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Self-organized distribution of periodicity and chaos in an

electrochemical oscillator
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We report a detailed numerical investigation of a prototype electrochemical oscillator, in terms of

high-resolution phase diagrams for an experimentally relevant section of the control (parameter)

space. The prototype model consists of a set of three autonomous ordinary differential equations

which captures the general features of electrochemical oscillators characterized by a partially

hidden negative differential resistance in an N-shaped current–voltage stationary curve. By

computing Lyapunov exponents, we provide a detailed discrimination between chaotic and

periodic phases of the electrochemical oscillator. Such phases reveal the existence of an intricate

structure of domains of periodicity self-organized into a chaotic background. Shrimp-like periodic

regions previously observed in other discrete and continuous systems were also observed here,

which corroborate the universal nature of the occurrence of such structures. In addition, we have

also found a structured period distribution within the order region. Finally we discuss the possible

experimental realization of comparable phase diagrams.

Introduction

Among chemically reacting systems, electrochemical ones

probably comprise the most paradigmatic class, with examples

ranging from electrodissolution of metals to electrocatalytic

oxidation of small organic molecules.1–3 Complex response in

electrochemical systems results from the interplay among the

kinetics itself, transport processes (reactants to, and products

from the electrode surface) and electrical circuit. In particular

for the case of fuel cell relevant reactions, such as the catalytic

electro-oxidation of hydrogen and small organic molecules,

oscillatory kinetics has been extensively observed.4–6 From the

experimental perspective, multi-stability, periodic and mixed-

mode oscillations, and chaos have been observed in the

temporal domain,7–10 whereas many different spatiotemporal

patterned states including travelling pulses, target patters,

clusters and turbulence11–14 have been reported. Those findings

unquestionably put such systems in a privileged position

among electrochemical systems. From the theoretical point-

of-view, the vast majority of numerical studies in those systems

are based in continuation methods and mostly focused on the

investigation of conventional bifurcation diagrams delimitating

regions of occurrence of steady states, bistability, oscillations,

etc. In terms of the dynamic behavior within the oscillatory

region, numerical studies consist of the calculation of few

time-series, and thus cover relatively small parameter regions.

Although very useful and illustrative, this approach is some-

what limited in the sense that it often neglects the fine structure

within the oscillatory region and thus might oversee interesting

behavior. Two-dimensional phase diagrams can provide a

comprehensive and detailed description of the system, since

they display dynamical features in relevant two-parameter

sections, and discriminate simultaneously order regions, with

different types of periodic motions, and regions with chaotic

phases. Phase diagrams also reveal the nature of the boundaries,

smooth or fractal, between distinct oscillatory modes.

Two-dimension high-resolution phase diagrams are rather

common for discrete-time models described by maps.15–18 In

contrast, because of the high computational cost involved,

this approach has been far less applied for continuous-time

autonomous models consisting of sets of nonlinear differential

equations. For a survey, see ref. 19. The few examples available

of phase diagrams in continuous-time models include applica-

tions in CO2 lasers, etc.20–22 As far as chemical reactions are

concerned, there is apparently only one example: the Belousov–

Zhabotinsky reaction.23 The authors used the model proposed

by Gyorgyi and Field24 which consists of three nonlinear

differential equations and 14 parameters.

We report in this work a detailed numerical investigation of

a minimal model of a generic electrochemical oscillator.

Specifically, we compute high-resolution phase diagrams for

an experimental relevant section of the control (parameter)

space of a prototype electrochemical oscillator25,26 and further

explore the structure within a periodic domain embedded in a

chaotic background. In contrast to other traditional methodo-

logies, the approach adopted here is unique in the sense that it

describes in depth the boundaries of chaotic phases and also

the inner structure of those phases.

Model and numerical procedures

The electrochemical model investigated here is a generic one

proposed by Krischer,3 who merged and improved the earlier

work by Koper25,26 for two types of electrochemical oscillators.

