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MINIMIZING STOCHASTICITY IN THE NAO INDEX
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We show that the monthly North Atlantic Oscillation index routinely used in climatology as
an indicator for global climate variability is not an optimal choice. A critical Markov analysis
of the two pressure time-series for both, monthly and daily NAO index, indicates that the
monthly index, due to its low sampling rate, contains higher stochastic terms than the daily
index. Applying a recently developed variationally optimized Markov analysis leads to a new
NAO index with minimal stochasticity.
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1. Introduction

The North Atlantic Oscillation (NAO) is a source
of variability in the global atmosphere, describing a
large-scale vacillation in atmospheric mass between
the anticyclone near the Azores and the cyclone
near Iceland [Wanner et al., 2001; Hurrel, 1995].
It is receiving much attention in climate research
because of its recently known importance in global
climate variability. See [Wanner et al., 2001] for a
review on NAO. The spatial pattern of the NAO is
a pronounced dipole-like pressure anomaly over the
North Atlantic, with one pole at the Azores High
and another over the Iceland Low. This dipole has
two phases: a positive NAO phase, when there is
a strong pressure gradient between both systems,

and a negative phase, when the pressure gradi-
ent gets weaker. Lately, the question whether the
NAO is a chaotic or a stochastic process was stud-
ied [Stephenson et al., 2000] and it has been claimed
that the NAO index is close to a Gaussian distri-
bution [Collette & Ausloos, 2004]. The state of the
NAO is usually measured by an index N , defined as
the normalized pressure difference between the high
and the low poles, where the pressures are averaged
over each month or year [Hurrel, 1995], yielding a
time series assumed to be stationary [Stephenson
et al., 2000].

In this paper, we focus on the question whether
a new NAO index with minimal stochasticity can
be defined from the available pressure time series.
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Our analysis is based on a variationally optimized
Markov analysis which has been recently intro-
duced [Lind et al., 2005] which provides a novel pos-
sibility to minimize stochasticity in coupled systems
of Langevin equations. Since the daily index has a
larger correlation length than the monthly index,
this optimization procedure, applied to the daily
data, yields an index with higher predictive power.

Using the Markov analysis described in
[Friedrich et al., 1997a; Renner et al., 2001] we will
extract a Langevin equation from the NAO indices
time-series. The numerical procedure is as follows.
For a general time-series {X(n)} with n = 1, . . . , N ,
one considers the auxiliary time series {Xt(n)} ≡
{X(n + t)} with n = 1, . . . , N − t and t an inte-
ger, and their probability density functions (PDF)
p(X, t). Assuming that the process is Markovian,
the two first Kramers–Moyal coefficients (KMC) are
computed, namely the drift coefficient D(1) and the
diffusion D(2)

D(k)(Xτ , τ) =
1
k!

lim
∆τ→0

M (k)(Xτ , τ,∆τ)

� 1
k!

lim
∆τ→0

1
∆τ

∑
Xτ+∆τ

(Xτ+∆τ (n)

−Xτ (n))kp (1)

with k = 1, 2. Here, M (k)(Xτ , τ,∆τ) are the
conditional moments, where the sum is taken
over the bin discretization of the PDF of Xτ+∆τ

and p ≡ p(Xτ+∆τ , τ + ∆τ |Xτ , τ) is the conditional
probability, extracted directly from the auxiliary
time-series. As done in other contexts [Friedrich
et al., 1997b] with the aim to focus on the inter-
mittent deviations of the turbulent regimes asso-
ciated with the NAO, we consider a rescaling
of time t labeling the values of the time-series
into τ = log2(�M/t) with �M being the Markov
length [Friedrich et al., 2000; Renner et al., 2001;
Risken, 1984]. Under certain conditions [Risken,
1984], D(1) and D(2) describe the deterministic
and stochastic dynamics, respectively, yielding a
Langevin equation

d

dτ
Xτ = D(1)(Xτ , τ) + η(τ)

√
D(2)(Xτ , τ), (2)

where η(τ) is a δ-correlated Gaussian noise.
We start by determining the Langevin equation

in Sec. 2 for both the monthly and the daily indices.
In Sec. 3, we discuss the existence and amplitude
of the dynamical and measurement noise present

in such time-series and describe an analytical pro-
cedure to obtain optimal indices, i.e. with smaller
stochastic terms. Conclusions are given in Sec. 4.

