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Using advection to control the velocity of patterns in rings of maps

Pedro G. Linda,b,c, João A.M. Corte-Reala,c, Jason A.C. Gallasa,b,c,d,∗
a Unidade de Meteorologia e Climatologia, Instituto de Ciˆencia Aplicada e Tecnologia, Faculdade de Ciˆencias,

Universidade de Lisboa, 1749-016 Lisboa, Portugal
b Instituto de F´ısica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil

c Centro de Geof´ısica, Universidade de Évora, 7000 Évora, Portugal
d Institut für Computer Anwendungen, Universität Stuttgart, Pfaffenwaldring 27, D-70569 Stuttgart, Germany

Abstract

Traveling patterns are well-known features of rings of symmetrically coupled maps which, however, propagate with rather
small velocities, of the order of∼10−3 sites per step. We show that it is easy to produce traveling patterns with velocities
tunable over three orders of magnitude by simply breaking the symmetry of the coupling between neighbors. This asymmetry
arises naturally when the usual model of coupled map lattices is generalized to also include advection. In addition, asymmetries
change the wavelength of waves traveling on the lattice.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The forecasting of atmospheric systems from a
given set of measurements of physical quantities
(e.g. pressure, temperature, etc.) in space and time is
well known to be a quite hard task[1–5]. Weather
forecasts are usually obtained either by numerical in-
tegration of the differential equations controlling the
atmospheric system[3] or by nonlinear analysis of
observed time-series[6]. To reduce the time of com-
putation and to investigate the dynamics over longer
time intervals, it is a common practice to neglect cer-
tain terms in such equations, maintaining only those
judged dominant[1–3].
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One such approximation concerns atmospheric sys-
tems away from the boundary layer (ground), where
friction is neglected, and leads to a set of differential
equations known asgradient flows[4]. Gradient flows
can explain the existence of circulating systems in
the atmosphere such as highs and lows[5]. On the
other hand, one of the most prominent terms in the
governing equations, present in virtually all approxi-
mations, is that involving advection by the horizontal
wind [2,5].

In this paper, we show that an interesting new class
of models for atmospheric simulations, containing
a term representing directly advection in a system,
may be obtained by slightly extending the generic
class of discrete models known ascoupled map lat-
tices, popular nowadays to investigate spatio-temporal
complexity [7,8]. Results obtained with this new
model reproduce qualitatively several aspects of the
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phenomenology observed in the presence of gradient
flows. This model allows a number of interesting in-
vestigations and the purpose of this paper is to report
part of what we have obtained so far.

The majority of applications of lattices of coupled
maps, either numerical[8] or analytical[9,10], con-
sider the dynamics controlled by the equation

xt+1(i) = f (xt (i)) + εDi,t , (1)

wheret = 0,1, . . . represents a discrete time variable,
i the discrete sites composing the lattice,f (x) the
‘force’ acting locally andDi,t a discretization of the
Laplacian operator responsible for the diffusion along
the lattice. When subjected to periodic boundary con-
ditions,x1 ≡ xL+1, L being the total number of sites,
the one-dimensional lattice ofEq. (1)is, effectively, a
ring of coupled maps (RCMs). This very popular ring
model will be extended here to incorporate advection.

As known [8], when initializing each sitei with
arbitrary initial conditions and letting the lattice
“thermalize” for a suitable transient time, the system
is seen to approach an asymptotic state, a “pattern”,
which is a member of a large family of possible states
(attractors). Subsequently to the transient, the patterns
display time-evolutions with or without space and/or
time periodicities. The classification of possible
time-evolutions for patterns is an interesting subject,
particularly the phenomena connected with the ap-
pearance oftraveling waveson the lattice[8,11–15].
However, a remarkable characteristic observed in all
results based on the purely diffusive model ofEq. (1)
is that the velocity of patterns moving in the ring is
invariably small, of the order of�10−3 sites per step,
at most.

The purpose of this paper is to introduce a simple
generalization of the diffusive model inEq. (1), a new
model given by

xt+1 = f (xt (i)) + εDi,t − γAi,t , (2)

whereAi,t , defined below in Eq. (5), represents the
advection in the lattice, with its amplitude controlled
by the parameterγ . As shown in the next section, the
introduction of advection is quite a natural step when
considering the physics of complex phenomena (e.g.
convection is a crucial mechanism in the dynamics of

large-scale atmospheric motions) and yields a more
realistic model which containsEq. (1)as a particular
case. An important advantage of considering advec-
tion is that this new contribution provides a rather
effective means of tuning and controlling the velocity
of traveling waves and patterns on the lattice. The
ability of tuning velocities is an interesting feature for
a number of applications in geophysics.

A number of previous works has already consid-
ered using asymmetrically coupled maps to simulate
flow systems[16–20]and in the context of renormal-
ization group analysis[10]. However, as shown in the
next section, instead of postulating asymmetries in a
somewhat ad hoc manner, here we start from a dis-
cretization of the relevant differential operators and
use periodic boundary conditions to simulate systems
in which effects of circulation are important, as is
the case of the atmosphere. This approach provides
a clear and simple physical interpretation for the
asymmetry.

The derivation and the physical meaning of the ad-
vection termAi,t are presented inSection 2. Numer-
ical results for rings of coupled maps with advection
and the analogy with gradient flows are discussed in
Section 3. A number of interesting results concerning
the spatial periodicity are shown inSection 4. Finally,
our conclusions are inSection 5.

