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We investigate the prevalence of multistability in the parameter space of the kicked rotor map.
We report high-resolution phase diagrams showing how the density of attractors and the den-
sity of periods vary as a function of both model parameters. Our diagrams illustrate density
variations that exist when moving between the familiar conservative and strongly dissipative
limits of the map. We find the kicked rotor to contain multistability regions with more than
400 coexisting attractors. This fact makes the rotor a promising high-complexity local unit to
investigate synchronization in networks of chaotic maps, in both regular and complex topologies.
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1. Introduction

One of the most characteristic signatures of dissipa-
tive nonlinear systems in Nature is the phenomenon
of multistability, namely the possibility of observing
the coexistence of two or more stationary states,
attractors, which are stable for a common set of
control parameters. Multistability is by no means
rare: it appears abundantly in virtually any nonlin-
ear model of physical system. For instance, it is triv-
ial to make the number of coexisting attractors of
nonlinear systems to grow beyond any fixed bound
by the simple expedient of going to the limit of
vanishing dissipation. Moreover, as parameters are
tuned, each coexisting state evolves in its character-
istic way, some of them eventually losing stability,
and some of their unstable partners becoming stable

in a myriad of possible ways via specific bifurcations
[Arnold et al., 1999].

In spite of a large number of papers devoted to
the study of multistability, we believe that the rich-
ness of the phase diagrams for many theoretically
interesting and experimentally accessible physical
systems has not yet been adequately explored, par-
ticularly taking into account the complicated struc-
turing of chaotic phases and its many windows of
nonchaotic solutions, and, more importantly, for
parameters lying far from the Hamiltonian limit. In
the present paper we investigate a simple and inter-
esting physical model: a dissipative kicked-rotor.
Multistability and complicated basins of coexisting
attractors in the dissipative kicked-rotor map have
been reported previously by Feudel et al. [1996].
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However, they focused on the parameter regime
where the dissipation is weak. Motivated by their
beautiful paper, our aim is to extend their study
to considerably broader regions in the parame-
ter space, presenting detailed high-resolution phase
diagrams obtained numerically.

A key motivation for undertaking this investi-
gation is a recent work presenting robust numer-
ical evidence that certain synchronization effects
commonly observed in lattices of coupled logistic
maps are strongly dependent on the local map
[Lind et al., 2006]. Specifically, it was shown that
coherence may be easily destroyed by simply sub-
stituting the single-attractor logistic map by a
bistable map with two competing chaotic attrac-
tors like, e.g. a quartic [Brunnet & Gallas, 1998;
Janosi & Gallas, 1999] or a cubic map [Lind et al.,
2004a]. This remarkable feature was found to be
true not only for regular but also in small-world,
scale-free and other complex network structures,
a novel and realistic framework that is attracting
much attention in the literature at present [Newman
et al., 2006; Watts, 1999; Jost, 2005; Barabási, 2003;
Buchanan, 2002; Paula et al., 2006; Lind et al.,
2004b]. A number of interesting related questions
involving kicked rotors have been discussed recently
[Chacon & Garćıa-Hoz, 2003; Wimberger, 2004;
Persson et al., 2006].

In the context above, an enticing open question
is what happens when instead of using local oscilla-
tors supporting only a few attractors, like the pair
of attractors considered in Refs. [Lind et al., 2006;
Brunnet & Gallas, 1998; Janosi & Gallas, 1999;
Lind et al., 2004a], one uses maps supporting many,
say hundreds, of coexisting attractors? To be able
to address this question one first needs to character-
ize multistability, phase diagrams and the statisti-
cal properties of any candidate map having a large
number of attractors, to be subsequently used as
local oscillator in networks of maps. This character-
ization is the aim of the present paper. A companion
paper will address the problem of synchronization
in the presence of a myriad of coexisting attractors
[Martins & Gallas, 2008].

