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Abstract

We investigate the propagation of bistable fronts in lattices of di�usively and advectively
coupled cubic and quartic bistable maps, reporting the distribution of both stable states for
asymmetric basins of attraction. The main e�ects of basin symmetry and local nonlinearities
are obtained by comparing distributions for cubic local dynamics, with either symmetric or
asymmetric basins of attraction, with those obtained for quartic maps with asymmetric basins.
In addition, we show how front velocities depend on the local parameter and di�usion.
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Front and interface phenomena appear frequently in extended systems involving con-
tinuous as well as discrete space. Although for space-continuous systems much progress
has been made [1], the study of front and interface dynamics is not as complete for
space-discrete models, particularly for systems evolving with discrete time, namely the
so-called coupled map lattices (CMLs) [2].
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So far, studies about fronts as particular solutions of CMLs deal mostly with
traveling waves [2–4], synchronization phenomena [5], mode-locking phenomena [6]
and reaction–di�usion systems [7]. In particular, bistable fronts in CMLs, joining two
stable states, reveal particular features which are not observed in space continuous sys-
tems, e.g. in CMLs the front velocity shows mode-locking when the coupling strength
is increased [6].
Recently, we found that the evolution of bistable fronts in lattices of coupled

cubic maps can reproduce the possible dynamical regimes observed in the ocean [8].
In fact, local bistability is observed in box models of ocean convection phenomena,
suggesting the introduction of a CML model with bistable dynamics to study convec-
tion parameterization. For that, we used a particular cubic map with two stable Kxed
points, Eq. (1) below, one representing the local convective state and the other the
non-convective one, and took a space discretization (grid representation) of some suit-
able ocean area [8]. With these assumptions one is able to construct a CML model
representing the three di�erent regimes observed in the North Atlantic, namely the
monostable and non-convective, monostable and convective, and bistable. However,
this study was based on a particular local map having basins of Kxed asymmetry.
The main goal of this study is to assess how much the fronts joining two stable

stationary states are inNuenced by local nonlinearities and basin symmetries. By local
nonlinearities we mean the nonlinear terms present in the local dynamics (e.g. quadratic,
cubic, quartic, etc.), while basin symmetries correspond to the relative size of the basins
of attraction from which initial conditions are taken. To this end, we consider CML
models ruled by three di�erent local dynamics, namely,

xt+1 = f1(xt) =−x3t + 3
2xt + a ; (1)

xt+1 = f2(xt) =−x3t + axt ; (2)

xt+1 = f3(xt) = (x2t − a)2 − a ; (3)

where a is the local parameter controlling nonlinearity. Figs. 1(a–c) show the corre-
sponding bifurcation diagrams and the basins of attraction for the two stable attractors,
‘U ’pper and ‘L’ower.
Since e�ects that we are interested depend on both the di�usion and the advection, we

use the two-dimensional version of the recently introduced di�usive–advective model
[9], in which every site evolves according to the equation

xi; jt+1 = f(x
i; j
t ) + 
Di; jt − ̃ · Ãi; jt ; (4)

where f(x) represents the local dynamics, (i; j) and t label space and time, 06 
6 1
is the usual di�usion strength and ̃ ≡ (u; v) controls the advective velocity with
components u(i) and v(j). Here Di;jt and Ai;jt are discretized versions of the di�usion
and advection operators, respectively,

Di;jt = 1
4 [f(x

i+1; j
t ) + f(xi−1; j

t ) + f(xi; j+1
t ) + f(xi; j−1

t )− 4f(xi; jt )] ; (5a)

Ãi; jt = (12 [f(x
i+1; j
t )− f(xi−1; j

t )]; 12 [f(x
i; j+1
t )− f(xi; j−1

t )]) : (5b)
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Fig. 1. Bifurcation diagram for (a) the cubic map f1, Eq. (1), (b) the cubic map f2, Eq. (2), and (c) the
quartic map f3, Eq. (3). The basins of the two Knite attractors, ‘U ’pper and ‘L’ower, and the ones of
inKnity, ±∞, are represented using di�erent tonalities. Rectangles delimit regions where the pair of Kxed
points are stable.