The resulting model is an interesting prototype to be used in
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the study of mixed mode oscillations and other complex

phenomena observed in a certain class of electrochemical systems,

which includes most of the fuel cell anodic reactions.3,5 The

model consists of three ordinary differential equations (ODEs)

accounting for the temporal evolution of the double layer

potential (f), the concentration of electroactive species (c) and

the surface coverage of an inhibiting species (y). The time

evolution of double layer potential reads,

e
df
dt
¼ �ckðfÞð1� yÞ þU � f

r
ð1Þ

where e is the time-scale for the evolution of the electrode

potential, c is the concentration of the electroactive species,

k(f) is the potential-dependent reaction rate constant, y is the

surface coverage of a poison species that blocks the faradaic

reaction, U is the applied voltage, and r is the total resistance.

The left-hand-side term in eqn (1) is the capacitive current,

whereas the rhs terms are the faradaic and the total current,

respectively.

The surface coverage of poisoning species, y, obeys3

dy
dt
¼ y0ðfÞ � y; ð2Þ

where the stationary poison coverage is described by a suitable

function y0(f) (see eqn (4) below). Finally, the concentration

of active species at the reaction plane,

m
dc

dt
¼ �ckðfÞð1� yÞ þ 1� c: ð3Þ

The term m accounts for the time-scale of the temporal

evolution of c. Eqn (1)–(3) represent the dimensionless version

of the model, details on their derivation can be found in ref. 3,

25 and 26.

The stationary dependence of the poison coverage on the

electrode potential, y0(f), follows the equation suggested by

Koper and Sluyters27 and reads,

y0ðfÞ ¼ 1þ exp
f� fo

b

� �� ��1
: ð4Þ

Simulations were carried out with b=7.12 and fo= 124.6. The

rate constant, k(f), is described by the polynomial equation,

k(f) = 0.00002f3 � 0.0094f2 + 1.12f, (5)

which essentially represents the negative differential resistance

(NDR) in a N-shaped current–potential curve.

The system under consideration display oscillations under

both galvanostatic (constant current) and potentiostatic

(constant potential) control modes. Under potentiostatic control,

oscillations are only found for a finite resistance between the

working electrode and the potentiostat (either the ohmic drop

through the electrolyte or a resistor deliberately inserted, or,

more generally, the sum of both contributions). Different

oscillatory patterns are found according to the pair total

resistance � applied voltages, so that, the dynamics of

these systems under potentiostatic regime is routinely mapped

in this plane, as in the present case.

Eqn (1)–(3) were numerically integrated using Matlab.

Conventional bifurcation diagrams were obtained with Matcont

continuation toolbox.28 The determination of Lyapunov

exponents was based on the algorithm suggested by

Wolf et al.29 Phase diagrams have resolutions of 500 � 500

exponents (Fig. 2) or 700 � 700 (Fig. 3(a) and (b)) exponents,

and were calculated with steps of 0.01 for the Lyapunov

diagrams and of 0.001 for the period diagram.

Parameter grid points were color codified according to

the magnitude of the largest nonzero Lyapunov exponent.

Regions of negative exponent (periodic solution) are generically

referred to as periodic regions, in opposition to chaotic ones.

The positive values (chaotic oscillation) are indicated in a

yellow-red scale.

Results and discussion

Fig. 1(a) shows the main features of the model in terms of the

N-shaped curve (black), the adsorption isotherm of poisoning

species (red), and the overall faradaic curve (blue). As apparent

in this figure, the negative differential resistance in the

N-shaped original (black) curve is partially hidden by the

adsorption of the poisoning species, which blocks the electrode

surface inhibiting thus the oxidation of the electroactive

species. The resulting (blue) curve is fully comparable to that

observed in many experimental systems.9,10 As in the case of

experimental examples in this class, the generic model of

the HN-NDR electrochemical oscillator2,3 discussed here sup-

ports current oscillations for some combination of U and r, as
well as potential oscillations under galvanostatic regime

