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Incomplete homoclinic scenarios were recently measured in a semiconductor laser with optoelectronic feed-
back. We show here that such a laser contains cascades of spirals of periodic oscillations and hubs which look
identical to the familiar ones observed in complete homoclinic scenarios. This means that hubs are far more
general than presumed so far, being not limited by Shilnikov’s theorem. Laser hubs open the possibility of
measuring complex distributions of non-Shilnikov laser oscillations, and we briefly discuss how to do it.
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An outstanding phenomenon attracting continued atten-
tion over the years is the bursting, or spiking, produced by
excitable systems as diverse as, for example, the cells re-
sponsible for electric activity and insulin production in the
pancreatic � cells �1�, the cells responsible for vital neuro-
logical rhythmicity �2�, mixed-mode oscillations of chemical
systems �3–5�, and all sorts of intensity spiking observed in
laser systems �6�. Indeed, one of the very first experimental
characteristics studied continuously since the successful op-
eration of the first ruby laser, which commemorates 50 years
now �7�, was the complicated behaviors displayed by trains
of relaxation oscillations consisting of many irregular light
spikes �8�. Nowadays, semiconductor lasers are ideal tools to
study the intricacies of spiking and chaotic dynamics. For a
recent comprehensive review, see Wieczorek et al. �6�. The
impact of optoelectronic systems in the science and applica-
tions of chaos was recently reviewed by Larger and Dudley
�9�.

Typically, excitable systems are characterized by stable
steady states that may be forced to spike by relatively small
perturbations above some threshold. They involve multiple-
time-scale dynamics �10�. Low-dimensional systems nor-
mally display such behavior near Hopf bifurcations, when a
fixed point becomes unstable in favor of self-sustained stable
oscillations. However, considerably richer scenarios are pos-
sible in higher-dimensional systems, particularly when
period-doubling cascades follow a Hopf bifurcation and sub-
sequent canard explosion, producing alternations of periodic
and chaotic oscillations. As the amplitude of the chaotic at-
tractors grows one observes a spiking regime consisting of
large pulses separated by irregular time intervals in which
the system displays small-amplitude chaotic oscillations.
This scenario, reminiscent of Shilnikov’s homoclinic chaos
despite the fact that no homoclinic connections are involved,
has already been observed in chemical models �3,4� and,
very recently, in ground-breaking experimental studies of a
semiconductor laser with optoelectronic feedback by Al-
Naimee et al. �11,12�. Such experiments provide new insight
concerning semiconductor lasers by showing that they re-
quire extending the concept of excitability beyond that famil-
iar to fixed points into the realm of higher-dimensional at-
tractors, as anticipated theoretically �10�. The authors argued
their results to be due to an incomplete homoclinic scenario
to a saddle focus where no exact homoclinic connection oc-

curs, a very remarkable feature that opens the possibility of
exploring experimentally an elusive non-Shilnikov regime
�13–18�.

On the other hand, recent work has shown the abundant
presence of certain accumulation points in parameter space
which act like periodicity hubs �16,17� in phase diagrams of
dissipative flows like the laser at hand. Briefly �18�, by suit-
ably tuning parameters along spirals characterized by oscil-
lations with specific wave forms one navigates toward the
hub, the focal accumulation point, where it is possible to
commute from the incoming spiral to an infinite variety of
outgoing spirals, each one corresponding to a family of char-
acteristic stable oscillations, periodic or not �see Fig. 3 be-
low�. The situation resembles closely what happens near the
poles of the earth, in a classical navigation problem solved
by Nunes in 1537, by introducing the key concept of rhumb
lines, later translated into “loxodromic spirals,” the curves
that underlie Mercator’s projection �20�. In certain situations
the accumulation hubs are known to be directly linked to
Shilnikov’s homoclinic scenario �13–16,18�, but so far it is
totally unclear whether or not hubs exist in more general
setups like, here, in semiconductor lasers with optoelectronic
feedback displaying incomplete homoclinic scenarios. Al-
though detailed phase diagrams of chaotic phases are known
for several lasers �21,23�, no laser is presently known to
display hubs of any kind, with or without Shilnikov’s sce-
nario.

The purpose of this Brief Report is to report the discovery
of infinite cascades of spirals and periodicity hubs �16–18� in
the control �parameter� space of the semiconductor laser with
ac-coupled optoelectronic feedback of Al-Naimee et al.
�11,12�. This finding is relevant because no hubs, remarkable
dynamical objects still in their infancy, are presently known
for any laser. In addition, the laser hub presently found is not
of the “standard” type spotted so far, which has its local
dynamics ruled by Shilnikov’s theorem �13–15,18�. Accord-
ing to Al-Naimee et al. �11,12�, semiconductor lasers with
optoelectronic feedback provide an example of a non-
Shilnikov scenario, which are shown here to contain a pro-
fusion of spirals and hubs. Such hubs open now the possibil-
ity of probing experimentally intricate and unexplored
dynamics in a domain where essentially everything still re-
mains to be investigated both theoretically and experimen-
tally �for applications, see the last paragraph�.
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Using parameters related directly with experimental quan-
tities, the dimensionless semiconductor laser model is
�11,12�

