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We propose using discrete dynamical systems to model non-Markovian processes. This 
implies a whole hierarchy of dynamical systems with dimensionality increasing proportional to 
the memory. Specific long-range memory effects are investigated for a quadratic, a cubic and 
a quartic map. Markovian processes transform the quadratic map into a normal form of the 
logistic equation; the H6non map corresponds to non-Markovian "first-generation" memory 
effects. Higher memories imply new high-dimensional systems. Non-Markovian processes 
imply new "memory-routes" to chaos. For the three polynomial maps discussed here it is 
possible to define "critical memory lengths" above which the systems essentially lose memory. 

T h e r e  are  severa l  dynamica l  sys tems of  in te res t  which involve  effects  well  

a p p r o x i m a t e d  if one  assumes  t hem to occur  at the  same t ime as the  cause  

r e s p o n s i b l e  for  them.  It  is not  difficult ,  however ,  to imag ine  s i tua t ions  in which 

effects  o b s e r v e d  at a g iven t ime  are  ac tual ly  consequences  of  causes  which  

o c c u r r e d  ear l ie r .  In  such cases  the  sys tem acts as if it had  a m e m o r y  of  ea r l i e r  

even t s .  E x a m p l e s  of  s impl i f ied  mode l s  to dea l  with wha t  might  be  ca l led  

m e m o r y  effects are  d i f f e rence -d i f f e ren t i a l  equa t ions  used  to  desc r ibe  some  

phys io log ica l  con t ro l  sys tems [1] and  the b e h a v i o r  of  the  e lec t r ic- f ie ld  am- 

p l i t ude  of  a p l ane -wave  r ing cavi ty  con ta in ing  a cell  with a gaseous  s amp le  of  

two- l eve l  a t o m s  [2]. The  m a t h e m a t i c a l  desc r ip t ion  of  p h e n o m e n a  involv ing  

t i m e - d e l a y s  is usual ly  done  using d i f fe rence -d i f fe ren t i a l  equa t ions .  Such equa-  

t ions  a re  f r equen t ly  r e g a r d e d  as def ining " inf in i te  d i m e n s i o n a l "  dynamica l  

sys tems .  Le t  x( t )  r e p r e s e n t  a quan t i ty  of  in te res t ,  d e p e n d i n g  on a continuous 

t ime  t. D i f f e r ence -d i f f e r en t i a l  equa t ions  involve  t e rms  in x ( t -  r) ,  i .e .  on  the  

va lue  of  the  va r i ab le  at an ea r l i e r  t ime  ~-. I n f i n i t e - d i m e n s i o n a l i t y  refers  to the  
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need of specifying initial conditions for the whole interval 0 ~< t ~< r. The study 
of high-dimensional dynamical systems is presently a topic of very active 
research [3]. Apart from their utility as physical models, difference-differential 
equations have also been used as test-ground for extracting information using 
"embedding techniques", specially via computation of various correlations, 
dimensions, entropies, etc. Recent references include [4] from where further 
references might be obtained. A problem in dealing with difference-differential 
equations are spurious effects introduced via mandatory discretizations needed 
to integrate them. In other words, the advantage of simulating high-dimen- 
sionality with difference-differential equations might be impaired by unwanted 
"integrator effects". 

This paper proposes using discrete maps as a convenient framework to study 
memory effects. The rationale for our proposal is basically the same used to 
fruitfully approximate systems of ordinary differential equations by discrete 
maps: (i) it is far easier to iterate a map than integrate differential equations, 
(ii) numerical uncertainties involved in iterations are much smaller and "con- 
trolable" than those involved in integrations and, the essential characteristic, 
(iii) it works. All previous works involving discrete dynamical systems that this 
author is aware of are based on what in the framework being proposed here 
can be interpreted as Markov processes modeled via equations of the generic 
form xt+ ~ =f(xt;  p), p representing collectively one or several parameters. 
This paper reports results obtained by considering for the first time long-range 
memory processes simulated via d&crete dynamical equations. In other words, 
we propose simulating full non-Markovian processes via general models written 
generically as 

x,+, = f ( x , ,  x,_ 1 . . . .  , x,_(s_,); p ) ,  (1) 

where N is the dimension of the system, N - 1 is the order of the memory and f 
the model. As a specific example, we present results obtained by perturbing 
the quadratic map x,+~ = a - x~ via reinjection of the field xt_, ~ (measured at 
earlier times z = 1, 2, 3 , . . . )  with a feedback amplitude b: 

x , + l  = a - x ~  + b x , _ T  . (2) 