The conKguration found suitable to describe aspects of ocean convection [8] is used,
namely a lattice of 16 × 16 sites and Kxed boundary conditions. For each map, we
study the range of values of parameter a delimited by rectangles in Fig. 1, where at-
tractors U and L are Kxed points, namely 06 a6 (3

√
6)−1 for f1, 1¡a¡ 2 for f2,

and 3
4 ¡a¡ 5

4 for f3. As it is clear from Fig. 1, for these regions the cubic map f2

has symmetric basins of attraction, i.e., the basins of U and L have the same volume
in phase space for each parameter value, while the ones observed for maps f1 and
f3 are asymmetric. Thus, basin size e�ects are studied from the comparison between
the cubic maps f1 and f2, and the inNuence of local nonlinearity is investigated from
the results of cubic map f1 and quartic map f3. Further, front-like initial conditions
are used. More precisely, half of the lattice (16 i6 8) is initialized at the L Kxed
point and the other half at the U Kxed point. Thus, the fraction of sites at one sta-
ble state, say U , starts from R0 = 0:5, attaining the Knal value R when the system
thermalizes.
Fig. 2 shows the dependence of R as a function of local parameter a and di�usion


. Di�erent local dynamics f1, f2, or f3 are illustrated separately for two situations,
in the absence of advection (= 0) and when the advective velocity is = 0:1
, taken
arbitrarily in the i direction (v(j) = 0).
In the absence of advection one observes a sharp transition for both f1 and f3. This

transition separates two regimes, one for which R= 0:5 and another where R= 1. The
region where R = 0:5 is characterized by static fronts, i.e., the initial value R0 = 0:5
remains unchanged during time, while the region where R = 1 corresponds to fronts
which propagate on the lattice. Thus, the line separating both regimes is interpreted as
a bifurcation, inducing front propagation, which occurs above a certain critical di�usion
strength, as already observed for other local dynamics [6]. Here, one clearly sees that
the bifurcation depends also on the local nonlinearity, and moreover it is not observed
for the cubic map f2 with symmetric basins. Instead, only two disconnected regions
with R& 0:5 are observed, meaning that the front is static, and only a rearrangement
of the structure of the interface region occurs, transporting a few sites from one state
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Fig. 2. The fraction R of sites at the ‘U ’pper Kxed point, as a function of local parameter and di�usion.
Columns refer to maps f1, f2 and f3. Upper row is obtained in the absence of advection ( = 0) while
 = 0:1
 in the lower row. Front-like initial conditions were used. R is computed after discarding 1000
time-steps.

to the other. This phenomenon of rearrangement is due only to di�usion and appears
also in other situations [6,8].
These observations are taken as indicative that the asymmetry between both basins

of attraction plays an important role in the propagation of fronts. More precisely, one
observes the stable state corresponding to the larger basin invading the other one. In
other words, the equal size of the basins prevents the front from propagating, and
di�usion only shrinks the interface between both stable states. As for the quartic map,
f3, there is also a sharp transition between the same two regimes, but contrary to
the cubic map f1, one observes here low values of the local parameter favoring front
propagation.
In the presence of advection, the cubic map f2 exhibits also the transition from

static to propagating front regimes, indicating that advection induces propagation of
fronts, as already described in Ref. [9]. The important and curious fact here, is that the
transition observed for the cubic map f2 resembles the one observed for the quartic
map f3. In other words, similar results are observed for both cubic-symmetric and
quartic-asymmetric cases.