(not discussed here). Fig. 1(b) and (c) illustrate the oscillatory

response of the faradaic current, i.e. the overall reaction rate,

for a given overall resistance and two different applied

voltages. Fig. 1(b) shows a periodic response whereas in

(c) a chaotic time series obtained at slightly higher U is exempli-

fied. The evolution of this chaotic state is illustrated in Fig. 1d in

terms of three-dimension phase space with f, c, and y.
The system of eqn (1)–(3) was extensively investigated by

conventional methods and bifurcation analysis, and found to

oscillate in a considerably wide parameter range. In order to

allow the comparison with experimental data, parameters

U and r are the most straightforward to be investigated under

potentiostatic regime. Therefore, we calculate high-resolution

phase diagrams in the U versus r plane for a given set of

parameters. Fig. 2 shows examples of high-resolution phase

diagrams for e = 0.001 and m = 50. In all cases, negative and

zero Lyapunov exponents, i.e. regions characterized by

periodic solutions, are given in black while positive exponents

are color-codified according to the magnitude of the largest

nonzero exponent. The color red indicates regions of

‘‘stronger’’ chaos, namely regions characterized by positive

Lyapunov exponents of larger magnitude. Regions highlighted

by white rectangles are shown magnified in the subsequent

plate. The highlighted region in Fig. 2(d) is shown magnified in

Fig. 3. The shape of the black/yellow oscillatory region in

Fig. 2(a) is very similar to the region confined by the Hopf line

in the U versus r plane for this class of electrochemical

oscillator as evidenced in both experiments and modeling.30–32

The yellow ‘lines’ inside the black background account for the

parameter domains where chaotic dynamics is observed, i.e.

regions of positive Lyapunov exponents. Rather than simply

chaotic lines, however, intricate patterns emerge when zooming
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specified regions. As an example, focusing on the region in

which those lines seem to converge, it is possible to distinguish

a very rich substructure of chaotic domains, viz. Fig. 2(b). A

concentric series of alternating chaotic and periodic regions is

clearly observed around the inferior right-corner of Fig. 2(b).

Both the general distribution presented in panel (a) and the

concentric structures resemble the numerical results obtained

recently for the BZ reaction.23 In addition to regions with well

Fig. 1 (a) Stationary profiles of the NDR contribution (black line), blocking species (red line) and the faradaic current (blue line) as a function of

the electrode potential. (b), (c) Reaction current time series for periodic and chaotic dynamics, obtained for r= 106.7, and U= 244 and U= 246,

respectively. (d) Tridimensional attractor for the time series given in plate (c). e = 0.001 and m = 50.

Fig. 2 High-resolution phase diagrams for the generic HN-NDR model (eqn (1)–(3)) in the U versus r plane for e = 0.001 and m = 50. The

color-code accounts for the largest Lyapunov exponent: black denotes order regions with negative or zero exponent, and the yellow to red scale

codifies the magnitude of the positive exponents.
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defined curved borders, Fig. 2(c) also shows chaotic domains

which display abrupt interruptions, i.e. not to vary smoothly

with the parameters. In fact, such discontinuities are only

apparent, indicating the presence of multistability, namely the

existence of more than one stable attractor, the one shown

depending on the initial conditions. It would be interesting to

compute basins of attraction in these parameter domains, to

quantify which chemical oscillation dominates as well as the

structure of the basins, if fractal or not. Fig. 2(d) illustrates the

presence of a series of shrimp-shaped regions of different sizes

embedded in the chaotic background in the so-called window

streets.18 The presence of those objects further reinforces the

universal nature of their occurrence, as previously reported

for a wide range of continuous-time models.19,21 It is impor-

tant to emphasize that shrimps are connected with several

non-standard (i.e. nonperiod-doubling) routes to chaos. Hubs

and spirals have recently explained period-adding routes,

arising from cutting highly symmetric spirals in parameter

space. Overall, many other routes exist, some so intricate as

to be difficult to be described by words, thus the diagrams

showing how they develop as parameters are tuned. Similar

structures as well as more intricate ones were observed

for different values of e and m, and will be reported in due

course.33

Fig. 3 (a) High resolution Lyapunov diagram and (b) the corresponding diagram accounting for the oscillation period within the periodic region