The whole hierarchy of equations implied by eqs. (1) and (2) and their 
interpretation as resulting from memory effects are the main results of this 
paper. In the remainder of the paper we present properties/consequences of 
the memory effects incorporated in eq. (2). A preliminary report about 
memory effects simulated via discrete dynamical systems is submitted else- 
where [5]. 

For b = 0 (zero feedback amplitude), the dynamical behavior of eq. (2) is 
textbook knowledge: bounded (finite) attractors exist only for a 0-=-1/4<~ 



J. A.C. GaUas / Memory effects via discrete dynamical systems 419 

a ~< a c ~- 2.0. Between a 0 ~< a < a I ~ 3/4  it has stable fixed points; stable 
period-2 cycles exist for a ~ < - a < a 2 = 5 / 4 ;  period-4 up to a - 1 . 3 6 8 1  . . . .  
bifurcating further until ao~ ~- 1.40115. . .  where chaos  begins. For a > ao~ there 
are intervals of periodicity, for example, a period-3 window starts at a r = 7 / 4 .  

It is possible to prove a number of results for eq. (2): (i) it is always a 
diffeomorphism for b ~ 0; (ii) its Jacobian is always constant and given by b 
multiplied by the "par i ty"  (-1)~;  (iii) the equations defining fixed points do not 
depend on ~-, their non-trivial term being x 2 - (b - 1)x - a = 0; (iv) for any 
the stabi l i ty  of fixed points is determined from the polynomial 

A ~+1 + 2xA ~ -  b = 0  ; (3) 

(v) there is a similar full hierarchy of z-dependent  equations defining the 
stability of all higher periods. While d o m a i n s  of periodicity are still determined 
from exactly the same equations as for the H6non map, their range o f  s tabil i ty  

is now a highly interleaved "manifold-like" structure induced by increasingly 
high-degree polynomials in ~-. 

The case b # 0 with ~- = 0 represents a trivial change of the quadratic normal 
form to the familiar logistic equat ion .  Its dynamics is isomorphic to that for 
b = 0 and therefore will not be further discussed. Note however the new point 
of view associated to the transformation between the quadratic and the logistic 
maps. 

Case  r = 1. Defining Yt - x,-1, eq. (2) yields the 2D system 

xt+ 1 = a -  x~ + by  t , Yt+l = xt  • (4) 

This equation is a normal form of the H6non map, a very well studied discrete 
map for which voluminous results exist in the literature [6]. From the well 
known properties [6] of the H6non map it is immediately clear that by properly 
controlling the feedback-amplitude b one is able to generate all the rich 
phenomena  typical of the H6non map, i.e. attractors of any periodicity as well 
as chaotic behaviors. So far, virtually all studies of the H6non map have been 
done by considering the dynamics as a varies along lines of constant b. The 
present  formulation of the problem shows how to interpret results obtained by 
varying b along lines of constant a. The H6non map is a diffeomorphism for all 
b # 0 and has a constant Jacobian: - b .  Therefore ,  fixing a and varying the 
feedback amplitude b corresponds to continuously varying the Jacobian. To see 
memory  effects refer please to fig. 1. This figure shows isoperiodic diagrams on 
the space of parameters of eq. (4) obtained as described in ref. [7] for the first 
4 values of z. (Ref. [7a] contains more than 20 color isoperiodic diagrams 
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Fig. 1. Isoperiodic diagrams showing memory effects in the quadratic map, eq. (2) ,  as a function 
of the parameter a (horizontal axis), the feedback amplitude b (vertical axis) and time-delay ~-. In 
this figure the coordinates of bottom-left corners are always (a, b ) =  ( - 0 . 5 , - 1 . 0 ) .  Upper-right 
coordinates are (2.5,  1.0). Both scales are linear. Numbers represent periods found by following 
orbits [7] from diagonal zeros, i .e. x~j = Y0 = 0.0. Similar shading indicates identical periodicity. 
White regions represent domains of chaotic behaviour. N refers to the 'nose' at a = 2 along the 
invariant Markov line b = 0. The gray shading containing the symbol ~ refers to unbounded 
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Fig. 1 (cont.). 

