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Cyclic competition is a mechanism underlying biodiversity in nature and the competition between large
numbers of interacting individuals under multifaceted environmental conditions. It is commonly modeled with
the popular children’s rock-paper-scissors game. Here we probe cyclic competition systematically in a com-
munity of three strains of bacteria Escherichia coli. Recent experiments and simulations indicated the resistant
strain of E. coli to win the competition. Other data, however, predicted the sensitive strain to be the final
winner. We find a generic feature of cyclic competition that solves this puzzle: community size plays a decisive
role in selecting the surviving competitor. Size-dependent effects arise from an easily detectable “period of
quasiextinction” and may be tested in experiments. We briefly indicate how.
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An outstanding open question in ecology is to understand
the mechanisms responsible for maintaining the overwhelm-
ing biodiversity observed in nature �1–5�. A particularly
well-documented and appealing mechanism believed capable
of maintaining biodiversity is cyclic competition among in-
dividuals �6�. A popular example of cyclic competition is the
relation among the three strains of E. coli �7�, highlighted by
the possibility of experimentally controlling variables in-
volved in the process.

Basically, cyclic competition in E. coli proceeds as fol-
lows. A killer K strain produces and is immune to a toxin
�colicin�, while colicin-sensitive S bacteria die when in con-
tact with the toxin. Some sensitive bacteria are observed to
experience mutations that allow them to become resistant to
toxins, creating a resistant strain R. Killers K reproduce at a
lower pace, due to the metabolic overhead of production and
resistance to the toxin, R has an intermediate metabolic cost
�it only needs to protect from toxins�, while S has the lowest
metabolic cost because it neither produces nor needs to de-
fend from toxins. Thus, S wins R because it reproduces
faster, R wins K also because it reproduces faster, while K
beats S because it produces the toxin that kills S. This cycle
characterizes rock-paper-scissors-type game competition.

The above relationship makes the E. coli strains excellent
prototypes to probe mechanisms responsible for maintaining
biodiversity under cyclic competition. One of the experimen-
tally tested aspects influencing asymptotic survival is the
spatial scale of the interactions, implemented by placing the
K-S-R community in different environments as done by Kerr
et al. �8�. Following these authors, we refer to phenomena
observed in static plate or mixed medium as short- and long-
range interactions. Accordingly, short-range interactions
were studied by growing bacteria in static plates. For long-
range interactions, bacteria were grown either in a shaken
flask containing liquid medium or on a mixed plate where
every 24 h a sterile velvet is pressed and rotated against the
plate. Under short-range interaction Kerr et al. �8� observed
coexistence of all three strains while under long-range inter-
actions only the resistant strain R survived.

The model used to reproduce the cyclic competition of E.
coli �8,9� consists of a square cellular automaton containing
N�N sites and periodic boundary conditions as usual. Indi-
vidual sites may assume one of four possible states: a state
for each of the S, R, and K strains and an empty state. Local
interactions are based on the state of the eight nearest neigh-
bors, while long-range interactions are based on eight sites
randomly selected from the lattice.

The temporal evolution is done by randomly selecting
sites from the lattice and updating them. A sequence of N2

random updates is taken as defining the unit of time because,
on the average, this is equivalent to updating all sites of the
lattice. When a randomly selected site is empty, it is filled by
one of the three strains with a probability proportional to the
number of individuals of each strain in the neighborhood.
Thus, finding zero sites of a given strain ensures that empty
sites will not be filled with that strain, thereby guaranteeing
that extinct strains remain extinct. The probability of death
for occupied sites depends on the strain living in it: R and K
die with constant probabilities, �R and �K, respectively.
However, if a site is occupied by an S strain, the probability
of it to die leaving the site empty is proportional to fK, the
quantity of killer strain K in the neighborhood, according to
the equation

�S = �S,0 + �fK, �1�

where � stands for the “toxicity” produced by K. To ensure
that the model indeed represents cyclic competition the pa-
rameters must obey the following relation �8�:

�S,0 � �R � �K �
�S,0 + �

1 + �
. �2�

As done in previous works �8,10�, the effect of different
metabolic costs on the reproduction rate is modeled by vary-
ing the death rates. We use the same parameter values used
by these authors, namely, �S,0=1 /4, �R=10 /32, �K=1 /3,
and �=3 /4. Initially, the lattice is filled randomly with the
four possible states with equal probability.
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Using the above model, Kerr et al. �8� observed good
agreement between computer simulations and their biologi-
cal experiments. Local interactions produced coexistence of
the three strains as desired, while just the R strain survived
for long-range interactions. In an interesting subsequent
work, Károlyi et al. �10� addressed long-range interactions
using a mean-field approximation. Surprisingly, mean-field
theory predicts the winner to be S, the sensitive strain, at
variance both with experiments and simulations. To explain
such discrepancy, Károlyi et al. argued that the experimental
mixing could have been either not homogeneous or not
strong enough to reproduce the mean-field expectations. To
probe a possible lack of homogeneity they considered cha-
otic mixtures with a parameter controlling the mixing fre-
quency.