(see text for details), in theU versus r plane. (c) Conventional bifurcation diagram for the horizontal cut given in (a) and (b). Remaining conditions

as in Fig. 2.
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Fig. 3(a) shows a detailed view of the selected region in

Fig. 2(d). Differently from that of Fig. 2, however, the

magnitude of the negative Lyapunov exponents is also color-

codified in the gray scale. As clearly seen, a white line consisting

of more negative exponents crosses the shrimp domain in

an organized and, apparently, symmetric manner. Fig. 3(b)

displays the numerically estimated period distribution in the

same parameter region given in (a). Here the chaotic region

was deliberately set to zero and coded in white, the periodic

states are given in color. Overall, most of the shrimps

displayed in this region have periods of about 8, which is

considerably higher than the low periods observed in the

periodic regions with sharp borders. As illustrated for the

main shrimp, those periodic regions are not characterized by a

single period, instead, a continuous evolution of the period

distribution inside the shrimps is observed. In the example of

the main shrimp shown, periods smaller and larger than

8 appear in specific directions, mainly in the border between

order and chaotic domains. The periods observed along the

horizontal line at r= 106.63 in the indicated U values amount

to 7, 12, 8, 8 just prior to the period doubling bifurcation in

five branches, leading to a period 13 and 14. This peculiar

organization is more evident in the conventional bifurcation

diagram given in plate (c), and its comparison with the period

diagram in (c) is straightforward. It should be stressed at this

point the advantages of working with these high-resolution

diagrams: the structuring observed in the U versus r plane is a

genuine two-parameter (codimension-two) phenomenon

which is not captured in conventional one-parameter bifurca-

tion diagrams such as the one in Fig. 3(c). High-resolution

phase diagrams are unique in the comprehensive description of

the fine-structure of generic two-dimensional phenomena.

Conclusions and outlook

We have described a numerical study of a generic model for an

electrochemical oscillator. The analysis was carried out by

means of an in-depth investigation of the high-resolution

phase diagrams in an experimentally relevant two-parameter

plane. This is the first analysis of this kind for an electro-

chemical system, represented here by a minimal (3 ODEs)

continuous-time autonomous model. Computation of Lyapunov

exponents provided a detailed discrimination of chaotic and

periodic domains and revealed the existence of intricate struc-

turing of periodic domains embedded in a chaotic background.

Shrimp-like periodic regions previously observed in other

distinct systems were also clearly detected here, which

corroborate the universal nature of the appearance of such

structures. In addition, we have also found a structured period

distribution within the periodic region. Our theoretical

prediction shows where to expect specific dynamical behaviors

that go beyond what is presently known. Further, our phase

diagrams suggest to the experimentalists what sort of precision

is required in order to discriminate the complex alternation of

periodic and chaotic windows present in the phase diagrams.

In spite of the unambiguous observation of shrimp-like

order regions as well as other self-similarities and structuring

in different discrete and continuous models, systematic experi-

mental equivalent of the high-resolution phase diagrams such

as the ones reported here are very rare. A recent example of

shrimp-like domains was observed in experiments using a

version of the Nishio–Inaba circuit.34 The main difficulty in

obtaining such diagrams in chemical or biological systems is

connected to the actual size of the parameter region in which

such structures are observed in experiments. If such structures

occur in relatively small parameter region, as it has been

observed in most cases, it turns to be a rather challenging

task to discover them experimentally in bi-dimensional phase

diagrams. In this respect, we believe that electrochemical

systems are realistic candidates to such experimental studies.

As already mentioned, most electrochemical systems are

known to display oscillatory kinetics under some conditions,

this is especially true for the electrochemical oxidation of small

organic molecules. Most important, spontaneous long-term

surface transformations8,10,35 can be used as a bifurcation

parameter for continuously varying the systems conditions

and thus access otherwise hidden states. We are currently

working in this direction.
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