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Abstract The control parameter space of lasers, electronic
circuits, and biological oscillators was recently discovered
to be riddled with remarkable points, called periodicity
hubs, responsible for a wide-ranging self-organization of
the systems. Although displaying features which resem-
ble the organization seen in chemical models, periodic-
ity hubs have not been detected in such models thus
far. Here, we report numerical evidence that periodic-
ity hubs and the infinite spirals of stable oscillations
issuing from them exist profusely in an electrochemical
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oscillator model. For selected parameter ranges, we observe
sequences of nonchaos-mediated mixed-mode oscillations.
Chemical hubs open the possibility of studying experi-
mentally the complex self-organization of stable oscilla-
tions and complicated phenomena of current interest. We
report high-resolution stability diagrams providing refer-
ence charts to guide experimental work as well as stringent
tests for the validity of the electrochemical oscillator model
used.

Keywords Self-organization in electrochemistry ·
Electrochemical oscillators · Nonchaos-mediated
mixed-mode oscillations · Chemical hubs · Phase diagrams

Introduction

Complex temporal dynamics including multistability,
excitability, quasiperiodicity, self-pulsing, bursting, and
deterministic chaos, as well as spatiotemporal pattern for-
mation occur in many chemical, physical, and biologi-
cal systems [1–6]. Phase diagrams describing the intri-
cacies of the self-organization of oscillatory motions
with high periods and chaotic phases comprise a sub-
ject that has come to the fore over the last few years
[7–30]. An up-to-date and encompassing treatment of
self-organization in electrochemical systems can be found
in [3].

Until recently, phase diagrams were regarded as a highly
difficult subject, accessible only to those willing to per-
form massive computations over wide ranges in the space of
control parameters. When dealing with nonlinear dynamical
systems, phase diagrams traditionally display just a few
curves intended mainly to delimit the boundaries between
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steady-state solutions and boundaries emerging immedi-
ately after them, mainly after Hopf bifurcations. Further-
more, the overwhelming majority of the existing phase
diagrams amount to applications of a specific continuation
software that focus on unstable mathematical phenomena,
i.e., on something that cannot be readily measured in lab-
oratory experiments. Although mathematically interesting,
in general, such diagrams of unstable phenomena can-
not be compared with observed or measured ones.
Thus, three decades of extensive studies of determin-
istic chaos notwithstanding, it is only more recently
that phase diagrams detailing the structure of sta-
ble (measurable) motions of high-periodicity and chaos
started to emerge. And they have been proving an
inexhaustible source of unanticipated and interesting facts
[7–30].

In this paper, we focus on a remarkable set of points,
called periodicity hubs, discovered abundantly in the con-
trol parameter space of lasers of several types, in electronic
circuits, in biological oscillators, and in other nonlinear
oscillators. Such hubs are the common focal points where
a doubly infinite set of spiral phases, regular and chaotic,
characterized by stable oscillations of specific waveforms
accumulate [8, 10, 27, 29]. In such points, which exist abun-
dantly spread in parameter space, one may commute from
one spiral to any of the double infinite other spirals, of
regularity or of chaos. The spirals of stability stretch over
wide ranges in parameter space and, accordingly, induce a
characteristic global organization of the control parameter
space.

The purpose of this work is to further develop our recent
study [19] and report results of extended numerical simu-
lations that provide evidence of the presence of periodicity
hubs and spirals in a minimal model of a generic model of
an electrochemical oscillator. The model under considera-
tion is a prototype of a paradigmatic class of oscillators that
includes most fuel cell anodic reactions [31–39], so that the
results presented here should also assist the quest for the
experimental detection of such novel phenomena in these
systems.

The electrochemical oscillator model

The model investigated here was introduced by Krischer
[40] based on previous propositions [41, 42], and repre-
sents a prototype for the HN-NDR class of electrochemical
oscillators whose main feature is the presence of a par-
tially hidden (H) negative differential resistance (NDR) in
an N-shaped current-potential curve [43, 44].