As mentioned, the investigation of dynami-
cal systems displaying large numbers of coexist-
ing attractors was considered in an interesting
work. Feudel et al. [1996] reported that a kicked
rotor with a small amount of damping may pos-
sess an arbitrarily large number of coexisting peri-
odic attractors when the damping is small enough.
In this situation, the large number of stable orbits

yields a complex structure of closely interwoven
basins of attraction, whose boundaries fill almost
the whole state space. As they explained, most
of the attractors observed in the kicked rotor
have low periods, because high period stable orbits
generally have basins too small to be detected.
In a separate work, Feudel et al. reported the
kicked double rotor to contain more than 3,000
coexisting attractors [Feudel et al., 1998]. The
abundance of attractors was conjectured by these
authors to be even more pronounced for higher-
dimensional systems. Here we also mention a very
interesting work by Astakhov et al. [2001] which,
although not specifically focusing on the num-
ber of coexisting attractors, described multistabil-
ity and complete chaos synchronization in coupled
Hénon maps, an invertible system, showing that
a single bifurcational mechanism describes both
a loss of chaos synchronization and multistability
formation.

The pioneering investigation of Feudel et al.
[1996] presented persuasive arguments for the exis-
tence of dozens of coexisting attractors in the kicked
rotor. These authors were interested in the limit of
very low damping, having investigated the dynam-
ics for a single specific point in the parameter
space of the model and discovered the existence
of more than 100 coexisting periodic attractors.
In the present work we reconsider the dynamics
of the kicked rotor investigating the relative abun-
dance of attractors for a very broad parameter
region, including the point investigated by Feudel
et al. [1996], but considering also the region of
nonvanishing dissipation. How abundant is multi-
stability when parameters are varied? How abun-
dant are periodic solutions in parameter regions
where chaotic dynamics is possible? These are the
main questions of interest to us. They need to be
answered in order to see how efficient the kicked
rotor would be as a local oscillator in networks of
maps [Martins & Gallas, 2008].

The paper is organized as follows. In Sec. 2 we
define the model and review briefly some of its basic
properties. In Sec. 3 we reconsider the dynamics
for the same point in parameter space previously
considered in a pioneering result by Feudel et al.
[1996], corroborating their findings and obtaining
an additional attractor of period 120. Then, in
Sec. 4 we report a computer experiment designed to
produce high-resolution phase diagrams of the den-
sity of attractors and the density of periods for wide
regions of control parameters. Section 5 summarizes
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our findings concerning multistability in parameter
space of the kicked rotor.

2. The Kicked Rotor

The kicked rotor that we investigate is a transfor-
mation of the real plane into itself f(x, y) : R2 �→ R2

defined by the equations [Feudel et al., 1996]

xt+1 = (xt + yt) mod 2π,

yt+1 = (1 − b) yt + a sin(xt + yt),
(1)

where the subindex t = 0, 1, 2, . . . represents the dis-
crete time ruling the dynamics, a represents nonlin-
earity (i.e. the amplitude of the nonlinear forcing)
and b is connected to the energy dissipation of the
rotor and varies between 0 (dissipationless Hamil-
tonian limit) and 1 (very strong dissipation). The
dynamics of these two limiting cases is well known
[Lichtenberg & Lieberman, 1992; Schmidt & Wang,
1985; Wenzel et al., 1991]. For a given choice (a, b) of
parameters and initial conditions (x0, y0), iterating
Eq. (1) one obtains an orbit of the rotor. Our aim
here is to classify the abundance of periodic orbits
in parameter space. To this end, for a fixed mesh
of parameters, we compute and classify all possible
orbits as a function of initial conditions for suitable
regions in phase space x × y.

For b > 0 the map of Eq. (1) contains a trap-
ping region [Feudel et al., 1996] in phase space given
by [0, 2π] × [−ymax, ymax], where ymax = a/b. Thus,
any initial condition inside this region gives origin
to an orbit lying entirely inside itself, without any
possibility of escaping (i.e. of divergence). Since the
parameter b is tunable from a Hamiltonian (b = 0)
up to a strongly dissipative limit (b = 1), it is clear
that the phase space of the system displays changes
from being a chaotic sea interspersed with islands
of periodicity to the familiar situation where one
observes period-doubling cascades routes to chaos.

