spherical 
beads subjected to vertical vibrations as recently experimentally studied by Clement and 
Rajchenbach. Using molecular dynamics we calculate the density field and the velocity 
distributions of the beads. We discuss the concept of fluidization and propose new ways to 
characterize it. 

The  rheology of granular material like sand, powder or pills provides many 
scarcely understood,  astonishing phenomena [1]. Examples are the so-called 
"Brazil  nut"  segregation [2-4], heap formation under vibration [5-8] and the 
density waves emitted from outlets [9]. All these effects seem to eventually 
originate in the ability of granular materials to form a hybrid state between a 
fluid and a solid. Reynolds [10] introduced the concept of dilatancy, the critical 
density below which "fluidization" sets in, based on the principle that density is 
the main factor controlling the rheology. Under  density gradients or fluctua- 
tions, granular material seems therefore capable of changing from solid- to 
fluid-like behavior giving rise to the aforementioned mysterious effects. A 
particularly relevant experimental set-up to study this fluidization is putting 
sand on a vibrating table or on a loudspeaker [5-8, 11-14[. Under  gravity the 
sand jumps up and down and although kinetic energy is strongly dissipated, 
collisions among grains reduce its density thereby allowing it to flow. This kind 
of fluidization is different from the so-called "fluidized beds" [15,16] in which 
bubbles of air or another  fluid are pushed through the granular material. 

In a recent paper Clement and Rajchenbach (CR) [11] report  experimental 
observations of a "fluidized" state in a 2D vertical packing of steel spheres 
submitted to vertical vibrations. They shake periodically (at f =  20Hz)  300 
steel beads inside a trapezoidal cell built with side walls making 30 ° with 
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respect to the vertical axis. Position and velocities of the particles were 
obtained by photographing the system periodically and then averaging over 15 
snapshots taken at a given constant phase ~. Velocities were obtained from 
averages over a time interval r around the phase ~0. From a plot of the density 
of particles they argued fluidization to occur in the upper region of the packing. 
The  measured density of particles showed a curious effect: the mean density 
was found not to depend on the phase of the vibration, implying the appear- 
ance of a steady state preserving the density profile at all times, independent  of 
the up and down collective motion. From plots of the average velocity 
components  they concluded that the mean velocity of the particles does not 
depend significantly on their height inside the container, if a few particles 
undergoing ballistic flight above the packing are neglected. However ,  im- 
portant  velocity fluctuations were observed for heights in which the density 
profile significantly varies. In fact they observed velocities at different phases ~¢ 
to fluctuate, although the overall density field remained always constant. 

The  main purpose of this letter is to see whether we are able to reproduce 
numerically the phenomena observed by Clement and Rajchenbach [11], to 
quantify the concept of fluidization and to check if the relevant parameter  for 
fluidization is given by A f  2 where A is the amplitude of the vibration [12]. The 
working tool that we use for this purpose is molecular dynamics (MD) [17,18]. 
In fact MD has been used already for granular media to model segregation [4], 
outflow from a hopper  [19], shear flow [20] and convection cells [21]. 

Our  model includes the fact that dissipation of energy occurs via inelastic 
interparticle collisions as well as via collisions of the particles with the walls. 
The  molecular mechanism of energy dissipation is very complicated and can 
obviously not be treated on the same time and size scales as the collisions 
between beads. The geometry and dimensions of the container were chosen 
identical to those used in the experiments of Clement and Rajchenbach [11]. 
The  two-dimensional box containing the beads was delimited by two different 
types of walls: those forming the trapezoidal delimitation seen in fig. 1, and 
those that we will refer to as "parallel walls", parallel to the plane of the 
figure. The experimental  distance between the two parallel walls was 3.0 mm. 
Our  trapezoidal line was built of spherical particles (vertices) identical to the 
beads and separated from one another  by or = 1.55 mm. Altogether,  the beads 
were subjected to three forces: interparticle repulsion, a 10 m/s  2 acceleration 
due to gravity and friction forces. We assume that the spherical particles 
interact according to Hooke ' s  law, namely, that the repulsive interparticle 

potential  energy is given by 

{~ Y(d - r) 2 for r ~< d ,  
u(r) = for r > d ,  (1) 
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Fig. 1. The center of the circles are the positions at ~ = 0 whereas the end of the lines display the 
positions 15 ms later. A few beads flying too high are not shown. 