dx

dt
= x�y − 1� , �1�

dy

dt
= ���0 − y + f�w + x� − xy� , �2�

dw

dt
= − ��w + x� , �3�

where the feedback amplifier function is f�w+x�=� w+x
1+s�w+x� ,

� is a coefficient proportional to the photodetector respon-

sivity, � is the ratio between the population relaxation rate
and the photon damping, � is the high-pass frequency in the
feedback loop, �0 is the solitary laser threshold, and s is a
saturation coefficient of the amplifier �11,12�. These are suit-
ably scaled free parameters. The variable x is proportional to
the photon density, y is proportional to the carrier density,
and w is proportional to the intensity. Following Refs.
�11,12�, we fix �=1, �=0.001, s=11 and investigate the
dynamics as a function of �0, the solitary laser threshold, and
�, the high-pass frequency in the feedback loop. Phase dia-
grams were obtained by computing the full Lyapunov spectra
for Eqs. �1�–�3� using a standard fourth-order Runge-Kutta
algorithm with a fixed time step h=0.05. The first 107 time
steps were discarded as transient; the Lyapunov spectrum
was computed during the subsequent 3�107 steps �18�. As a
first result, Fig. 1 illustrates wide ranges of multistability in
the laser operation by displaying bifurcation diagrams of the
maxima of x obtained in the two traditional ways of dealing
with initial conditions, as described in the caption.

Motivated by the work of Al-Naimee et al. �11,12� we
investigated in more detail the same parameter regions ac-
cessible to their experiments. Figure 2 shows phase diagrams
obtained by discretizing a grid of parameters and, for each
point of the grid, discriminating between periodic oscilla-
tions �plotted as black dots� and chaos �plotted as white
dots�. A total of 1200�1200�1.4�106 Lyapunov expo-
nents are displayed in each panel in Figs. 2 and 3. The boxes
in Fig. 2�a� indicate the location of two of the largest spiral
nestings and hubs seen in this parameter range. The boxes
are shown magnified in Figs. 2�b� and 2�c�. Additional mag-
nifications �not shown� reveal an infinity of similar spirals
and hubs.

Figure 3 is intended to illustrate with greater detail the
regular organization typically observed locally around indi-
vidual hubs. Every dark spiral is formed by an infinite se-
quence of stable laser oscillations with a specific wave form.
Wave forms evolve continuously as one spirals inward to-
ward the focal accumulation point. Concomitantly, the period
of the oscillations grows without limit, diverging at the ac-
cumulation point. It is important to realize that the focal
point is an asymptotic limit point that is beyond rigorous

1 1.02δ0

-0.01

0.09

x

(a)

1 1.02δ0

-0.01

0.09

x

(b)

FIG. 1. �Color online� Multistable laser operation evidenced by
bifurcations dependent on initial conditions. Ellipses mark the re-
gion where multistability is easily recognizable. �a� Bifurcations
obtained when starting integrations always from the same �arbi-
trary� initial condition �x0 ,y0 ,w0�= �1,1.5,0.5�. The box indicates
the region studied by Al-Naimee et al. �11� �see their Fig. 4�. �b�
Bifurcations obtained when “following the attractor” �19� horizon-
tally from left to right, starting from �x0 ,y0 ,w0�= �1,1.5,0.5�. Here,
�=2�10−5.
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FIG. 2. �Color online� Bichromatic phase diagrams discriminating periodicity �shown in black� from chaos �in white�. �a� Global view of
parameter space with boxes around the two largest hubs in this region. Chaotic lobes “reverberate” as in a driven Duffing oscillator �22�. �b�
Zoom of the leftmost box in �a�. The box is magnified in Fig. 3; �c� zoom of the rightmost box in �a� containing hubs and spirals stretched
and tilted in the region inside the ellipse. All vertical axes are multiplied by 105, i.e., in �a� the axis runs from 0.8�10−5 to 9.0�10−5.
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reach, much in the same way as Nunes proved the poles of
his spherical earth to be totally out of reach of the loxodro-
mics. Of course, experimental resolution �noise� puts a limit
on the macroscopic size �observability� of the focal “point.”
In other words, mathematics has not prevented anyone from
reaching the poles.

By least-squares fitting a parabola to the “shrimp heads”
�24,25�, i.e., to reference points suitably scattered along the
spirals, we were able to obtain an approximate equation
passing by construction through the “center” of the infinite
alternation of windows of periodicity and of chaos. This line
corresponds to a stability locus of the laser:

�0 = 106 946 0�2 − 64.6514� + 1.011 53. �4�

This curve is superimposed in light gray �green online� in
Fig. 3, along with dots indicating the shrimp heads used to fit
the parabola. The focal hub F is estimated to be near the
point

F = ��0,�� = �1.010 639,3.9355 � 10−5� . �5�

The laser phase diagram is riddled with an infinite quantity
of such stability loci as it is easily recognizable under suit-
able magnifications.