The period-1 attractors (fixed points) (x∗, y∗)
of Eq. (1) are obtained by solving the system

x∗ = (x∗ + y∗) mod 2π
y∗ = (1 − b)y∗ + a sin(x∗ + y∗)

(2)

which gives

(x∗
m, y∗m) =

(
arcsin

(
−2mbπ

a

)
,−2mπ

)
(3)

for integer m such that |m| ≤ a/2bπ. The Jacobian
of Eq. (1) is

J =
(

1 1
η (1 − b) + η

)
, (4)

where η ≡ a cos(xt+yt), with determinant J = 1−b
which depends on b only, the parameter regulating
energy dissipation in the rotor. The eigenvalues of
J are

j± = 1 +
η − b

2
± 1

2

√
(b − η)2 + 4η. (5)

For the parameters (a, b) = (4, 0.02) considered
by Feudel et al. [1996], we find

(x∗
m, y∗m) =

(
arcsin

(
−mπ

100

)
,−2mπ

)
(6)

Equation (6), indicates that

y∗ = 200 sin(x∗). (7)

This curve is indicated by the dashed line in Fig. 1.
It contains the fixed points of the map. This figure
also contains the 148 attractors listed in Table 1
below and which are discussed in the next section
in detail.

Note that, due to the degenerate possibility of
orienting rotations, all orbits appear in symmetrical
pairs. That is, orbital points obey

(x, y) has a dual (x′, y′) ≡ (2π − x,−y). (8)

200

100

y

-100

-200
2π3π/2xπ/20

y(x) = 200 sin(x)

1 (55)
2 (12)
3 (32)
4 (02)
5 (26)
6 (02)
7 (04)
8 (04)
9 (04)

15 (02)
20 (02)
50 (02)

120 (02)

Fig. 1. The 148 attractors found for a = 4 and b = 0.02,
as listed in Table 1 and discussed in Sec. 3. The dashed line
defined by Eq. (7) contains all the 55 fixed points.
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Table 1. Distribution of periods k and their
respective degeneracies gk for the 148 attractors
found for a mesh of 3200 × 3200 initial conditions.
Here wk and w% represent the absolute and rela-
tive frequencies of individual periods.

# k gk wk w%
k

1 1 55 549,007 5.35804718
2 2 11 8,128,703 79.33227482
3 3 32 509,075 4.96832986
4 4 2 5,986 0.05842051
5 5 26 935,873 9.13367533
6 6 2 327 0.00319136
7 7 4 1,000 0.00975952
8 8 4 10,414 0.10163569
9 9 4 91,090 0.88899507

10 15 2 8,150 0.07954012
11 20 2 6,184 0.06035290
12 50 2 426 0.00415756
13 120 2 166 0.00162008

3. Numerical Experiment:
Periodic Attractors for a = 4
and b = 0.02

For a fixed set of parameters, we determined the
periodicity of the asymptotic attractor correspond-
ing to each individual initial condition as follows.
First, we discarded 50 × 103 iterates, considering
them as a transient time needed to come close
enough to the asymptotic attractor corresponding
to the initial condition used. Then, we determined if
the orbit was periodic, taking into account all peri-
ods up to a maximum period pmax = 1500. A point
(xt, yt) was considered as belonging to a period-k
orbit if k was the smallest integer such that, for all
points of the orbit, we had

‖xt+k − xt‖ < εd, (9)

where εd is a small number representing the numer-
ical accuracy of the test. We checked the stabil-
ity of the numerical assignment of each period
by repeating computations using εd = 10−d, for
d = 7, 8, . . . , 12. The results obtained were found to
be independent of εd. These strict tests were par-
ticularly important in the limit of low-dissipation,
when multistability proliferates. In addition, we
performed a number of additional tests, for specific
parameter sets, using the arbitrary precision pack-
age of MAPLE.

To estimate the number of coexisting peri-
odic orbits, we covered the trapping region

[0, 2π] × [−200, 200], with grid of N × N equally
spaced initial conditions where

N = {100, 200, 400, 800, 1600, 3200}.
The trapping region considered here is the same one
considered by Feudel et al. [1996]. To discriminate
distinct attractors of the same period, for each orbit
we constructed a look-up table containing the par-
ticular orbital point, say (xm, ym), characterized by
having the maximum magnitude of ym. In this way,
comparing these reference points it was possible to
discriminate with a precision ε if two orbits were
identical or not.