at tractors.  In some figures, T i refers to triplex points and Si to shrimps (see text).  Al though hard to 
see in the figures, adjacent  to the period-4 regions there are always domains  where full doubling 
cascades develop. (a) r =  1: the 2D H6non map;  (b) ~-=2: a 3D map; (c) T = 3 :  a 4D map;  F 
represents  a fractal domain in the parameter  space (see text); (d) r = 4: a 5D map. 
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displaying in details the rich topology of the shrimps embedded in the chaotic 
domains.) Each shading represents domains of points (a, b) for which orbits of 
x0 = Y0 = 0.0 are found to have the same periodicity. The shaded regions 
containing the symbols ~ indicate parameter values for which there are no 
bounded attractors. Black regions containing the number 1 refer to domains of 
fixed points, i.e. to parameters for which eq. (4) has period-1 orbits. The 
shaded regions containing the number 2 indicate period-2, etc. Adjacent to the 
period-4 regions there are complete 1 × 2 n cascades which are, however, hard 
to see on the scale of the figure. White regions denote the Via Caotica, i.e. 
parameters corresponding to chaotic orbits. All periods up to 20 have been 
represented in the figure. As can be recognized by the strong compression of 
the domains as the period increases, it is virtually impossible to discern periods 
higher than about 15 on the scale used. This means that white domains contain 
embedded in them many very thin islands of higher periodicity that can not be 
properly represented in the scale of the figures (see however ref. [7]). The 
same shading convention was used for all figures in this paper. 

Due to a known conjugacy [6] one only needs to consider the dynamics of 
eq. (4) within the strip Ibl-< 1. The map is orientation-preserving (reversing) 
below (above) the invariant b = 0 quadratic-map Markov line passing through 
the "nose" N at a --- 2, b = 0. Memory effects can be seen by considering the 
dynamics along lines of constant a in fig. la. For a < 0 there are most of the 
times no bounded attractors, the exception being small domains of fixed- 
points. For 0 < a < 0.72 (a = 0.72 is tangent to the period-4 domain) one finds 
either a fixed-point or period-2. The orientation-preserving domain contains 
virtually only fixed-point stable behavior. Above a = 0.72 the dynamical be- 
havior observed by varying b becomes very rich quickly, specially for b > 0. 
There are two real fixed points for a > - ( b  - 1)2/4. From eq. (3) it follows that 
for - ( b -  1)2/4< a < 3 ( b -  1)1/4 one of them is a saddle while the other is 
attracting. These curves are exactly the two continuous parabolic borders 
delimiting the stable period-1 domain in fig. la. Similar analytical results might 
be obtained for the limits of the stable period-2 domain. For higher periods 
one can easily obtain equations defining the borders but to solve them is a 
non-trivial task. Ref. [7] discusses at length the rich dynamical behaviors 
existent inside the white chaotic domains. In such domains one finds many 
regularities, specially families of isoperiodic "shrimps" aligned along specific 
directions [7]. We merely indicate by S i some regions where shrimps concen- 
trate and refer to ref. [7] for a detailed description of the complex phenomena 
inside chaotic domains. These phenomena are not relevant for our purposes 
here (see however ref. [5]). 