As it is intuitively clear from Fig. 3, more elaborate bi-
furcation diagrams obtained by tuning simultaneously two
parameters along Eq. �4� display an ordering symmetry with
respect to a reflection about the hub. This symmetry is illus-
trated in Fig. 4.

How difficult is to record experimentally spirals in phase
diagrams like the ones in Figs. 2 and 3? Although our figures
were generated by computing Lyapunov exponents, there is

absolutely no need of computing Lyapunov exponents ex-
perimentally to detect spirals. As the bichromatic representa-
tion used in our Figs. 2 and 3 shows, all that needs to be
done is to use a pair of colors, say black and white, to dis-
criminate between two states: periodicity or lack of period-
icity, i.e., “chaos.” For experimentally obtained time series
this might be conveniently achieved in several simple ways.
For instance, one may compare successive extrema �maxima
or minima� of the signal to detect periodicity and to perform
the bichromatic binary selection. Or one may construct re-
turn maps and detect periodicity from them. Alternatively,
one might measure the “time of flight” among successive
maxima or minima of the signal using such measurements to
either directly detect periodicity or construct return maps and
detect periodicities on the fly �14�. Yet another possibility is
to plot the frequencies obtained by Fourier transforming the
experimental time series �26�. While a fair experimental res-
olution of the periodicity certainly improves the overall defi-
nition of the phase diagram obtained, simple computer ex-
periments show that even a relatively modest discrimination
between period and lack of period is enough to generate
good phase diagrams. In this sense, spirals are robust objects.
In fact, we conjecture the final resolution of experimentally
measured phase diagrams to be much more sensitive to the
ability of tuning parameters finely than to the ability of dis-
criminating between the presence and absence of periodici-
ties. The number of spirals detected is certainly limited by
experimental resolution �noise� �18�.

In conclusion, we identified infinite cascades of hubs as
responsible for organizing both periodic and nonperiodic
�spiking� laser phases in a semiconductor laser with opto-
electronic feedback in which Al-Naimee et al. measured re-
cently an incomplete homoclinic scenario to a saddle focus
�a system without an exact homoclinic connection�. The big
surprise here is that, although the semiconductor laser is not
operating in a Shilnikov regime, one still finds for it the same
hubs presently believed to exist only near saddle foci which
obey Shilnikov’s theorem. Thus, semiconductor lasers with
optoelectronic feedback provide examples of periodicity
hubs that are not related to homoclinic bifurcations, as an-
ticipated �16,18�. Of course, the laser is merely a convenient
vehicle to describe a novel phenomenon which we conjec-
ture to be not only generic but in fact relatively abundant in
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FIG. 3. �Color online� Magnification of the box in Fig. 2�b�
displaying the focal hub �the square indicated by the arrowhead�,
the infinite spirals attached to it, and the characteristic regular pa-
rameter organization “induced” by hubs around them. The parabolic
curve, defined by Eq. �4�, passes through the dots marking shrimp
heads �described in Refs. �24,25��. Here, 2.5�10−5���5.7
�10−5.
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FIG. 4. �Color online� Bifurcation diagram illustrating the re-
flection symmetry of the window ordering about the hub, indicated
by the vertical black line �red online�. The diagram displays
maxima of x observed when tuning � and �0 simultaneously along
the parabolic curve of Eq. �4�, shown in Fig. 3. The hub is located
at the minimum of the local maxima of x. Here, 2.9�10−5��
�5.7�10−5.
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dissipative flows. Understanding the extension and structure
of chaotic laser phases is of great interest in chaos-based
secure communications �27�. With chaos-enabled random
number generators it is expected that the performance of ran-
dom number generators can be greatly improved with cha-
otic laser devices as physical entropy sources. Hubs in cha-
otic lasers are also expected to have an impact in a whole
host of next generation rf photonics subsystems such as re-
mote sensors of laser radiation, chaotic radar, laser radar, and
optical systems that generate passively diverse arbitrary
wave forms where, for example, preliminary experiments
based on an optically injected geometry show subcentimeter
accuracy in ranging with a 3-cm-range resolution �23,27�. It
is remarkable that navigation along spirals in laser phase
diagrams turns out to be so similar to the solution found by
Nunes many centuries ago to the problem of optimizing

navigation: move along rhumb lines, which form infinite
families of loxodromic spirals.

Note added. The spirals and hubs anticipated theoretically
in Refs. �16,17� were observed experimentally now �28�. As
already pointed out �16�, we emphasize that while it is tempt-
ing to associate periodicity hubs with homoclinic orbits and
with a theorem by Shilnikov, numerical work shows hubs
and spirals not to exist in several flows that are textbook
examples of the Shilnikov scenario �18�. This means that
under Shilnikov conditions, spirals and hubs can be either
observed or not.
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