For the smallest grid (N = 100) we detected a
total of 114 distinct attractors involving eight differ-
ent periods: {1, 2, 3, 5, 8, 9, 15, 20}. For N = 200 and
larger values, in addition to the eight periods pre-
viously found, we also detected orbits with periods
{4, 6, 7, 50, 120}, giving now a total of 13 different
periods. It is clear that the total number of peri-
odic orbits depends on the resolution of the grid of
initial conditions used to cover the trapping region
in phase space. For grids larger than N = 200 we
have not observed any additional period, indicat-
ing that if additional periods exist, their basins
must be of rather small volume. For the largest
grid, N = 3200 we counted 148 distinct attractors
distributed in 13 different periods, the same ones
found already for N = 200. Table 1 summarizes the
statistics found for the largest grid N = 3200. The
great majority is of period-2 and period-5 orbits.
The small percentage of the orbits with higher peri-
ods is a measure of the volume of their basins of
attraction.

The distribution of periodic orbits shown in
Table 1 confirms the distribution previously deter-
mined by Feudel et al. [1996], with one excep-
tion: we find an additional attractor of period 120,
which may be observed at relatively low resolu-
tion, despite its small basin of attraction. Another
difference is that while Feudel et al. [1996] report
finding 84.4% of the initial conditions to lead to
period-1 orbits, our corresponding number is 5.35%.
We obtain a number close to theirs, namely 84.7%,
only when adding orbits of period-1 and period-2
together. One additional difference observed with
respect to the work of Feudel et al. [1996] is con-
nected with period-1 orbits. The 5% of period-
1 orbits listed in our Table 1, we observed that
the convergence to period-1 is very slow and not
perfect, meaning that differences of the order of
ε seem to be always present. For ε = 10−12 the
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basin volume of period-1 orbits drops to 4.2% while
that corresponding to period-2 orbits increases
to 80.3%. Increasing the transient and decreas-
ing the value of ε, the volume of the period-1
basin further decreases. This was tested for, e.g. ε
from 10−7 to 10−12), with transients of 100 × 103

iterates.
Figure 2 shows the stability “blades” corre-

sponding to the several possible values of m obeying
|m| ≤ a/(2bπ) � 31.8, in Eq. (3). As the figure indi-
cates, the point (a = 4, b = 0.02) is located inside
the stability region of the fixed points for which
|m| = 5, 6, 7, . . . , 31, a total of 2 × 27 = 54 points,
plus the fixed point for m = 0, giving a total of 55
points as listed in Table 1.

Figure 3 displays the region in phase space
that contains nine of the coexisting period-2 orbits.
Our figure contains the domain shown in Fig. 2
of [Feudel et al., 1996] but with higher resolu-
tion. In addition to period-2 orbits, the phase-
space window shown in Fig. 3 contains orbits of
periods other than period-2, for instance, it con-
tains period-1 orbits living inside the large basins
denoted f and f ′. Primed and unprimed pairs of
basins refer to pairs of isoperiodic orbits which
are conjugate to each other under the symmetry
operation defined in Eq. (8). Note that the orbit

living inside the central basin is self-conjugate, as
indicated.

The box seen in Fig. 3 is shown magnified
in Fig. 4(a). The main purpose of Fig. 4 is to
illustrate the complex entangling in phase-space
generated by the coexistence of several distinct
orbits. The successive magnifications serve to indi-
cate the localization and relative size of the period-
120 orbit, an orbit apparently not recorded by
Feudel et al. [1996]. In Fig. 4, period-120 orbital
points are marked with the symbol “◦”. As indi-
cated by the numbering inside the figure, inside
the last few magnifications one finds only attrac-
tors with periods 3, 9 and 120, in basins with
volumes given by 54%, 29%, 17%, for the penulti-
mate and 33%, 18%, 49%, for the last magnification,
respectively.

