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Abstract

We prove a theorem establishing a direct link between macroscopically observed periodic
motions and certain subsets of intrinsically discrete orbits which are selected naturally by the
dynamics from the skeleton of unstable periodic orbits (UPOs) underlying classical and quantum
dynamics. As a simple illustration, an in�nite set of UPOs of the quadratic (logistic) map is used
to build ab initio the familiar trigonometric and hyperbolic functions and to show that they are
just the �rst members of an in�nite hierarchy of functions supported by the UPOs. Although all
microscopic periodicities of the skeleton involve integer (discrete) periods only, the macroscopic
functions resulting from them have real (non-discrete) periods proportional to very complicate
non-integer numbers, e.g. 2� and 2�i, where i = (−1)1=2. c© 2000 Elsevier Science B.V. All
rights reserved.
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The aim of this paper is to investigate conditions which allow simple dynamical
systems to support periodic behaviors. This question is of great importance due to
the pervasive nature of the in�nite set of unstable periodic orbits (UPOs) which is
well known to form the skeleton underlying dynamical systems [1]. The possibility
of using the set of periodic orbits to obtain very good semiclassical approximations
of the atomic spectra of simple atoms leads us to wonder whether it is possible to
�nd a direct link between the in�nite set of UPOs and the stable periodicities (or
aperiodicities) which surface macroscopically in physical systems. Or, equivalently,
whether it is possible to understand the origin of stable periodicities from properties
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of the skeleton of UPOs. This paper reports a result that casts some light onto this
di�cult question and shows that such a link indeed exists sometimes. An additional
motivation is the fact that although the concept of periodicity is intuitive and clear to
everyone, there is so far a quite surprising absolute lack of understanding about why
some functions are able to display periodic behaviors while others are not. Thus, we
ask: what sort of mathematical principles are responsible for the genesis of periodicities
in arbitrary functions represented by, say, series expansions? What sort of generic
“motor” is needed to transform an arbitrary power series into a periodic function?
For a wide class of dynamical systems, we prove a theorem showing that macro-

scopically measured periodicities, i.e., the periodicities of generic analytical functions
representing solutions of equations of motion, originate from an in�nite set of intrin-
sically discrete microscopic periodicities that are interconnected by subtle cooperative
phenomena among subsets of orbital points (zeros) of the equations of motion. Us-
ing this theorem, we obtain two very general formulas, Eqs. (7) and (9), establishing
macroscopic periodicities directly from the orbital points in phase space. As a simple
application, the two formulas are used to build ab initio the familiar trigonometric and
hyperbolic periodic functions, i.e., to build the simplest examples of periodic behaviors
from a particular hierarchy of UPOs of the quadratic (logistic) equation.
To start, assume a generic function f(z), thought as solution of an equation of

motion of interest, represented formally by a power series

f(z) =
∞∑
k=0

ckzk ; (1)

where the coe�cients ck contain all physical (“control”) parameters ruling the dy-
namics. Eq. (1) is quite general, being able to represent a full spectrum of dynamical
behaviors, periodic or not. Substitution of Eq. (1) into equations of motion leads to very
strong restrictions among the coe�cients of f(z), forcing them to be interconnected in
a quite regular way. This interconnection is the object of our investigation.
Let fn(z) denote the nth composition of f(z) with itself: fn(z) = f(fn−1(z)) with

f1(z) = f(z). Then, our main result may be stated as follows.

Theorem. If for an arbitrary function f(z) there is an associated “ghost” function
g(z), analytic and non-constant, such that f[g(z)] = g(�z), where � is a nth root of
unity, � n = 1, then fn(z) = z.

