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Abstract

We investigate the impact of bistability in the emergence of synchronization in networks of chaotic maps with delayed

coupling. The existence of a single finite attractor of the uncoupled map is found to be responsible for the emergence of

synchronization. No synchronization is observed when the local dynamics has two competing chaotic attractors whose

orbits are dense on the same interval. This result is robust for regular networks with variable ranges of interaction and for

more complex topologies.

r 2006 Elsevier B.V. All rights reserved.
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Synchronization of chaotic systems has been frequently studied nowadays because of its relevance in many
situations, e.g. in nonlinear optics and fluid dynamics [1]. Since a realistic coupling between chaotic systems
should consider finite-time propagation of the interaction, particular attention has been recently given to time-
delayed coupling [2,3]. For instance, delayed coupling was used to study the emergence of multistability in
noisy bistable elements [4] and to analyze anticipating synchronization of two excitable systems [5]. It is
already known that for continuous systems the stability conditions of coupled elements is not influenced by the
time-delay of the coupling when the elements are randomly coupled [6], and that synchronization is
independent of the topology but depends on the average number of neighbors [3]. For discrete systems
modeled by coupled map lattices, it was found that even with random delays, for adequate coupling strength
an array of chaotic logistic maps is able to synchronize [3].

Here, we present robust numerical evidence that synchronization effects observed in lattices of coupled
logistic maps are strongly dependent of the local map. Specifically, we show that synchronization may be
easily destroyed by simply substituting the logistic map by a bistable map with two competing chaotic
attractors. This is true both for regular and for complex networks.
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Our model consists of the usual array of coupled chaotic maps defined by

xtþ1ðiÞ ¼ ð1� �Þf ðxtðiÞÞ þ
�

PN
j¼1Zij

X

jai

Zijoijf ðxt�tðjÞÞ, (1)

where t represents the delay, f ðxtÞ denotes the local map, � is the coupling strength and N is the total number
of nodes. The adjacency matrix fZijg and the coupling strength oij between nodes i and j depend on the
network topology and for all i one has

PN
j¼1oij ¼ N � 1. As usual, synchronized solutions are detected

when the standard deviation of the amplitudes xt is numerically zero, i.e., when s2ðtÞ ¼ ð1=ðN � 1ÞÞP
jðxtðjÞ � hxtiÞ

2t10�20.
In this framework, we contrast the properties of the standard logistic map f lðxtÞ ¼ a� x2

t characterized by a
single finite attractor, with those found for the quartic map f qðxtÞ ¼ a� ða� x2

t Þ
2 having two stable finite

attractors (bistability). Although the bifurcation diagram of these maps look numerically the same (see Fig. 1),
at a ¼ 0:75 the logistic map suffers a period-doubling bifurcation while the quartic map shows a tangent
bifurcation where the fixed point splits into a pair of fixed points, each one with its own basin of attraction and
doubling cascade. By contrast with the logistic map, the quartic map has two stable finite attractors beyond
a40:75. In particular, in the fully chaotic regime (a ¼ 2) the two chaotic orbits of the quartic map are dense in
the interval ½�2; 2�, i.e., any subinterval intersects both basins of attraction. Therefore, one could expect that
for a ¼ 2 the two maps are numerically indistinguishable when introduced in Eq. (1). However, as we show
below, this is not the case.

We start by considering a regular network where each node i is symmetrically coupled to its neighbors,
labeled as j, in both short- and long-range interaction regimes. For short-range coupling, the coupling strength
decreases exponentially with the distance ji � jjmod N=2, i.e., oij / expð�aji � jjÞ, while for long-range coupling
the decrease is polynomial, oij / ji � jj�a. In both cases, a controls the range of interaction: a ¼ 0 yields the
fully and uniformly connected network while for a!1 maps are decoupled.

Full synchronization is observed in the black regions in Fig. 2. Exponential coupling using logistic maps is
illustrated in Figs. 2(a) and (b), while polynomial coupling using logistic and quartic maps is shown in
Figs. 2(c) and (d) and (e) and (f), respectively. For quartic maps with exponential coupling the results are
independent of t and are similar to those of Fig. 2(a). For other even and odd values of t, one obtains plots
similar to the ones for t ¼ 6 and 9, respectively. From Fig. 2 one clearly sees that, while for exponential
coupling synchronization is observed only in a neighborhood of a ¼ 0, for polynomial coupling, the
synchronization region spreads in a wider range of a-values, since the coupling strength decreases more slowly
with the distance. Moreover, there is different behavior for the two types of local dynamics: for the logistic
map there is a synchronization region within 0:1t�t0:2 while for the quartic map there is not. In the
particular case of nearest-neighbors coupling this is almost the unique synchronization region corroborating
recent findings [2].