In the trapping region, one finds two fla-
vors of the period-120 attractor, as dictated by
the symmetry with respect to the orientation of
the initial rotation, as discussed above. One orbit
contains the point A = (1.86580061, 8.90035987)
while its symmetric dual contains the point
A = (4.41738470,−8.90035987), both determined
as described above, on a 1600 × 1600 grid of initial
conditions. In this grid, of a total of 2,563,201 ini-
tial conditions, 42 of them lead to period-120 orbits,
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Fig. 2. (a) The stability regions of the fixed points of the rotor. Dotted lines correspond to eigenvalues +1, while the
continuous lines mark eigenvalues −1. (b) Magnification of the region containing the point (a = 4, b = 0.02), indicated by a
black dot. For reference, the arrows indicate the width of two stability windows. Altogether, there are 55 stable fixed points
for this parameter point.
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Fig. 3. Region of phase space where 83.8% of the initial conditions lead to five dual pairs of period-2 orbits indicated by
the colors. As indicated, the orbit a is self-dual. Non period-2 orbits are painted white. The big f white island has period-1.
Primes refer to the duality defined in Eq. (8). The coordinates of the full dots are given in Table 2.

19 of them landing in attractor A and 23 landing in
attractor A. The Lyapunov spectra of both attrac-
tors is the same: λ{1,2} = {−0.2659,−0.5963}.

Figure 5 illustrates details of the larger por-
tions of the unprimed basins of periods 1 and 2 of

Fig. 3. The labels a, b, etc. refer to similar labels
also used in Fig. 3. As also noticed by Feudel et al.
[1996], an interesting feature of these basins is that
they seem to have fractal boundaries spreading over
most of the phase space, as indicated by the seas
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Fig. 4. Successive enlargements show in white the location of the basin and points of the period-120 orbit, indicated by the
dots. The two dots in the last panel indicate period-120 points with coordinates (3.02803, 5.09887) and (3.02804, 5.09876).
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Fig. 4. (Continued )

of colored dots surrounding the larger connected
portions of the basins. Furthermore, note that the
colorful sea of points in Fig. 3(c) seems to contain
more green, Fig. 3(e) seems to contain more blue,
etc., apparently indicating that the color of the large
connected domain dominates the coloring of the sea
surrounding it.

Table 2 summarizes data discriminating and
characterizing the nine coexisting period-2 orbits

together with their Lyapunov spectra, computed for
the window in phase space shown in Figs. 3 and 5.

For the record, we mention that our numerical
computations were done with 18 to 20 significant
digits and floating point variables involving 80 bits
of precision. In other words, we used variables of
type extended according to the IEEE Standard 754
norm, commonly implemented in most computers
nowadays.
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Fig. 5. Magnifications of the larger portions of the periods 1 and 2 shown in Fig. 3. Note the conspicuous presence of period-5
basins attached to the large connected portion of the basins of period-1 and 2. The labeling 3/9 in Fig. 5(c) is the same region
depicted in detail in Fig. 3, containing periods 3, 9 and 120. The coordinates of the full dots are given in Table 2. In panel f
we use black to distinguish period-5 from period-1.
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Table 2. Absolute and relative abundance of the nine period-2 orbits contained in the window shown in
Fig. 3. There is one additional pair of period-2 orbits, counted in Table 1, located outside the window in
Fig. 3. Coordinates xm, ym and the Lyapunov exponents to each attractor are shown in the last four columns,
respectively. The orbit labeled a is self-symmetric under the operation defined in Eq. (8).

Attractor w w% xm ym λ1 λ2

a ≡ a′ 212,790 22.17 2.89627484 0.49063562 −0.1242 −0.1242

b 150,525 15.68 2.87039114 6.76090914 −0.1216 −0.1216
b′ 151,250 15.77 3.41279417 −6.76090914 −0.1216 −0.1216

c 79,584 8.29 2.85861680 13.00350704 −0.1122 −0.1129
c′ 81,458 8.48 3.42456851 −13.00350704 −0.1122 −0.1129

d 46,882 4.88 2.86507611 19.21068402 −0.0949 −0.0964
d′ 48,121 5.01 3.41810920 −19.21068402 −0.0949 −0.0964

e 16,608 1.73 2.90545180 25.35150612 −0.0615 −0.0624
e′ 17,507 1.82 3.37773350 −25.35150612 −0.0615 −0.0624