Proof.

f[g(z)] = g(�z) ;

f2[g(z)] = f[g(�z)] = g(� 2z) ;

f3[g(z)] = f[g(� 2z)] = g(� 3z) ;

...

fn[g(z)] = f[g(� n−1z)] = g(� nz) = g(z) :
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Corollary.

n∑
j=1

fj[g(z)] =
n∑
j=1

g(� jz) : (2)

The converse of this theorem, that fn(z) = z implies the existence of g(z), is also
true but the proof is less simple by far. We believe the theorem above to be responsible
for the origin of periodic motions observed in dynamical systems and the remainder of
the paper is dedicated to illustrate an application of the theorem to a generic algebraic
dynamical system, the paradigmatic quadratic (“logistic”) map.
Each individual n-periodic orbit forming the skeleton of an algebraic system must

obey a polynomial equation, that we write generically as

zn + c1zn−1 + c2zn−2 + · · ·+ cn−1z + cn = 0 : (3)

To know the full skeleton means to know all zeros of these polynomials. So, for each
polynomial we build the well-known sequence of sums sm of the powers m=0; 1; 2; : : : ;
k of its zeros [2,3]. 1 Adding the set of k equations obtained by substituting each
individual zero in Eq. (3), one easily sees that the sums sm satisfy

sk + c1sk−1 + c2sk−2 + · · ·+ ck−1s1 + ck k = 0 : (4)

With no loss of generality, we now focus the discussion on the simplest possible system,
zn − 1 = 0, for which Eq. (3) contains the least possible number of terms. Curiously,
maximal simpli�cation of Eq. (3) is achieved not for an arti�cially constructed example
but for the most frequently studied system of all: the quadratic map f(z) = a + z2.
For a = 0, the cyclotomic case [4,5], we have the usual �xed point z = 0, with the
remaining skeleton of UPOs, de�ned by the zeros of zn−1=0; n=1; 2; : : : ;∞, covering
the unit circle in the complex plane. The polynomials zn − 1 = 0 are the well-known
cyclotomic polynomials studied by Gauss, among others. All orbital points are roots
of unity. More general situations are discussed in Refs. [4,5].
For Eq. (3) to represent every individual n-periodic motion zn − 1 = 0 we must �x

cn=−1 and ci=0 for i=1; 2; : : : ; (n−1), implying, by Eq. (4), sk=0 for k ¡n; sk=n
for k = n. But a crucial property of the sk is the fact that sk = sk−n for k ¿n, i.e., the
“microscopic” sums sk built with the zeros of the equations of motion are themselves
periodic functions. Thus, representing the n zeros of zn− 1=0 by �; � 2; � 3; : : : ; � n=1
as usual and calling sm = � m + � 2m + � 3m + � 4m + · · ·+ � nm, one �nds

sm =

{
n if m is multiple of n ;

0 otherwise ;
(5)

which is the central gear of the “motor” generating periodicities.

1 According to Ref. [2] the sums sn originate with A. Girard (1595–1632) and I. Newton (1642–1727). See
also [3].
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Now we turn to the function g(z). Since nothing is known about this function, we
start assuming it to be given as a generic power series

g(z) =
∞∑
j=0

gj
j!
zj ; (6)

where the coe�cients are arbitrary. From Eq. (6) we easily obtain expansions for all
g(� jz) appearing in Eq. (2) and, from them, after suitable multiplication by powers
of � and simpli�cations using Eq. (5) as often as necessary, we build the following
sums:

g(�z) + g(� 2z) + g(� 3z) + · · ·+ g(� nz)

=n
[
g0 +

gn
n!
zn +

g2n
(2n)!

z2n +
g3n
(3n)!

z3n + · · ·
]
;

� n−1g(�z) + � n−2g(� 2z) + � n−3g(� 3z) + · · ·+ g(� nz)

=n
[
g1z +

gn+1
(n+ 1)!

zn+1 +
g2n+1

(2n+ 1)!
z2n+1 +

g3n+1
(3n+ 1)!

z3n+1 + · · ·
]
;

� 2(n−1)g(�z) + � 2(n−2)g(� 2z) + � 2(n−3)g(� 3z) + · · ·+ g(� nz)

=n
[
g2
2!
z2 +

gn+2
(n+ 2)!

zn+2 +
g2n+2

(2n+ 2)!
z2n+2 +

g3n+2
(3n+ 2)!

z3n+2 + · · ·
]
:

From the expressions on the left-hand side, one recognizes what the sum in Eq. (2)
and similar ones are in fact doing: they are selecting equidistant coe�cients from
Eq. (6), thereby manifesting macroscopically the microscopic periodicity of Eq. (5).
Continuing the process one arrives at the generic sum or, equivalently, average of

functions

Pn;m(z) =
1
n
[pn;m(z)]

=
1
n
[� m(n−1)g(�z) + � m(n−2)g(� 2z) + � m(n−3)g(� 3z) + · · ·+ g(� nz)]

=
gm
m!
zm +

gn+m
(n+ m)!

zn+m +
g2n+m

(2n+ m)!
z2n+m + · · · ; (7)

where the average is a linear combination of n terms obtained for 06m6n−1. Notice
that since for every n the numerical value of � is �xed by the requirement � n=1, the
sum Pn;m(z) does not in fact depend on �.
From Eq. (7), one may derive an additional equation by replacing z with !z:

1
n!m

[� m(n−1)g(�!z) + � m(n−2)g(� 2!z) + · · ·+ g(� n!z)]

=
gm
m!
zm +

gn+m!n

(n+ m)!
zn+m +

g2n+m!2n

(2n+ m)!
z2n+m + · · · ; (8)

the average involving linear combinations of the n sums, for 06m6n− 1.
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By suitably choosing ! one may derive a variety of useful formulas. For example,
take ! as a zero of the dual equation of motion zn + 1 = 0. Then, clearly, !n =
−1; !2n = +1; !3n = −1; !4n = +1; : : : ; a series that alternates signs periodically
inde�nitely, yielding an additional sum dual to Pn;m(z):

Qn;m(z) =
1
n!m

[qn;m(z)]

=
1
n!m

[� m(n−1)g(�!z) + � m(n−2)g(� 2!z) + · · ·+ g(� n!z)]

=
gm
m!
zm +

gn+m!n

(n+ m)!
zn+m +

g2n+m!2n

(2n+ m)!
z2n+m + · · · : (9)

The functions Pn;m(z) and Qn;m(z) establish the link between the in�nite UPOs and
functions which are measurable macroscopically [4]. 2

Now, we apply Eqs. (7) and (9) to build very familiar examples of periodic func-
tions, namely, trigonometric and hyperbolic functions. To this end, consider the in�nite
series

g(z) = e z = 1 + z +
z2

2!
+
z3

3!
+ · · · : (10)

In this case, Pn;m(z) and Qn;m(z) simplify considerably

Pn;m(z) =
1
n
[� m(n−1)e�z + � m(n−2)e�

2z + � m(n−3)e�
3z + · · ·+ e� nz]

=
zm

m!
+

zn+m

(n+ m)!
+

z2n+m

(2n+ m)!
+ · · · ;

Qn;m(z) =
1
n!m

[� m(n−1)e�!z + � m(n−2)e�
2!z + � m(n−3)e�

3!z + · · ·+ e� n!z]

=
zm

m!
+
!nzn+m

(n+ m)!
+
!2nz2n+m

(2n+ m)!
+ · · · :

For n = 1 we may only have m = 0. In addition, � = 1, thus implying � j = 1 for all
j = 1; 2; : : : : Similarly, ! = −1, implying !2j = 1 and !2j+1 = −1 for j = 1; 2; : : : :
Therefore,

P1;0(z) = e z = 1 + z +
z2

2!
+ · · · ; Q1;0(z) = e−z = 1− z + z

2

2!
− · · · :

These two functions form the standard basis for solving linear �rst-order di�erential
equations. They are both periodic, with purely imaginary periods. Although we started
from g(z)=e z, the motor of periodicity generated automatically its dual e−z, providing,
therefore, a complete basis for solving �rst-order di�erential equations.