Denoting by ϕ the double layer potential, by c the con-
centration of electroactive species, and by θ the surface
coverage of an inhibiting species that blocks the faradaic

reaction, the model consists of a dissipative flow defined by
the following nonlinear differential equations:

ε
dϕ

dt
= −IF + U − ϕ

ρ
, (1)

dθ

dt
= θ0(ϕ) − θ, (2)

μ
dc

dt
= −k(ϕ)(1 − θ)c + 1 − c, (3)

In the equations above, the parameter ε defines the time
scale for the evolution of the electrode potential, μ accounts
for the time-scale of the temporal evolution of c, U is the
applied voltage, and ρ is the total resistance. The left-
hand side term in Eq. 1 is the capacitive current, whereas
the right-hand side terms are the faradaic current, IF =
k(ϕ)(1 − θ)c, and the total current. The functions k(ϕ),
representing the potential-dependent reaction rate constant,
and θ0, representing the equilibrium surface coverage of a
poison species, are given, respectively, by

k(ϕ) = 0.00002ϕ3 − 0.0094ϕ2 + 1.12ϕ, (4)

θ0(ϕ) =
[

1 + exp

(
ϕ − ϕ0

b

)]−1

. (5)

Simulations were carried out for b = 7.1204, ϕ0 = 124.6,
μ = 50, and ε was varied from 0.001 to 0.012 (in contrast
to ε = 0.001 used in our previous work [19]). As may be
recognized from Eqs. 1 and 3 above, the specific values of
ε and μ are important for controlling the relative time scales
of the chemical dynamics. The parameter ε accounts for
the time-scale of the changes in the double layer potential
and is proportional to the electrode capacitance. As far as
experiments are concerned, the capacitance can be varied to
a considerable extent by changing the electrode roughness,
for instance.

Computational details

Our results are displayed in two complementary types of
phase diagrams, namely the standard diagrams based on
Lyapunov exponents [1, 2], and the much richer isospike
diagrams [10, 45–47].

We computed the Lyapunov exponents by solving (1–
3) numerically with a standard fourth-order Runge-Kutta
algorithm with fixed-step, h = 0.001, over a high-resolution
mesh consisting of 1200 × 1200 = 1.44 × 106 equally
spaced points. For each mesh point, we computed the
three exponents by starting numerical integrations always
from the same fixed arbitrarily chosen initial condition:
(x, y, z) = (150, 0.5, 0.06). The first 2 × 105 time-
steps were discarded as transient time needed to reach
the final attractor. The subsequent 4 × 106 iterations
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were then used to compute the Lyapunov spectrum of the
oscillator.

The isospike diagrams were obtained after computing
Lyapunov exponents, by recording up to 800 extrema (local
maxima and minima) of the three time series of the sys-
tem, together with the instant of time that they occurred
and recording repetitions of the maxima. A palette of 17
colors was used to represent “modulo 17” the number of
peaks (local maxima) in one period of the oscillations,
i.e., by recycling the 17 colors according to the number of
spikes contained in one period. Black was used to represent
chaotic oscillations, namely lack of numerically detectable
periodicity.

The investigation of each parameter point demands the
additional investigation of a basin of attraction in phase-
space, a task involving an additional square grid, but of
variables (instead of parameters). For this reason, the com-
putation of high-resolution stability diagrams for several
millions of points is a quite demanding task. We per-
formed such task with the help of 1536 high-performance
processors of a SGI Altix cluster with a theoretical peak
performance of 16 Tflops.

Results

Figure 1 shows high-resolution stability diagrams computed
for ε = 0.005. Individual panels display the analysis of
the dynamics for 1200 × 1200 parameter points, i.e., for
well over a million points per diagram. Figure 1a–d shows
a sequence of four Lyapunov phase diagrams computed
as described in the previous Section. Figure 1a shows a
very large portion of the U × ρ control parameter space.
The wide white region represents non-oscillating solutions
with non-zero amplitude while the gray region is character-
ized by self-induced oscillations. Accordingly, the boundary
delimiting these two phases is a line characterized by Hopf
bifurcations. As indicated by the color table, the largest part
of gray phase contains periodic oscillations, characterized
by negative Lyapunov exponents. However, when compared
to previously published data [19] obtained for smaller ε

(i.e., for ε = 0.001), the first observation to be pointed out
consists of the relative size of the chaotic region contained
in Fig. 1. The effect of increasing ε results in a consid-
erable concentration of the regions of positive Lyapunov.
Nevertheless, the existing region of chaotic dynamics
remains localized in a relatively similar region in the
U × ρ plane than found for smaller ε. In addition, the
structure of periodic gray lines qualitatively follows our
previous study, despite the fact that, in the present case,
these lines are not intercalated with chaotic ones. In other
words, while for ε = 0.001 there is a standard cas-
cade of mixed-mode oscillations, for ε = 0.005 we find

nonchaos-mediated sequences of mixed-mode oscillations
similar to the one discovered very recently in an enzyme
reaction system [8].