2. The Monthly and Daily NAO
Indices as Stochastic Processes

In Fig. 1 the time series of the monthly [Fig. 1(a)]
and daily [Figs. 1(b) and 1(c)] NAO indices are
shown. As one sees, while the monthly index fluctu-
ates in an apparently random way, the daily index
shows a yearly modulation [see Fig. 1(c)]. In fact,
as shown in Fig. 2, the correlation length for the
daily index is about 100 days, while for the monthly
index is approximately 1 month, i.e. close to one
sampling step. Accordingly, the power spectrum of
the monthly index shows a typical white noise spec-
trum, which is not the case of the daily index. These
are first indications that the monthly index is hardly
suitable as a time-series from which one can extract
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Fig. 1. Time-series of two NAO indices: (a) monthly
(January 1825 till November 2002) and (b) daily (1st
Jan. 1950 till 30th Dec. 1996). The data was extracted
from http://www.cru.uea.ac.uk/cru/data/nao.htm and
http://www.cgd.ucar.edu /cas/jhurrell/indices.html

respectively. In (c) a smaller section of the daily time-series
is shown displaying the yearly modulation.
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Fig. 2. The correlation function for (a) the monthly and (b) the daily NAO indices. The Fourier spectra for the monthly and
the daily data are shown in the plots (c) and (d), respectively. Clearly, the daily data has a much larger correlation length
than the monthly data which is close to white noise.

a significantly large deterministic component of the
NAO system.

Computing the PDFs as described above, the
conditional moments M (1) and M (2) in Eq. (1) can
be studied as functions of the time difference ∆t =
tref − t, where tref is the maximum value of t consid-
ered. Figure 3 shows the two conditional moments of
the daily index for the reference tref = 90 at three
different arguments of its PDF. For small ∆t the
conditional moments behave in an irregular fashion,
while for ∆t � 20 they vary approximately linearly
with the time-lag. Therefore, �M = 20 is assumed as
the Markov length for the time-series, as indicated
by the vertical dotted line in Fig. 3. Afterward we
will confirm that indeed this was a proper choice.

Using the rescaled time-lag ∆τ = τ − τref =
log2(tref/t) and making a linear fit of the condi-
tional moments, M (1) and M (2), beyond the Markov

length, intersecting it with the vertical axis ∆t = 0,
yields the limit in Eq. (1), leading to approximate
values of the corresponding drift D(1) and diffusion
D(2) coefficients respectively, as shown in Fig. 4.

Taking the same units as the daily NAO index,
one clearly sees that, within the range Nτ ∈ [−1, 1],
D(1) varies linearly with Nτ , while D(2) varies
quadratically. Fitting such curves yields

D
(1)
day(Nτ ) = 0.0629 − 0.8219Nτ , (3)

D
(2)
day(Nτ ) = 1.2927 − 0.0364Nτ + 0.3300N 2

τ . (4)

Both KMCs depend only weakly on the reference
time tref as can be seen from Fig. 5. For both coef-
ficients, the fitted surfaces yield general quadratic
forms where the terms depending on tref are two
orders of magnitude smaller than the terms depend-
ing on Nτ alone.
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Fig. 3. The first and second conditional moments, M1 and M2 in Eq. (1) of the daily time-series shown in Fig. 1(b). Similar
plots are obtained for the monthly data. Here, tref = 90. Fitting the curves beyond the Markov length �M = 20 and intersecting
the fits with the axis ∆t = 0 yields the corresponding Kramers–Moyal coefficient.
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Fig. 4. The drift and diffusion coefficients, D1 and D2 in Eq. (1), of the daily index, obtained from linear fits of the
corresponding conditional moments, beyond the Markov length (see Fig. 3). Here tref = 90 and Nτ is given in the same units
as the NAO index.
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(a) (b)

Fig. 5. Dependence of both drift and diffusion coefficients of the daily index on the time of reference tref . As one sees, for
both coefficients this dependence is weak (see text). Here tref was normalized into the interval [−1, 1], using values from 24
to 180.

For the monthly index one can also neglect the
dependence on tref and the parameterizations of the
corresponding KMC are

D
(1)
month(Nτ ) = 0.2285 − 1.0659Nτ , (5)

D
(2)
month(Nτ ) = 1.6507 − 0.2428Nτ + 0.4954N 2

τ . (6)

For both indices, the negative slope of the drift coef-
ficient indicates the existence of a damping force. In
addition, the quadratic term in both diffusion coef-
ficient indicates possible intermittency phenomena
in the evolution of the indices.