where  Y is the Young modulus and d = 2.99 mm is the diameter  of the beads,  
as in the experiments.  This same equation is used to describe interactions 
be tween  beads and vertices of  the trapezoidal line. Eq. (1) is of course only 
valid for relatively small forces (linear elasticity). We did not take into account 
eventual  Hertz ian contacts, which in two dimensions would imply an additional 
logari thmic prefactor  and in three dimensions would give an exponent  of  5 /2  in 
eq. (1). These effects only come into play for ideal spheres and we might 
assume here for simplicity that locally the spheres are rather  flattened. 

Three  types of friction exist in the present  experiment:  friction due to frontal 
b e a d - b e a d  collisions, to collisions between beads and the trapezoidal line and, 
lastly, to the confining parallel walls. The first two types of friction were 
assumed to contribute similarly to the energy dissipation: proport ional  to the 
relative velocity of  the colliding particles. To reduce the number  of parameters ,  
the constant  of proport ionali ty was always considered to be the same. The 
effect of the last type of friction was considered in exploratory simulations but 

found not to contribute significantly to the fluidization. Therefore  we will 
ignore it. 

The  equat ion of motion of the ith bead at horizontal position x and at height 
z is then given by 

dl:, j~. ( lv ,  u(lr; O[)_ai j )_g  ' 
dt m (2) 

where  r = (x, z) and the summation is per formed over  all interacting centers 
(beads  and wall vertices). The components  of  the friction a acting when the 
particles are in contact are given by 

(aij)  ~ = -c[A,  - Aj[ sgn(.~i) and (aij)~ = -clOg - 2j[ s g n ( ~ ) ,  (3) 
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and the gravity g is parallel to the z-axis. The vertical periodic movemen t  of 
the container  was modelled by z ( t ) =  A sin(2wft). In the experiment ,  A = 

2.5 m m  and f = 20 Hz [22]. 
The  equations of motion have been solved numerically by using classical 

p red ic to r -cor rec to r  methods  [17,18]. The suitable parameters  to model  the 
exper iment  were found to be Y d / m  -- 20 000 m / s  2 and c = 300 s-1. The relative- 
ly small value of Y was taken to allow for the use of a more  convenient  
t ime-step for the numerical  integration. This is not critical for the results of the 
simulation: We have made some test runs with a value of Y two orders of 
magni tude larger and found qualitatively the same results. Having selected Y, 
we sought an interval of c values such that the experimental  results could be 
fitted well. In fact, the simulations show that a change of 20% in c does not 

modify our  results very much. Our  simulations had a t ime step of A--  
(4000f)-1 and the inner, vectorizable loop of the program ran at 170 MFlops 

on one Cray-YMP processor.  
We started simulations from a random distribution of beads inside the cell, 

letting them fall freely under  gravity. The system was allowed to evolve until 
the averaged squared velocity per  bead was smaller than 10 8 m2/s 2. After  that 

we simulated the shaking by letting all wall vertices undergo harmonic oscilla- 
tions as described above.  By comparing snapshots taken at different phases 

= 2 w f t  it is possible to reconstruct the motion of the beads during a full cycle 
of the shaking. Fig. 1 is intended to be our equivalent to fig. 1 of CR. The dots 
represent  positions of the spheres at ¢ = 0 while the end of the line segments 
indicate where the particles are located at a t ime t = 15 ms later. One may 
easily realize that while the movement  of our spheres is rather  symmetric with 
respect  to a reflection about  a vertical line passing through the center of the 

cell, the corresponding experimental  picture obtained by CR is not so. We 
at tr ibute such differences to small uncontrollable non-uniformities in the 
exper imenta l  set-up. Fig. 2 shows local densities along the z-axis, evaluated at 
different phases as described in the experimental  paper.  A full shaking period 
in the exper iment  took 50ms  [22] and the time averages considered by CR 
were over  15 ms, i.e. slightly longer than a quarter-period.  Our  curves were 
obta ined by averaging the local density over  the 15 ms following each phase ~p 
and over  30 shaking cycles after discarding 30 " t ransient"  cycles. For spatial 
averages,  is was important  to place the horizontal axis of the grid system used 
to per form averages as passing through the bot tom of the oscillating container.  
As can be seen f rom this figure, our  model correctly reproduces the experimen- 
tal behaviour  of the beads, producing the same smoothly varying density 
profile as a function of the height. Some ballistic flights were also observed in 