Case ~-= 2. Defining z, =-x,_ 2, eq. (2) yields the following 3D system: 
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x ,+  1 = a - x~  + b z  t , Y,+I = x t  , z,+ x = y , .  (5) 

The  Jacobian is now b. Fig. lb  shows how the two-generations memory affects 
the dynamics. The most evident effect is that fixed-point behaviour is now 
restricted to a much smaller range of parameters.  In addition, in sharp contrast 
with what is commonly observed in s t a n d a r d  discrete models of dynamical 
systems, the familiar steady bifurcation cascade 2" appears interrupted in 
various parameter  domains. Specially interesting regions are those converging 
to the several "triplex-points" Ti, borders between t h r e e  domains of different 
stable motions. Near  such points, small perturbations (noise) are able to induce 
complicated multistable and hysteretic behaviors. Note that radical changes 
happen at both ends of the a = 0 line where for any ~- > 1 one finds "cusp-like" 
behaviour.  Discontinuous changes in derivatives while moving along borders 
can also be seen in other regions of the parameter  space, notably at the Ti. 
These characteristics imply the existence of many "memory-routes"  to chaos 
different from those known. 

C a s e s  z = 3 a n d  z = 4. Fig. lc and ld  show memory effects for the 4D and 5D 
systems, respectively, obtained analogously to those in eqs. (4) and (5). Figs. 
la  and lb ,  respectively lc  and ld  look "similar",  reflecting the common parity 
of their Jacobian. Further,  the pictures seem to loosely " ro ta te"  around the 
quadratic-map line b = 0 as r increases. Note however the conspicuous "shoul- 
der"  at the left bot tom corner in all pictures. Indicated by F in fig. lc is a 
fractal structure in the parameter  space. Such structures reflect the coexistence 
of more than one bounded attractor: for parameters in this range, plots on a 
rough scale of the basin of attraction appear to divide the space of variables 
into two domains corresponding to a bounded attractor and to the attractor at 
infinity. However ,  upon closer examination it is possible to uncover at least 
one other  much thinner filament-like basin "embedded"  in a very complex and 
beautiful way in the basin of the bounded attractor. Adiabatic parameter  
changes while generating isoperiodic diagrams from a single fixed initial 
condition as done here [7] are equivalent to traversing across the filaments. 
This exposes the complex intertwining of the basins by causing the system to 
switch between different attractors thereby generating the fractal structures in 
the parameter  space. Such fractal structures in the parameter  space do not 
seem to have been observed before. As for r = 2 one also finds in figs. lc and 
ld  sudden interruptions of period-doubling cascades with the system 
" jumping"  directly into chaos. Although the precise conditions for the occur- 
rence of this phenomenon are not yet clear, it is interesting to observe that 
such a situation has already been observed experimentally [8]. This same type 
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of  p h e n o m e n o n  might  perhaps  explain some o ther  " in t e r rup ted"  routes  to 

chaos  measured  near  tangencies in glow-discharge plasmas [9]. 

By consider ing isoperiodic diagrams for ~- = 11, 21, 31 and 41 (which have all 

the same pari ty as the H 6 n o n  map)  one  recognizes that the domain  of  b o u n d e d  

t ra jector ies  is s trongly reduced  and displays relatively small changes  as ~- 

increases.  In fact after about  ~-= 11 the system can be considered to have 

essentially "lost  the m e m o r y " .  F r o m  this it seems fair to say that  there  is a 

characteris t ic  m e m o r y  t h r e s h o l d  above  which the system has no memory .  W h a t  

happens  for  much longer-range memor ies?  Fig. 2 shows an isoperiodic d iagram 

for  a feedback  process with r = 101, chosen to have again the same pari ty as 

the  H 6 n o n  map.  This cor responds  to a 102-dimensional system. Perhaps  the 

mos t  striking feature  in this picture is the relative symmet ry  with respect  to the 
b = 0 Markov ian  line, the border  line across which the Jacobian  changes sign. 

A relative "insensit ivi ty" to changes  in the sign of  the Jacobian  is of  interest 

because  of  the different roles f requent ly  at t r ibuted to the or ienta t ion-preserv-  

ing or  reversing maps,  specially in h igher-codimensional  dynamical  systems. 