By systematic simulations, we discovered that cyclic
competition has a characteristic quasiextinction period,
namely, a latency period observed in the mean-field solu-
tions, during which the winning strain S remains smaller than
the other strains. This quasiextinction implies that the critical
factor controlling the final strain surviving is actually the size
of the community. With hindsight, one then realizes a critical
difference between the previous simulations. While Kerr et
al. simulated a relatively small community of 250�250
sites, Károlyi et al. considered larger communities, usually
with more than 800�800 sites. So, instead of a discrepancy,
both works report behaviors which are typical of the com-
munity size that they investigate. Interesting anomalies de-
pendent on the lattice size were recently observed in other
models of cyclic competition �11,12�, and for particular cy-
clic relations it is possibly to find a critical population size
above which coexistence is likely �13�. We now proceed to
present the key point characterizing the quasiextinction pe-
riod: how big is the impact of the community size in select-
ing the final surviving strain?

Figure 1�a� displays what happens with the survival prob-
ability of strains R and S as a function of the community size
when using a global neighborhood. As it is clear from the
figure, the surviving strain is quite strongly affected by the
lattice size. While for small lattices the prevailing behavior is
the survival of the R, for larger lattice sizes it is S that sur-
vives. Furthermore, for lattices with about 375�375 sites we
find a clear crossover of the strain surviving with highest
probability. Thus, the crossover lattice size Nc=375 is the
boundary between two characteristic phases of the model:
the resistant and the sensitive phases. By comparing Fig. 1�a�
and the experimental results �8�, where only R survives, we
see that simulations agree with experiments only for small
lattice sizes.

We have also investigated size effects when the commu-
nity is subjected to a chaotic mixing with frequency �, fol-
lowing the same procedure of Károlyi et al. �10� �see their
Eq. �3��. Figure 1�b� shows the impact of the mixing fre-
quency � on the crossover lattice size Nc, where the cross-
over occurs. Compared with the result for the global neigh-
borhood �Fig. 1�a��, Fig. 1�b� shows clearly that crossovers
occur now for smaller lattice sizes, being, however, present
even when mixing is not sufficiently homogeneous to be
represented by the mean-field model. In a nutshell, we find
crossover to happen for both global neighborhood and for

chaotic mixing. Therefore, the presence of crossovers must
be directly connected to the dynamics of the model and not
to the mixing procedure used. In other words, chaotic mixing
alone does not explain the experimentally observed survival
of R.

Figure 2 presents a comparison of typical results about the
temporal evolution of the fraction of each bacterial strain as
predicted by the mean-field model �thin lines� and as pre-
dicted by simulations on a 200�200 network with global
neighborhood �thick lines�. The typical behavior for this lat-
tice size is the survival of R strain, but in order to compare
with the mean-field results, we used an initial condition for
which S survived. It is important to realize that, conceptually,
a model with well mixed individuals and finite interaction
length is not identical with the mean-field model �described
by a set of ordinary differential equations� based on the
mean-field interactions �14�. However, despite the small lat-
tice size studied in Fig. 2, for t�25 both models agree, pre-
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FIG. 1. �Color online� Dependence of the surviving strain as a
function of the lattice size N. �a� Survival probability of R �tri-
angles� and S �squares� for global neighborhood. Probabilities are
averages of 1000 independent simulations on lattices with N�N
sites, starting from random initial conditions. For each set of initial
conditions, the fraction of survival was determined by following the
time evolution until just one strain remains in the lattice. The K
strain survives just for very small lattices �smaller than 25�25
sites�, being omitted from the graph. �b� Evolution of the crossover
lattice size, Nc, as a function of �, the mixing frequency introduced
by Károlyi et al. �10�. To determine Nc, for each value of � we
computed a graph like the one in Fig. 1�a� and located the crossing.
Each value of Nc represents an average over 200 independent sets
of initial conditions. Error bars reflect the fact that crossovers occur
within a finite interval, not in well-defined points.
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dicting a quasiextinction of S, when S gets closer to the
absorbing state of extinction. Around t=150, the S strain
starts to grow in both models and, in fact, ends up winning
the competition. In small lattices, the quasiextinction of S
may, in fact, become a total extinction, allowing R to win the
competition. Considering that the fraction of sites occupied
by S can assume values as low as 10−4, in small lattices this
fraction can represent zero sites and having reached zero,
recovering is no longer possible. This is a strong indication
that the quasiextinction of S accounts for the presence of
crossovers. For small lattices, S is the strain more likely to
get extinct thereby allowing R to win the competition.

For some competition models, extinction may be associ-

ated to stochastic fluctuations and survival probabilities for
each competitor as a function of system size can be deter-
mined analytically from stochastic fluctuations �12,13�. The
key feature allowing the derivation of analytical results in
such models is the existence of a constant of motion depend-
ing on parameters and densities of each competitor. In our
case, however, no conserved quantity exists due to the pres-
ence of empty sites in the lattice, and no analogous deriva-
tions are possible.