our  simulations. 
Fig. 3 presents our results for the averaged v z and v x velocities averaged 
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Fig.  2. Local density, normalized by the solid density, as a function of the height z for different 
phases of the vibration for A = 2.5, f =  2 0 H z  averaging over 30 shaking cycles after having 
discarded 30 cycles in order to reach steady state. 

exactly in the same way as the local density. The first point to note is that, as in 
the experiments, the absolute value of v x is substantially smaller than vz, in 
conformity with the symmetry of the driving force. 

Since for all phases and over many cycles of the driving force the beads in 
the bulk locally maintain their regular hexagonal-lattice-like arrangement, one 
would think that its properties are more solid-like inside the bulk, while the 
few upper layers without translational symmetry behave more like a fluid. To 
check whether the present model is at all able to display a transition from a 
solid- to a fluid-like state we performed additional simulations, varying both 
frequency and amplitude of the oscillations. A further objective in doing this 
was to check whether Af2/g/> 1 characterizes the onset of fluidization. So, in 
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Fig.  3. Average  bead velocities v x and v: per particle as a function of the height z at two different 
phases: ~p = 0 and  ~ = 7r. The parameters are as in fig. 2. 
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the simulations we calculated two additional quantities to characterize the state 
of the system, namely, the t ime-dependence of the vertical position of the 
center-of-mass of the beads ( z )  and the mean square displacement of in- 
dividual beads as a function of time. To access the relative mobility of pairs of 
beads in the ensemble for each particle i we selected its nearest neighbour j and 

0 Then,  for each subsequent time t we evaluated the the respective distance rij. 
quantity 

n(0  = ( r i j -  r ° ) .  (4) 
i = ]  

For a solid each bead is confined to a cage formed by its neighbors and R(t) 
should be a constant of the order of the lattice constant, f f  however the 
behavior is f luid-l ike, each bead wil l  perform essentially a Brownian motion 
and R(t) should be asymptotically proportional to t 1/2, defining as pro- 
port ional i ty constant a diffusivity D. 

We recorded the trajectory of a selected " t racer"  particle, and monitored its 
motion as time evolved. Fig. 4 shows two situations with different amplitude A 
and frequency f,  one with solid-like bulk (figs. 4a and 4c) and the other  with a 
fluid-like bulk (figs. 4b and 4d). In figs. 4c and 4d we see 8000 positions of the 
tracer particle recorded every 50 time-steps, for a particle that was initially 
located roughly in the center of the packing. In the first case the tracer particle 
remains confined to a very small region while in the fluid-like case the 
trajectory seems to explore the entire box. The distinction between solid- and 
fluid-like situations in the bulk also becomes obvious from the snapshots of 
figs. 4a and 4b. It is important  to note that both situations of fig. 4 correspond 
to the same value of A f  2. This means that A f  2 is not a good scaling variable 

even close to the onset of fluidization. 
Fig. 5 shows more quantitative evaluations of the degree of fluidization. In 

fig. 5a we see how the distance between pairs of beads, namely the R( t )  defined 
in eq. (4), increases in time. We see that after a transient of slower growth, 
R2(t) increases linearly in time for large times in all the five different cases 
considered. The asymptotic slope defines the diffusion constant. The five 
curves have different amplitudes and frequencies but in three of them, namely 
(case a), (case d) and (case e), the product A f  2 is the same. Clearly, however,  
the diffusion constants are very different in the three cases, showing again that 
the fluidization properties are not determined by the simple formula A f  2. It is 
also interesting to note that none of the five curves in fig. 5a seems to go to a 
constant as predicted for the bulk of the solid-like case. The reason is that the 
data of fig. 5a are averages over all pairs of particles that were initially close 
neighbors and as seen in fig. 4a the solid-like bulk is surrounded by layers of 