The  relative insensitivity to the sign of  the Jacobian can be already observed  at 

Fig. 2. Isoperiodic diagram showing long-range memory effects corresponding to ~" = 101 (same 
parity as in figs. la and lc). Scale and symbols as in fig. 1. Note the relative symmetry with respect 
to the b = 0 Markov line when compared with the short-range H6non process shown in figs. la and 
that in fig. lc. Domains of bounded attractors are much reduced and chaos takes over. Scales and 
conventions as in fig. 1. The "4" inside Via Caotica refers to the periodicity of the adjacent 
domains. 
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much lower values of r. By drawing isoperiodic diagrams for increasingly 

higher values of r one obtains figures which are more and more symmetric with 
respect to the b = 0 Markov line. This numerical evidence appears to indicate 
that the r = ~ limit might perhaps correspond to a situation where orientation- 
preserving and orientation-reversing domains in the parameter  space have 
identical topologic characteristics. 

By comparing figs. la  and 2 it is possible to see that the net effect of the 
memory  is roughly to exchange domains of stable periodic behaviors into 
domains of chaos. In particular, memory effects appear to conspire to quickly 
wash out high-period orbits. A measure of this effect can be obtained by 
comparing the sensible reduction of the period-1 domains between figs. la  and 
2. Note also that the period-4 that appears always adjacent to the period-2 
domain is very much reduced. To observe higher periodic orbits requires 
zooming into specific zones, shrimp zones [7], of the space of parameters.  Fig. 
1 clearly shows multiple triplex points. As r increases these points move 
towards the b = 0 line. In particular there is a very stable triplex point, 
common border  of per iod-l ,  period-2 and chaos, located slightly below the 
b = 0 line which tends to it as r increases. 

A typical phenomenon observed in dynamical systems is the coexistence of 
more than one s t a b l e  attractor for a given set of parameters.  The initial 
conditions are the important factors determining to which stable attractor the 
system will eventually go. By considering isoperiodic diagrams obtained for 
several different initial conditions one sees that as the absolute value of x 0 
increases there is a strong reduction of the cobasin of bounded attractors. It is 
also possible to observe domains where the border  between parameters 
corresponding to diverging and non-diverging orbits is very well approximated 
by line segments. As in figs. 1 above, the region close to the triplex point 
denoted  by T in fig. ld  is found to be stable not only with respect to changes of 
r but also with respect to changes of initial conditions. There is another triplex 
point at about the same vertical position as T and roughly between the nose 
and T. However  it is not as stable as T. It would be interesting to investigate 
these points and the dynamics around them more closely. 

After  considering memory effects on the quadratic map it is natural to look 
for the same effects in other systems. I considered two further dynamical 
systems which are 'very close' to the H6non map. These systems are inspired 
by an early work of Holmes [10] who used what might be perhaps called in the 
present context 'cubic variants of the H6non map' to model Duffing equations. 
Fig. 3 shows isoperiodic diagrams for r = 1 and 2 for the system 

x , + ,  = x , ( a  - x ~ )  + b x , _ ~  . (6) 

By comparing figs. la  and 3a one sees many characteristics of the space of 
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Fig. 3. M e m o r y  effects for  the cubic map,  eq. (6),  as a funct ion of  a (horizontal  axis), b (vertical 
axis) and ~'. In bo th  figures the coordinates  of the bot tom-lef t  corners  are ( - 1 . 0 , - 1 . 0 )  while 
upper - r igh t  coordinates  are (4.0, 1.0). Scales are linear and orbi ts  were  s tar ted at x 0 = 0.5. Fu r the r  
symbols  are as defined in fig. 1. (a) r = 1; (b)  ~" = 2. 
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parameters seem to 'survive' the change from quadratic to cubic dynamics. As 
for the Hrnon map [7], the parameter space of eq. (6) also has fractal domains. 
The broad period-1 domains in figs. 3a and 3b are apparently divided in two 
pieces by a white line segment. In fact, this line is just a consequence of the 
number of preiterates being not enough to overcome the quite slow conver- 
gence along it. A few test runs considering much longer transients showed that 
the white regions are in fact period-1 domains with very slow convergence. All 
other wide white regions (indicating regions of chaos) showed no change when 
increasing the number of preiterates discarded. Similarly to what is observed 
for the Hrnon map [7], regions of predominant chaotic behavior are found to 
contain embedded in them several islands of isoperiodic dynamics. Triplex 
points are also present. Again, as ~- increases, the domains of higher periodic 
behavior get smaller and smaller. An interesting fact is that the dynamics close 
to the b = 0 Markov line is quite stable against changes of z. Detailed 
isoperiodic diagrams of families of cubic maps have been recently discussed in 
ref. [11]. This reference contains several color diagrams displaying the rich way 
in which islands of higher periodicity appear embedded in the wide chaotic 
seas. 
discrete model of the Duffing equation? The answer for z = 1 and 2 can be 
seen in fig. 4 which displays isoperiodic diagrams obtained by considering the 
dynamics of the quartic equation 