2 Technically, an n-adic arithmetic emerges as a natural consequence of the underlying periodicity of g(z),
without any need for introducing the concept of “congruence” somewhat arti�cially. Thus, the dynamics
automatically generates congruences in profusion.
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For n= 2 we have �=−1 and, correspondingly,

P2;0(z) =
e−z + e z

2
= 1 +

z2

2!
+
z4

4!
+ · · ·= cosh(z) ;

P2;1(z) =
−e−z + e z

2
= z +

z3

3!
+
z5

5!
+ · · ·= sinh(z) :

Similarly, with != (−1)1=2 = i, one �nds

Q2;0(z) =
e−iz + eiz

2
= 1− z2

2!
+
z4

4!
− · · ·= cos(z) ;

Q2;1(z) =
−e−iz + eiz

2i
= z − z3

3!
+
z5

5!
− · · ·= sin(z) ;

expressions which recover familiar periodic functions, circular (having only real pe-
riodicities) and hyperbolic (having only imaginary periodicities), as indicated. These
functions form a basis for second-order di�erential equations.
For n = 2 the motor generated automatically not only the purely imaginary period-

icities, that one could argue to be somewhat embedded in g(z), but also additional
“resonances” having real period, a remarkable accomplishment. As may be veri�ed
easily, starting with a series corresponding to a circular function leads automatically to
the hyperbolic ones. Therefore, it is totally irrelevant whether one starts from real or
complex periodicities: given a single piece of information, the motor recovers automat-
ically all other members in the same periodicity class, consistently and systematically
for n=1; 2; 3; : : : : We searched the literature for ab initio derivations of trigonometric
and periodic functions and although we found a few [6–11], we were not able to �nd
the derivation above. At any rate, our objective is to call attention to the subtle action
of the motor of periodicity, not to rederive known results.
For n = 3 we have � 3 = 1 and � = 1

2(−1 ± i
√
3), implying � 2 = 1

2 (−1 ∓ i
√
3),

which produces the functions P3;0(z)= (e�z +e�
2z +e�

3z)=3; P3;1(z)= (� 2e�z + �e�
2z +

e�
3z)=3; P3;2(z) = (�e�z + � 2e�

2z + e�
3z)=3. From !3 = −1 it follows that ! = −1 or

!=1
2(1∓i

√
3) and !2= 1

2 (1±i
√
3) yielding Q3;0(z)=(e−�z+e−�

2z+e−�
3z)=3; Q3;1(z)=

−(� 2e−�z + �e−� 2z + e−� 3z)=3; Q3;2(z) = (�e−�z + � 2e−� 2z + e−� 3z)=3. The following
identities hold among the functions P3;m(z): P′′

3;0(z)=P
′
3;2(z)=P3;1(z); P

′′
3;1(z)=P

′
3;0(z)=

P3;2(z); P′′
3;2(z)=P

′
3;1(z)=P3;0(z), with analogous formulas existing for Q3;m(z). They

form a convenient basis for solving di�erential equations of third order. From suitable
sums of � mg(� jz) one also obtains families of addition and multiplication formulas
similar to the known results for P2;m (hyperbolic) and Q2;m (trigonometric) functions.
But we will not go into this here. The new functions found for n = 3 are of help in
practical applications, e.g. in Ref. [12].
To conclude, we would like to point out an additional interesting consequence of

the formulas above. Although the skeleton of UPOs involves an in�nite quantity of
periods characterized invariably by integer (discrete) numbers, the macroscopic period-
icities obtained from them involved always multiples, real or complex, of �=3:14 : : : ;
a transcendental (non-integer) number. Thus, although the motor is microscopically
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driving the dynamics in a “quantized” (discrete) way, always pumping integer periods,
the periodicities that surface macroscopically do not seem to be connected with integers
in any direct and obvious way. Any attempt of explaining the fact that both sets of
periodicities lie mathematically in rather di�erent number-�elds requires letting n to
grow inde�nitely, i.e., requires going from polynomial equations of motion to sets of
entire functions, a quite delicate step [13,14]. 3 Thus, Eqs. (7) and (9) confront us with
a new interesting aspect of the problem: to understand the intricacies of the transition
between periodicity and aperiodicity (chaos) we must disentangle properties which are
number-theoretical from those depending on the nature of the equations of motion and
understand the subtle interconnection between integer and non-integer periodicities.
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