A large number of details concerning the organization
of families of periodic oscillations and chaos are given
in the Fig. 1b–d. Overall, at this magnification, an intri-
cate dynamics where cascades of somewhat rounded struc-
tures prevail embedded in chaotic region is observed, as
better evidenced by the dark arcs in Fig. 1d. The alterna-
tion between chaos and periodic domains depicted in this
figure resembles somewhat the results found in another
chemical flow [28]. Finally, it is also remarkable that the
borders separating chaotic and periodic domains are rather
smooth when compared to the ones found for ε = 0.001
(see [19]).

The three panels in the bottom row of Fig. 1 show a mag-
nified view of the region contained in the white box in Fig.
1c. They illustrate the aforementioned isospike diagrams
[10, 45–47]. As indicated by the color table underneath,
the isospike diagrams in Fig. 1e–g display the distribu-
tion of spikes contained inside one period of the periodic
oscillations as counted in the three variables of the model,
ϕ, θ, c, respectively. From the isospike diagrams, one sees
that the boundaries of the stability domains do not depend
of the variable used to count the spikes. The diagrams also
show that the number of spikes change in different regions
of the control space, sensitively depending on the vari-
able used to count the spikes. It is important to emphasize
that, while the Lyapunov diagram contained in the white
box of Fig. 1c only discriminates between chaos and peri-
odicity, in addition to this information, the three isospike
diagrams reveal the precise location where the number of
spikes change according to each dynamical variable of the
problem.

Figure 2 shows the fine structure observed within the
chaotic domains presented in smaller blue box in Fig. 1c.
The shrimp-like periodic regions seen in the figure where
already detected and described in our previous work [19,
20]. Here, however, the novelty is that they emerge orga-
nized in a quite distinctive way, forming spirals around
certain centers, called periodicity hubs, similarly as first pre-
dicted for an electronic circuit involving diodes [27, 29],
and subsequently observed experimentally in a Duffing-like
autonomous oscillator [14].

Figure 2a contains two pairs of circles centered on the
successive shrimps of the spiralling around the common
periodicity hub. The electrochemical oscillator under con-
sideration is strongly dissipative, a fact that implies strong
compression of the arms of the spirals making them difficult
to visualize with the help of ad hoc zooming in the control
space, as illustrated by the additional circles in Fig. 2b–d.
The spiralling shown in Fig. 2 accumulates at a focal point
located roughly along the line segment joining the center
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Fig. 1 Panels a–d: Four Lyapunov stability diagrams showing suc-
cessive magnifications as indicated by the white boxes. Gray shad-
ings indicate periodic oscillations (negative exponents), colors denote
chaos (positive exponents). The large white region in (a) marks
non-oscillating, non-zero solutions. Panel d illustrates typical accumu-
lations observed in the control plane of the electrochemical oscillator.
Such accumulations contain infinite cascades of periodicity hubs and
spirals which accumulate towards the upper right corner (see Fig. 2).

Panels e–g in the bottom row are isospike diagrams (see text) for
the variables ϕ, θ , and c, respectively. They are magnifications of the
white box in (c), and show that the number of spikes in one period
of the periodic oscillations depends of the variable used to count
them. The smaller box in (c) is magnified in Fig. 2a. Here, ε = 0.005
and μ = 50. Individual panels display the analysis of 1200 × 1200 =
1.44 × 106 parameter points

of the pair of smaller circles in Fig. 2d. By the arguments
presented by Vitolo et al. [21], we know that such remark-
able organizing focal centers form infinite hierarchies of
points which exist inside every one of the chaotic phases
delimited by the rounded dark segments easily discernible in
Fig. 1d and accumulating towards the rightmost upper cor-
ner of the figure. Every such point is an accumulation point

of an infinite hierarchy of nested spirals of periodicity and
chaos.

It is interesting to mention that Sparrow and Glenndin-
ning [24] and Gaspard, Kapral, and Nicolis [25] had already
described some characteristics of the formation of spirals.
However, apart from other details, these works do not indi-
cate the exact structure of the complex shrimps forming
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Fig. 2 Details of the anti-clockwise spiralling around the periodic-
ity hubs. The pair of circles with similar colors mark the location of
two successive shrimps along two of the infinite spiral shaped stabil-
ity domains. The strong compression renders invisible the full spirals

in the scales of these panels but are visible when magnified. Nega-
tive exponents refer to phases characterized by periodic oscillations,
whereas positive exponents denote chaotic phases. Individual panels
display the analysis of 1200 × 1200 = 1.44 × 106 parameter points
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Fig. 3 Qualitative differences observed in the stability phases when
counting spikes for three dynamical variables. a Counting spikes of ϕ,
b spikes of θ , and c spikes of c. The three temporal evolutions in the