Total 804,726 83.8% — — — —

4. Phase Diagrams for Arbitrary
Parameters

The useful discovery of more than 100 attractors for
the kicked rotor by Feudel et al. [1996] discussed
in the previous section left us wondering how com-
plex would be the parameter space of the rotor as
one moves away from the Hamiltonian limit, div-
ing more into the strongly dissipative region of the
map. In the dissipationless b = 0 limit the map
reduces to the standard map studied many years
ago [Zaslavsky, 1978; Chirikov, 1979] while for b = 1
one has the circle map displaying period-doubling
cascades to chaos. Although the dynamics in phase-
space of the kicked rotor are well-known, its param-
eter space is by far much less investigated. How does
the parameter space of a dynamical system ruled
by a transcendental function, like the kicked rotor
in the interval 0 ≤ b ≤ 1, compare with that of
a simple polynomial map like, e.g. the Hénon map
[Gallas, 1993, 1994, 1995] in −1 ≤ b ≤ 1, or even
in the smaller orientation-preserving or orientation-
reversing intervals [Endler & Gallas, 2006a, 2006b]?
Is it possible to find the same characteristic bifurca-
tion rigidity [Hunt et al., 1999] found in polynomial
maps for the transcendental equation of motion of
the rotor? In this section we present numerical evi-
dence showing that the phase diagram of the rotor
in fact displays the same structure as the paradig-
matic examples mentioned.

Figure 6 displays the results of an experiment
designed to sample the number of distinct attractors
over a wide range in parameter space: a ∈ [0, 10] and
b ∈ [0, 1]. This region was discretized with a grid of

1000× 1000 parameter points. For each of them we
determined numerically the number of attractors,
the number of distinct periods, thereby obtaining
the maximal period and the most frequent period
for the grid. For each of the 106 parameter points
we compared and counted attractors, sampled for
2500 initial conditions on a grid of 50 × 50 points
covering the trapping region. This long and sensi-
tive computation led to Fig. 6. This figure shows
a remarkably high concentration of distinct attrac-
tors in the rectangle located roughly at a ∈ [1, 5]
and b ∈ [0, 0.1]. The maximum number of attrac-
tors occurring for (a, b) = (3, 0.002) were counted as
404 distinct attractors. The location of this point is
indicated by a cross in Fig. 6. As one moves upward
toward b = 1 the density of attractors diminishes
considerably. In addition, about half of the param-
eter window is white, indicating the presence of
chaotic attractors.

As indicated by the pair of boxes in Fig. 6,
embedded in the chaotic region, it is possible to
find a myriad of islands of stability with the gen-
eral structure of a shrimp [Gallas, 1993, 1994, 1995,
Hunt et al., 1999], a generic structure also found
in profusion in the parameter space of dynamical
systems ruled by systems of nonlinear differential
equations [Bonatto et al., 2005; Bonatto & Gal-
las, 2007, 2008; Freire et al., 2008a; Zou et al.,
2006]. The larger box, containing an isolated and fat
shrimp of period-4 is shown in Fig. 7. In sharp con-
trast with other two-parameter maps like the Hénon
map, for instance, this region is characterized by a
very strong compression of stability islands, making
them all barely visible in the scale of the figure and
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Fig. 6. Density of attractors estimated at each point (a, b) from a random sampling involving 2500 uniformly initial conditions
in the trapping region in phase space discretized on a 50×50 grid. The white background, indicated as period 0 in the table of
colors, is used to mark chaotic attractors. For points with nine or more attractors, a continuous palette ranging from yellow to
black is used. The larger box is shown magnified in Fig. 7 while the smaller box near (a, b) ∼ (4.3, 0.96) is magnified in Fig. 8.

7.5 a 9.0
0.7

b

0.9

44

44

44

66

66

Fig. 7. Magnification of the larger box in Fig. 6, showing regions of periodic behaviors embedded in the white background
denoting chaos. The colors indicate the periods characterizing the different islands. Period zero is used to denote chaos. The
main body of the larger shrimp is a period-4 region. Its two neighbors have main bodies of period six.
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4.26 a 4.38
0.96

b

0.98

1212 66

22
33

33

1010

1010

1010

Fig. 8. Magnification of the smaller box indicated in Fig. 6, containing additional shrimps similar to those in Fig. 7. The
shrimp of largest volume has period 6. Colors denote periods, not density of attractors.

without a suitable sampling of the initial conditions.
Figure 8 shows a magnification of the smaller box
which is barely visible in Fig. 6. While the shape
and distribution of stability islands in this region
resemble that of other maps [Gallas, 1993, 1994,
1995; Hunt et al., 1999], it is very distinct in two
aspects: the nucleation of stability inside the chaotic
region occurs when approaching the strongly dissi-
pative region and, the sequence of periods nucleat-
ing along specific lines is rather unusual [Bonatto
et al., 2005; Bonatto & Gallas, 2007, 2008], involv-
ing main periods 3, 7, 8, 10 and 16, as shown in the
figure.