x,+ 1 = x , (a  - x~)  + bx,_~ . (7) 

As one sees from fig. 4a, there is a relative symmetry of the domains of high 
periodicity with respect to the vertical line a = 0. The "nose" is still present 
and appears now on both sides of the b = 0 Markov line. It is still possible to 
observe shrimps and fractal structures but they disappear fast as ~- increases. By 
comparing figs. la, 3a and 4a it is possible to recognize some apparently 
"recurrent" characteristics of the simpler ~" = 1 two-dimensional systems. By 
considering the dynamics along constant a or b lines one sees that memory 
effects imply many possibilities of reaching chaos via sequences of bifurcations. 
A quick glance at the figures presented here is enough to convince oneself that 
the classification of even a few of the abundant and complicated routes to 
chaos is not a trivial task. A careful investigation of the "inferno" of possible 
behaviors contained in the space of parameters is no doubt of great interest. It 
is also interesting to observe that the cartographic information contained in 
isoperiodic diagrams precisely shows how to change parameters in order to 
jump between s table  attractors, i.e. to con t ro l  the dynamics of the system. 

In conclusion, we proposed using discrete dynamical systems as models of 
long-range memory effects. The specific examples discussed were primarily 
intended to show how memory effects can be incorporated and described and 
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Fig. 4. M e m o r y  effects for the quart ic map,  eq. (7), as a funct ion of a (horizontal  axis), b (vertical 
axis) and ~-. Coordinates  of bot tom-lef t  corners  are (a, b) = ( - 1 . 0 ,  1.0); upper-r ight  corners  are at 
(4.0, 4.0). Scales are linear and x~ = 0.5. Fur the r  symbols are as defined in fig. 1. (a) ~- = 1; (b) 
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to show some of their main consequences. The first example (eq. (2)) shows 
how to "unify"  familiar models as the quadratic map, the logistic equation, the 
H6non map, and a large family of other systems into a whole hierarchy of 
dynamical systems of increasing dimensionality. The interpretation proposed 
here  implies the H6non map to be in some sense "very close" to the quadratic 
map. The other  examples were intended to show what happens when memory 
effects are taken into account in models of differential equations. The present 
work can be also regarded as presenting heuristic evidence that there is a 
connection between other families of high-dimensional systems and corre- 
sponding low-dimensional "building blocks" via memory effects. From the 
analysis of the isoperiodic diagrams presented here along with several others 
generated for different ~- and initial conditions one sees that memory effects for 
the particular families of polynomial systems discussed in this paper produce 
basically similar changes on the parameter  space. The 'generic characteristics' 
observed to recur in the systems discussed here are: (i) strong reduction of 
islands of higher periodicity as ~- increases; (ii) appearance of triplex points; 
(iii) fractal structures between domains corresponding to bounded (finite) 
attractors; (iv) a relatively high symmetry between orientation-preserving and 
orientation-reversing domains as ~- increases. While the models discussed in this 
paper  certainly correspond to familiar dynamics observed in many fields of 
interest, there is no reason to expect generic memory effects to appear only via 
the quite simple expressions presently discussed. On the contrary. Therefore  it 
seems reasonable to conjecture the exploitation of memory effects via discrete 
dynamical systems, either as a model of dynamics or as a tool to understand 
effects/characteristics of high-dimensions/codimensions, to be able to generate 
much interesting results. A particularly fruitful example is the family x,+~ = 

2 a - x, - r, which will be discussed elsewhere. 
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