bottom row illustrate that c has less pronounced spikes than the other
two variables. Here, ε = 0.001. The box in panel a is shown enlarged
in Fig. 4. “Zero amplitude” means θ = 0 in this region
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Fig. 4 Magnification of the box
in Fig. 3a revealing that, in
suitable parameter ranges, the
periodic oscillations of the
electrochemical oscillator
unfold according to a
Stern-Brocot tree [45–50]. See
text. Here ε = 0.001
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the spirals, they contain no mention of the chaotic phases
necessarily present in the spiralling, and, more importantly,
they do not describe neither the infinite nesting of hubs
and spirals nor the accumulation of spirals at the period-
icity hubs. Earlier works described spirals as a necessary
consequence of the homoclinic behavior for parameters
obeying Shilnikov conditions, namely for parameters that
can be associated with a fixed point of a saddle-focus
type characterized by eigenvalues (λ, γ ± iω) and obey-
ing the inequality |γ /λ| < 1. But it is known that this
Shilnikov condition is not necessary to produce hubs and
spirals. For instance, Freire and Gallas [26] showed that a
semiconductor laser with optoelectronic feedback displays
hubs and spirals independently of the Shilnikov condition.
Details of the specific mechanisms underlying spirals gen-
erated by Shilnikov’s condition have been discussed in

two recent papers, by Vitolo and co-workers [21] and by
Shilnikov and co-workers [22, 23]. Using Rössler’s oscil-
lator as a working-example, both works explain that the
structural properties of hubs and spirals originate from fold-
and cusp-shaped bifurcation curves of saddle-node periodic
orbits.

Figure 3 shows the control parameter space structural
organization in terms of the spikes contained in one period
of the oscillations, counted for the three variables of the
electrochemical oscillator. As indicated, the large blue
region corresponds to oscillations containing a single spike
per period. The numbers in panels (a) and (b) indicate the
number of spikes of the regions containing them. The simul-
taneous increase of ρ and U produces a regular addition
of spikes as the one typically associated with mixed-mode
oscillation in electrochemical systems [7, 51]. However, in
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Fig. 5 Typical temporal evolutions a	, displaying 	 spikes in one
period of ϕ, the double layer potential, recorded when simultaneously
tuning U and ρ across the stripes of the isospike diagram on the left

panel, at the ten points along the line ρ = −247.65 + 1.25 U with
coordinates given in Table 1. Here, ε = 0.005



J Solid State Electrochem (2015) 19:3287–3296 3293

Table 1 Coordinates of the ten points in Fig. 5 and the period of the
oscillations of ϕ, the double layer potential

U ρ Spikes Period

245.70 59.47 1 6.44

268.30 87.72 2 12.61

278.00 99.85 3 16.55

286.30 110.22 4 20.04

296.00 122.35 5 23.21

305.10 133.72 6 26.28

313.30 143.97 7 29.26

321.10 153.72 8 32.17

329.30 163.97 9 35.02

336.80 173.35 10 37.82

contrast to the standard unfolding of mixed-mode oscilla-
tions, where a chaotic phase is always observed before an
increase of the number of spikes, here we find nonchaos-
mediated transitions, similar to the transitions observed
recently in a ten-dimensional model of an enzyme reaction
[8]. With hindsight, the same unfolding can be recognized
in the control space of a CO2 laser with feedback [9].

While Fig. 3a, b look relatively similar, Fig. 3c looks
different, with the stripes of periodic oscillations being

interrupted irregularly. To understand this difference, the
last row of Fig. 3 shows the temporal evolution of ϕ, θ ,
and c. From them, one recognizes that the spikes of
c are by far less pronounced than the spikes in the
other two variables. When parameters change, these spikes
tend to disappear, resulting in the aforementioned abrupt
interruptions.

Is there a systematic way of classifying the regular self-
organization of oscillations displayed in Fig. 3? To this
end, Fig. 4 shows a magnification of the parameter region
contained in the black box in Fig. 3a. Recently, it was
shown that the most general possible organization of mixed-
mode oscillations involves not the asymmetric Farey tree, as
usually presumed but, instead, the more general and sym-
metric Stern-Brocot tree [45–50]. Figure 4 shows that the
oscillations of the electrochemical oscillator emerge also
organized following in a Stern-Brocot tree, at least for the
parameters that we are considering. The Stern-Brocot is
robust around ε = 0.001 but, of course, does not remain
valid for arbitrarily changes. In particular, it is no longer
valid for ε = 0.005 (see Fig. 5) where the organization is
rather different from either the Farey or the Stern-Brocot
organization.