By integrating the associated Fokker–Planck
equation [Risken, 1984] one tests the validity of our
approach, which assumes from the very beginning
that the process is Markovian, i.e. the conditional
probability constrained only to the previous time-
step equals the conditional probability constrained
to any number of previous time-steps. For both,
the daily and the monthly indices, PDF obtained
by integration are in good agreement with PDF
extracted directly from the data sets.

3. Reduction of Stochasticity

For both indices the diffusive term is significantly
larger than the deterministic term, reflecting the
stochasticity of the NAO indices. As we recently
showed by a variationally optimized Markov anal-
ysis [Lind et al., 2005], the high stochasticity in
the monthly NAO index evolution can be reduced
approximately by a factor of 3 when considering

the two underlying pressure time-series, P1 and P2,
as a two-dimensional coupled system. One starts by
parameterizing the two coupled Langevin equations
corresponding to the evolution of each pressure time
series, namely

dP1

dt
= h1 + g11η1(t) + g12η2(t), (7)

dP2

dt
= h2 + g21η1(t) + g22η2(t), (8)

whose coefficients hi and gij represent the deter-
ministic and stochastic contributions, respectively,
and η1 and η2 denote two independent δ-correlated
Gaussian noise terms.

A general transformation of variables, (P1,
P2) → (N1, N2), in Eqs. (7) and (8), leads to a new
system with coefficients g′ and h′. The main point
in our procedure is to require that for one of the new
equations, say the one in N1, both stochastic terms
become as small as possible when compared to the
deterministic part. In other words, the dependence
of N1 on P1 and P2 is such that a functional F is
minimized, namely

F =
‖g′11‖2 + ‖g′12‖2

‖h′
1‖2

, (9)

where ‖f‖ is the L2-norm of f . Imposing that
the norm in the denominator is some suitable
constant [Lind et al., 2005], one has without
loss of generality, a variational problem with the
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Lagrangian

L =
(
g′11

)2 +
(
g′12

)2 +
[(

h′
1

)2 − 1
]
. (10)

Thus, solving numerically the Euler–Lagrange
equation for this Lagrangian yields the “optimal”
index N1 for which stochasticity is as small as pos-
sible in the sense described above. This procedure
can be generally applied to any system of coupled
Langevin equations, in particular to the daily index,
for which the Markov analysis is much more reliable
than for the monthly index, due to its larger corre-
lation length.

Comparing the parameterizations of the indices
above [Eqs. (3) through (6)], one concludes that
both the multiplicative and additive dynamical
noises are larger for the monthly index. This can
be seen from the diffusion coefficient D(2) which
gives a measure of the dynamical noise, namely, the
terms depending on Nτ result from the multiplica-
tive dynamical noise while the independent term
indicates the amplitude of additive noise.

It should be noticed that the accuracy of KMC
depends on the size of the data set and on the ampli-
tude of an additional measurement noise. While for
both indices the available data sets are small, the
daily index time series (16801 data points) is about
one order of magnitude longer than the monthly
index (2135 data points). As for the measurement
noise, indications of its presence can be found in
Figs. 2 and 3. Namely, the tendency of the power
spectrum to be constant at high frequencies for the
daily index [Fig. 2(d)] and the divergence of the
conditional moments when ∆t → 0 (Fig. 3). There
is also a quantitative procedure which allows an
estimation of the amplitude of the measurement
noise [Siefert et al., 2000] only by computing the
second cumulant K(2) = M (2) − (M (1))2. However,
due to the sparse data sets available, the cumulant
yields very crude results.

4. Discussion and Conclusions

In this paper we have presented a Markov analy-
sis to the common monthly NAO index comparing
it with a similar NAO index, computed from daily
pressure data. While, in both cases the dynamical
noise and consequently the stochasticity is large, the
daily index contains a smaller stochastic term than
the monthly index. Consequently, the daily data are
more reliable to study and characterize the NAO
system than the usual monthly data.

To improve predictability of the daily index,
we described a recently introduced variationally
optimized Markov analysis, based on the minimiza-
tion of a suitable functional, leading to a new index
with less stochasticity. It should be of importance
in forthcoming studies to analyze the time-series
of the optimal indices. Furthermore, since the new
indices are not simple differences between the pres-
sures at both NAO poles, a new interpretation of
the phases of the bipolar oscillation must be given
in order to understand the physical meaning of such
new indices.
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