From Fig. 6, one sees that there is a large
number of distinct orbits having the same period.
It would be interesting to investigate how all
these isoperiodic orbits evolve and die as b moves
from the Hamiltonian to the strongly dissipative
limit.

5. Summary and Outlook

In this work we reconsidered the kicked rotor map
shown by Feudel et al. [1996] to contain more than
hundred attractors in the very low dissipation limit,
for (a = 4, b = 0.02). We reported high-resolution
phase diagrams showing prevalence of multistabil-
ity and identifying how the density of attractors

varies as a function of both model parameters when
moving between the familiar conservative and the
strongly dissipative limits of the map. We find the
kicked rotor to contain multistability regions with
more than 200 coexisting attractors. As far as we
know, this is the first time that a detailed and
systematic high-resolution phase diagram quanti-
fying density of attractors is reported for parame-
ters far from the low-dissipation limit. As one moves
toward the Hamiltonian limit, a remarkable feature
observed is that it is the degeneracy of the low-
period orbits that increases, not so much the length
of the stable periods.

As an interesting application of the phase dia-
grams obtained here we mention the study of
synchronization properties in networks of chaotic
systems. Synchronization of chaotic systems has
been frequently studied nowadays because of its
relevance in applications, e.g. in nonlinear optics
and fluid dynamics [Boccaletti et al., 2002]. Very
recently, the investigation of synchronization is
attracting renewed attention because of its key role
in helping to understand the ubiquitous complexity
found in the theory of networks of all kinds, such as
the Internet, the World Wide Web, social, and bio-
logical networks, etc. [Newman et al., 2006; Watts,
1999; Jost, 2005]. The main point of these investiga-
tions is to consider increasingly realistic couplings
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between chaotic local units. For instance, to con-
sider the effect of finite-time propagation of the
interaction, particularly of time-delayed coupling
[Atay & Jost, 2004; Masoller & Mart́ı, 2005; Mart́ı
et al., 2006]. Delayed coupling was used to study
the emergence of multistability in noisy bistable
elements [Huber & Tsimring, 2003] and to ana-
lyze anticipating synchronization of two excitable
systems [Ciszak et al., 2004]. It is already known
that for continuous-time systems, the stability con-
ditions of coupled elements is not influenced by
the time-delay of the coupling when the elements
are randomly coupled [Jirsa & Ding, 2004], and
that synchronization is independent of the topology
but depends on the average number of neighbors
[Masoller & Mart́ı, 2005; Mart́ı et al., 2006]. For
discrete-time systems modeled by coupled map lat-
tices, it was found that even with random delays, for
adequate coupling strength an array of chaotic logis-
tic maps is able to synchronize [Masoller & Mart́ı,
2005].

In this context, we observe that before embark-
ing on applications of multistability of maps one
needs first to chart parameter space, building phase
diagrams and considering the basin size evolution
between dissipative and conservative limits [Rech
et al., 2005]. This need is not so directly transparent
in the existing literature because the overwhelming
majority of papers dealing with networks of cou-
pled maps use the logistic map as a local oscillator,
an exceptionally simple map that contains only a
single finite attractor (i.e. deal with a map which
shows no multistability). We also mention that,
instead of dealing with maps involving transcenden-
tal functions in their definition, it seems that higher-
dimensional maps defined by algebraic functions
and displaying multistability, like the Hénon map
investigated by Astakhov et al. [2001], present less
computational complications and pitfalls. At any
rate, knowledge of detailed phase diagrams offers
now the possibility of exploiting more flexible local
oscillators as appealing high-complexity local units
to characterize synchronization of chaotic maps
in more realistic scenarios, discrete or not [Freire
& Gallas, 2007; Freire et al., 2008b], in regular
and complex topologies, with or without time-delay
among individual units [Martins & Gallas, 2008].
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