The leftmost panel in Fig. 5 shows an isospike diagram
obtained by counting the spikes of the periodic oscillations
of ϕ, the double layer potential. This diagram contains a
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Fig. 6 Impact of the parameter ε on the number of spikes observed in the three variables ϕ, θ, c. Top row: ε = 0.008. Middle row: ε = 0.010.
Bottom row: ε = 0.012. Note strong differences with respect to the cases ε = 0.001 (Fig. 3) and ε = 0.005 (Fig. 5). Legend and colors are as in
Fig. 3
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sequence of ten points along the line ρ = −247.65 +
1.25 U . The coordinates (U, ρ) of these points and the
respective period of the oscillations are listed in Table 1.
On the right panel, one sees a series of periodic tempo-
ral evolutions obtained for these ten representative points.
The periods contain one large spike L followed by a regu-
larly increasing number S of small oscillations, forming a
sequence of mixed-mode oscillations that is usually referred
to as a LS pattern [8].

It is noteworthy in Fig. 5 that the amplitude of the smaller
spikes decreases steadily, a signature of possible homo-
clinic behavior in the system, a behavior which can be
associated with motions in two different manifolds, called
slow-fast manifolds. It is important to note that this behav-
ior can be observed in electrochemical systems and has been
reported in several papers in the literature [7, 51]. In fact,
it is very interesting to relate the presence of codimension-
two and hubs phenomena with the existence of homoclinic
behavior in the generic model since homoclinic behavior
is known to be present in experimental electrochemical
systems.

What is the effect of further increasing the value of ε in
the control parameter space of the oscillator? The answer
is given in Fig. 6, which illustrates isospike diagrams for
ε = 0.008, 0.010, and 0.012. As the figure shows, the sys-
tem continues to predominantly show periodic oscillations
despite the fact that the chaotic phases slightly increase.
The net effect of increasing ε is to broaden the isospike
stripes. The nonchaos-mediated mixed-mode character of
the control space is preserved. The variable c, the concen-
tration of electroactive species, is much less affected than ϕ,
the double-layer potential, and θ , the surface coverage that
blocks the faradaic reaction. An interesting open problem
is to study the changes in the distribution of periodic phase
located inside the chaotic phases.

Conclusions

The recent literature concerning phase diagrams computed
for dissipative flows has evidenced the relative abundance
and the universality of self-organized structures similar to
the ones reported here. Experimental corroboration was
also reported, based on measurements done in electronic
circuits [14, 15]. However, in chemical systems, these phe-
nomena have not yet been neither predicted nor observed.
The importance of electrochemical systems as suitable sys-
tems to observe novel and subtle dynamics was discussed
recently [19–21]. In this paper, we show that for suit-
ably chosen control parameters, electrochemical systems
are capable of displaying intricate hubs and their associated
spiral dynamics.

In particular, the parameter ε accounts for the time-scale
of the changes in the double-layer potential and is pro-
portional to the electrode capacitance. The capacitance can
be varied to a considerably extent by changing the elec-
trode roughness, for instance. The first trend that emerges
from the present analysis is the observed confinement of
the chaotic region for increasing ε, as illustrated by Figs. 3,
5, and 6. In contrast to structures such as shrimps and
spirals that might occur in very small parameter regions,
the confinement of chaotic domains that would follow the
increasing in the electrode capacitance seems to occur in
a quite wide parameter region. This aspect definitively
opens interesting perspectives for the search of a genuine
codimension-two experimental equivalent of the numeri-
cally anticipated phenomena in stability diagrams reported
here.

In conclusion, we have investigated the dynamics of
a generic electrochemical oscillator in terms of numeri-
cally obtained Lyapunov and isospike period diagrams. Our
diagrams reveal rich dynamical behaviors, including forma-
tion of spirals and hubs. The observation of mixed-mode
oscillation in time series indicate the presence of nonchaos-
mediated mixed-mode oscillations. In contrast with the
enzyme reaction of [8], described by 10 dynamical variables
and 14 parameters, the electrochemical oscillator studied
here is described by just 3 variables and relatively few
parameters, greatly simplifying analytical and experimental
work. Despite its simplicity, it is remarkable that the three-
variables electrochemical oscillator is able to capture most
of the complex structures found in more complex fluxes.
In the search of experimental equivalents, we are currently
exploring the organization of periodic and chaotic regimes
in different parameter spaces, under both potentiostatic and
galvanostatic regimes.
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