A simple experiment may be performed to see that the key
for the crossovers is the existence of quasiextinction period.
In this experiment, we first vary �K, which controls the death
rate of K, and record the crossover lattice size Nc. As shown
in Fig. 3�a�, smaller �K corresponds to larger Nc. Thus,
smaller �K shows larger quasiextinction period. Figure 3�b�
illustrates for the same �K plotted in Fig. 3�a� how the
quasiextinction period affects Nc. This figure shows clearly
that Nc grows with the quasiextinction period. Analogously,
Figs. 3�c� and 3�d� show a similar growth of Nc as a function
of quasiextinction period obtained when varying �S,0 and �R,
respectively. These figures show unambiguously that the
growth of Nc with the quasiextinction period is a robust fea-
ture of the model and that the exponential growth of the three
curves is surprisingly governed by very similar exponents.
Thus, such behaviors show that the length of the quasiextinc-
tion period has a direct connection with crossovers. The
slightly distinct behaviors seen in Figs. 3�b�–3�d� might be
due to the fact that we are not quantifying the smallness of S
during the quasiextinction period. However, this effect is of
secondary importance here.

The consistent dynamics described above reveals a ge-
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FIG. 2. �Color online� Identification of the quasiextinction pe-
riod. Temporal evolution of each strain of E. coli according to the
mean-field model �thin lines� and according to simulations on a
lattice with 200�200 sites �thick lines�. In both cases, during the
interval 25� t�150 the S strain comes very close to zero, charac-
terizing a period of quasiextinction.
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FIG. 3. �Color online� Effect of quasiextinction period of S on the crossover lattice size Nc. �a� Nc as a function of �K, the death rate of
killer K. Variation of �K affects strongly the crossover position in Fig. 1�a� since to decrease �K implies an increase in the resistant phase
R. �b� Nc as a function of the quasiextinction period, calculated for the same eleven values of �K shown in Fig. 3�a�. The behavior is well
approximated by an exponential: f�x��−1.1+4.0 exp�0.011x�. �c� Nc computed similarly as in Fig. 3�b� but for nine values of �S,0. The
behavior is well approximated by an exponential: g�x��−72.9+31.0 exp�0.017x�. �d� Nc computed as before for ten values of �R. The
behavior is well approximated by an exponential: h�x��−111.8+8.8 exp�0.015x�. The metric similarity of the three exponentials suggests
that the growth of Nc is a general feature that does not depend of the parameter changed.
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neric feature of cyclic competition: community size plays a
decisive role in selecting the surviving competitor, a feature
that solves the puzzling results in the literature. Following
the quasiextinction of S in Fig. 2 it is possible to recognize
that the recovery of S is caused by the cyclic nature of the
competition. As illustrated in Fig. 2, for very low S values R
start to dominate the competition since it is only displaced by
S, the strain that is virtually absent. However, an increase of
R means a strong reduction of K since R wins K. But with
just a few K strains left in the lattice there is no much toxin
to prevent the growth of S. A decrease in K allows the
quasiextinct S to recover and to win the competition. Thus,
recovery of S is only possible because of the cyclic nature of
the competition, where reduction of one strain strongly af-
fects all the dynamics.

The spatial scale of the interactions is already known as
an important factor for the outcome of cyclic competitions
�8,9,15–17�. To it, we now add a key feature, the lattice size,
which manifests through the quasiextinction period. Generic
models of cyclic competition support a number of counterin-
tuitive effects such as, for example, unexpected situations
where the weakest strain ends winning the competition �18�
or the impact of mobility in the loss of diversity �17�. Basi-
cally, such counterintuitive effects are generated because
competitors are strongly connected, and an important loss or
gain in one point of the competition chain affects all indi-
viduals. We believe the quasiextinction underlying cross-
overs to be another important characteristic effect of cyclic
relations among competitors that is worth investigating in
other models.

To conclude, we mention that lattice-size effects on the
coexistence and survival in E. coli may be tested in the labo-
ratory, in experiments with mixed plate. One may equally
well vary the size of the dish to uncover lattice-size depen-
dences in the surviving strain. One interesting development
that is open to experimentation is based on the fact that, so
far, the standard parameters chosen in simulations were not
directly related to any biological quantity, except for the fact
that they obey the cycling relation described by Eq. �2�. As
shown in Fig. 3�a�, reducing the parameter �K enhances the
lattice-size effect in defining the final survivor of the cyclic
game. This fact suggests that size effects may be much stron-
ger in real experiments than those observed here. Knowing
that the number of individuals is huge in experimental situ-
ations and that simulations and the mean-field limit predict
survival of S, it is somehow surprising that Kerr et al. found
the R strategy to win in the experiment. There are several
possible explanations for this fact, ranging from shortcom-
ings in the modeling, e.g., using sites to describe individuals
instead of colonies, to unaccounted perturbations during ex-
perimental measurements. This puzzle certainly requires fur-
ther investigation.
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