For complex topologies bistability also suppresses the emergence of synchronized solutions as shown in
Fig. 3. In order to ascertain the robustness of our results, we consider three different types of complex
Fig. 1. Bifurcation diagrams of (a) the logistic map xtþ1 ¼ a� x2
t with one single finite stable attractor, and of (b) the quartic map

xtþ1 ¼ a� ða� x2
t Þ

2, where for a40:75 two stable attractors coexist. Different basins of attraction are represented with different tonalities.
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Fig. 2. Regions of full-synchronization (black) for regular networks with (a) and (b) exponential coupling using logistic maps, (c) and (d)

polynomial coupling with logistic maps and (e) and (f) polynomial coupling with quartic maps. Here a ¼ 2, N ¼ 103, transients are 104,

samples contain 50 initial configurations. t is the delay defined in Eq. (1).
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Fig. 3. Standard deviation s of the node amplitudes as a function of the coupling strength in complex networks using (a–c) the logistic

map and (d–f) the quartic map. In all cases hki ¼ 10 and the conditions of Fig. 2 were used. The small-world network is constructed using

the algorithm in [7] with a probability p ¼ 0:05 for acquiring random connections, while the scale-free network is constructed from the

Albert–Barabási model.

P.G. Lind et al. / Physica A 371 (2006) 100–103102



ARTICLE IN PRESS

0.0 2.0
0.0

1.0

a
0.0 2.0

a
0.0 2.0

a
0.0 2.0

a

ε

0.0

1.0

ε

0.0

1.0

ε

0.0

1.0

ε

(a) (b) (c) (d)

Fig. 4. Illustration of periodic (gray), chaotic (white) and hyperchaotic (black) regions of the synchronized solutions in parameter space (a

and �). Logistic map: (a) t ¼ 1 and (b) t ¼ 2. Quartic map: (c) t ¼ 1 and (d) t ¼ 2. For each pair of values, Lyapunov exponents were

computed from intervals of 103 time-steps after discarding transients of 103 time-steps.
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topologies, namely a random topology, a small-world topology and a scale-free network. Figs. 3(a–c) show the
results for the logistic map, while Figs. 3(d–f) show the results for the quartic map. In all cases of Fig. 3 the
average degree is fixed at hki ¼ 10 neighbors, and we have taken, for simplicity, oij ¼ 1� dij (uniform
coupling).

In addition to suppression of synchronization in the case of the quartic map, one observes, for the particular
case of scale-free networks of logistic maps, a very abrupt transition to synchronization. This transition,
already reported in previous studies [8], is still not fully understood. Our simulations indicate that the coupling
strength threshold is independent of the network size.

For all the cases above, the synchronized solution of Eq. (1) evolves according to X tþ1 ¼

ð1� �Þf ðX tÞ þ �f ðX t�tÞ, involving the two variables X t and X t�t. Therefore, the corresponding Jacobian
yields two different Lyapunov exponents: if both exponents are negative the orbit is periodic, if one of the
exponents is positive the orbit is chaotic and when both are positive the orbit is hyperchaotic. Figs. 4(a) and
(b) show where each of the three regimes occurs for the logistic map either with even and odd time delays while
Figs. 4(c) and (d) illustrate the same situations for the quartic map. Clearly, for a ¼ 2 the quartic map shows
hyperchaos in all the range of � values, while in the logistic case only certain � ranges exhibit hyperchaos. This
fact could be related with the significant suppression of synchronized solutions when bistability sets in. For
other odd or even time delays similar plots are obtained.

In conclusion, we found that bistable local dynamics in networks of chaotic maps with delayed coupling
destroys synchronization for a wide variety of situations. In the literature, synchronization in networks with
delayed coupling was only studied so far under the very particular unimodal local dynamics. As shown here,
however, care should be taken when interpreting results obtained with logistic maps because synchronized
solutions are too dependent on the maps ruling the dynamics.
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