more  mobile particles. 
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Fig. 4. Comparison of solid- and fluid-like behavior. (a) and (b): lower part of the system after 
shaking (see text); (c) and (d): trajectories of test particle in each situation. The walls are displayed 
at 9 = 0. (a) and (c) correspond to f = 60 Hz and A = 4d/3;  (b) and (d) to f = 40 Hz  and A = 3d. In 
both cases have the same value of A f  2. 
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Fig. 5. (a) The Square of R(t) as defined in eq. (5), and (b) the mean square displacement of a 
tracer particle as a function of time for different frequencies and amplitudes. The data are 
averaged over all particles. Legend: (case a) f = 80, A = 3/4; (case b) f = 20, A = 2.5/2.99; (case c) 
f =  20, A = 3; (case d) f=40,  A =3; and (case e) f =  60, A =4/3, all frequencies in Hz and 
amplitudes in units of d. For case a, case d and case e the quantity Af  2 = 14.35 m/s 2 is the same. 

Using  the same nomenc la tu re  for  the five different cases we show in fig. 5b 

the  m e a n  square  d isplacement  o f  a t racer  particle as a funct ion of  t ime. Aga in  
violat ion of  the simple A f  2 scaling is observed.  Clearly case d sticks out  f rom 

the o the r  cases and in fact one  also observes  a quali tative difference compar ing  
fig. 4a (case e) and fig. 4b (case d). So it seems that  fig. 5b can be used to 

distinguish if a solid-like bulk exists or  not.  We also see that  in some situations 

(e.g. case b) the packing  follows quite closely the mot ion  of  the vibrating plate 

which seems yet  ano ther  way  of  character izing a solid-like behaviour .  
In  conclusion we have numerical ly  investigated aspects of  the fluidization of  

a granular  material .  To  see whe ther  our  M D  techniques  proper ly  mode l  
realistic si tuations,  we r ep roduced  two-dimensional  exper iments  pe r fo rmed  by 
C lemen t  and Ra j c he nba c h  and found  good  ag reement  in the density and 
veloci ty  profiles. We considered situations with different  f requencies  f and 
ampl i tudes  A of  the vibrat ion and found  clear evidence against an eventual  
scaling of  statistical proper t ies  with A f  2. The concept  of  fluidization itself is 
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also ambiguous  - at least one  can define qualitatively different  types of  fluidiza- 

t ion.  A t  very  high f requencies  any t racer  particle per forms  essentially a r a n d o m  

walk. In  this case the average  height  of  the packing can be several times the 
height  o f  the packing  at rest. A t  lower  f requencies  a solid like bulk appears  in 

which a t racer  part icle is t rapped  and this bulk is su r rounded  by more  mobi le  

particles.  A t  even lower  f requencies  the average height  of  the packing follows 

the  oscillations of  the vibrat ing plate. In all these cases however  one  can define 
an average  diffusion constant  that  is not  zero.  

The  present  s tudy sheds m o r e  light on the problems connec ted  with fluidiza- 

t ion a l though  several impor tan t  ingredients  have not  been  taken into account  

here :  particles have rota t ion,  C o u l o m b  (dynamic) friction and static friction, 
the  part icles are not  perfect ly circular and identical and,  finally, mos t  experi-  

men t s  are  of  course three dimensional .  Molecular  dynamics  seems to be a good  

tool  to explore  these quest ions further.  Indeed ,  it has been  shown recent ly  that  

with the same mode l  as p resen ted  here ,  i.e. even wi thout  solid friction, it is 

possible to obtain  even in two dimensions  the famous  convect ion  cells that  

appea r  on vibrat ing tables [21]. For  granular  media  also con t inuum equat ions  
o f  mo t ion  [23], a t h e r m o d y n a m i c  formalism [24] and cellular au tomata  [25] 

have been  fo rmula ted  and it would  certainly be interesting to explore the 
effects of  fluidization discussed in this paper  within these theories.  

We thank  E. Clement ,  J. Ra jchenbach  and G. Ris tow for  fruitful discus- 
sions. J . A . C . G .  is a senior  fellow of  the C N P q  (Brazil) .  
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