P.G. Lind et al. / Physica A 327 (2003) 65–70 69

0
0.2

0.4
0.6

0.8
1

ε
0

0.02
0.04

0.06
0.08

0.1
0.12

a

-0.4
-0.3
-0.2
-0.1

0

V

f1

γ 
= 

0

0
0.2

0.4
0.6

0.8
1

ε
1.2

1.4

1.6

1.8

2

a

-0.001
-0.0005

0
0.0005
0.001

V

f2

0
0.2

0.4
0.6

0.8
1

ε
0.8

0.9

1

1.1

1.2

a

-0.2

-0.1

0

V

f3

0

0.2
0.4

0.6
0.8

1

ε
0

0.02
0.04

0.06
0.08

0.1
0.12

a

-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0

V

γ 
= 

0.
1ε

0
0.2

0.4
0.6

0.8
1

ε
1

1.2

1.4

1.6

1.8

2

a

-0.1

-0.05

0

V

0
0.2

0.4
0.6

0.8
1

ε
0.8

0.9

1

1.1

1.2

a

-0.3
-0.2
-0.1

0

V

Fig. 3. Velocity V of fronts in CMLs, as a function of the local nonlinearity and di�usion, for each local
dynamics (1)–(3). Contour lines have the same velocity. Absence (upper row) and presence (lower row) of
advection are shown. Same initial conditions as in Fig. 2 were used. Symmetric values of V are observed
for complementary initial conditions and a symmetric value of the advective velocity.

Increasing the advection strength induces the bifurcation to shift towards weaker
di�usion strengths since, in general, advection favors the propagation of local states
[9]. Taking the opposite direction for the advective velocity, one obtains the same shift
but towards stronger di�usion.
To study more deeply the way fronts propagate, we show in Fig. 3 the front velocity

as a function of both local parameter and di�usion strengths, for the same situation
illustrated in Fig. 2. Front velocities have non-positive values due to our convention for
positive directions (increasing i and j directions are positive) and the plateaus V = 0
correspond to the plateaus R=0:5 in Fig. 2, i.e., to the regions characterized by static
fronts.
In all cases, the velocity magnitude increases with both the di�usion and the ad-

vective velocity component perpendicular to the front. Moreover, for strong di�usion
both ‘asymmetric’ maps, f1 and f3, have a velocity magnitude decreasing almost pro-
portionally to a, while for f2 the local nonlinearity plays apparently no role. Finally,
there is velocity locking for both asymmetric maps in the region of high values of
local nonlinearities and strong di�usion. These lockings seem to be prevalent for any
bistable local dynamics having asymmetric basins [6].
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Two points should be stressed here. First, in order to separate both nonlinearity and
basin symmetry e�ects, initial conditions are taken from the interval deKned by the two
stable Kxed points, except for the cubic map f1. For f1 we consider an interval around
the unstable Kxed point for which the relative size of the basins is equal to the one
found for the quartic map, for a suitable linear parameterization of the corresponding
nonlinearities. Secondly, for complementary initial conditions, i.e., interchanging U
and L states, plots of Fig. 2 give complementary results (R → 1 − R), and in Fig. 3
symmetrical values of the advection give symmetrical values of the front velocity.
In conclusion, we described how the dynamics of bistable fronts depend on bistable

local maps of CMLs. In general, asymmetric basins, strong di�usion and advection
promote the propagation of fronts. In particular, one observes a bifurcation boundary
where transition from static to moving fronts occurs. Changing from a cubic to a quartic
nonlinearity induces a corresponding change in the bifurcation boundary in parameter
space. However, a remarkable Knding is that the bifurcation boundaries of the quartic
asymmetric and cubic symmetric maps are quite similar in the presence of advection. As
for the moving fronts, we have shown that the magnitude of front velocities increases
not only with the di�usion strength but also with the advective velocity. The Knal
stationarity state of some initial bistable front moving towards the lattice boundary is
a coherent state, where all sites evolve with the same amplitude. The transition from
moving front to coherence is a particular case of a general transition from non-uniform
to coherent states observed in bistable coupled maps, and depends not only on the
di�usion strength but also on the range of the interaction. These interesting features
will be discussed elsewhere.

This work is a bilateral Brazilian–Portuguese (CAPES-GRICES) cooperation, sup-
ported by FCT (Portugal) and CNPq (Brazil).
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