2. A simple model of advection

The two fundamental quantities underlying the
model are (i) the diffusion∇2f , and (ii) the advection
	v · 	∇f . Discretizing them, as usual[3], one finds

v
df

dx
∼ v

f (x + �x) − f (x − �x)

2�x
, (3)

d2f

dx2
∼ f (x + �x) − 2f (x) + f (x − �x)

(�x)2
. (4)

For unitary increments and with the abbreviations

Ai,t = f (xt (i + 1)) − f (xt (i − 1))

2
, (5)

Di,t = f (xt (i + 1))+f (xt (i − 1))

2
− f (xt (i)), (6)
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the above equations simplify to

v
df

dx
∼ vAi,t , (7)

d2f

dx2
∼ 2Di,t . (8)

Now, we start from the standard equation ruling the
dynamics of coupled maps[8] and slightly extend it
by introducing to it a new parameterγ as follows:

xt+1(i) = (1 − ε)f (xt (i)) + ε + γ

2
f (xt (i − 1))

+ ε − γ

2
f (xt (i + 1)). (9)

By rearranging terms, this equation may be easily
brought to the simple form ofEq. (2)where, in addi-
tion to the familiar diffusive termDi,t controlled by
ε, the new degree of freedom controlled byγ corre-
sponds to the advectionAi,t . Eqs. (2) and (7)strongly
suggest thatγ has the physical meaning of a circu-
lation velocity. As discussed below, this is indeed the
case.

The coupling strengthε varies between 0 (un-coupled
regime) and 1 (totally coupled regime). The valid
range ofγ depends onε and, observing that(ε±γ )/2
should also lie in [0,1], it is readily found to be
−ε ≤ γ ≤ ε.

For γ = 0 one recovers the usual diffusive model
while both extrema,γ = ε and −ε, correspond
to the situations referred to as ‘one-way coupling’
[16,17,21], one for each direction of motion in the
ring.

3. The effect of advection

We now study the effect of advection for a RCMs
ruled by the usuallogistic local interactions, namely,
by

f (x) = 1 − ax2. (10)

In the absence of asymmetries (i.e. forγ = 0), the
dynamics of this paradigmatic ring was considered in
detail recently[22], where it has been shown that the
parameter region delimited by 1.6 ≤ a ≤ 1.85, with

coupling strengthε ≥ 0.4, is the most interesting for
investigating the dynamics of traveling waves.

Generic characteristics of traveling waves in this
region are[8,22]:

(1) Velocity distributions which are symmetric and
‘quantized’ as functions ofa.

(2) The magnitude of the velocity increase linearly
with a.

(3) The slope of the linear dependence ona is mod-
ulated by the coupling strengthε.

(4) The velocity of traveling waves is invariably small,
of the order of 10−3 sites per step.

We now investigate what happens with these charac-
teristics in systems where advection is present, i.e.
whenγ �≡ 0 in Eq. (2).

3.1. Velocity dependence on asymmetric coupling

Fig. 1 shows velocity distributions as a function of
a for a few representative values ofγ . The interval
1.6 < a < 1.85 was divided into 100 parts and for
each value ofa we plot 100 velocities, obtained from
a different set of random initial conditions. For ref-
erence, a typical distribution for symmetric coupling
(γ = 0) is also shown inFig. 1(a). The mechanism
of velocity selection in bands (‘quantization’) is ex-
plained[7] as the number of phase slips in the lattice.

As is clear from the figures, by increasing the asym-
metry it is now possible to obtain much higher veloc-
ities, up to 100 times higher than those obtained with
symmetric coupling. Increasingε to 1, the interval of
γ gets wider (−ε ≤ γ ≤ ε) and, consequently, the ve-
locity may be tuned up to 1000 times higher, whenever
γ ∼ ±ε. In addition, the distributions of positive and
negative velocities are symmetric with respect to the
line v = γ , thus suggesting a mechanism for ‘direc-
tional segregation’: velocities for positive (negative)
values ofγ tend to be positive (negative). Such direc-
tional segregation mechanism is ratherdifferent from
that responsible for the velocity selection in bands.

Velocity values spread around a small interval
aroundv = γ and remain ‘quantized’ forγ �≡ 0. Nev-
ertheless, the global shape of the velocity distributions
changes, spreading aroundv = γ but asymmetrically.
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Fig. 1. Typical velocity distributions as a function of the local nonlinearitya, for representative values ofγ , on a ring withL = 64,
ε = 0.5. Dashed lines indicatev = γ . Notice the differences in the vertical scales.

An exception is observed for the one-way coupling,
γ = ±ε, where velocity distributions collapse leading
always to the same value,v = γ .

The increase in the velocity due to the asymmetry
is greater than the velocity spread due to diffusion so
that in this regimeadvection dominates diffusion. This
behavior is similar to what happens for atmospheric
air masses with a certain temperature surrounded
by an environment at a different temperature. The
existence of two temperatures implies the diffusion
of heat (Laplacian equation), either if the air mass
moves or not. In the presence of wind, the air mass
moves, adding an advection term in the thermody-
namic equation[5,23]. Usually, observational data
show that air masses tend to maintain their tempera-
tures, which means that advection is predominant over
diffusion.

An interesting additional feature inFig. 1 is the
abrupt ‘cut’ observed in the velocity distributions for
a ∼ 1.73. As known, this value marks the beginning
of the period-3 window of the local map. The relation
between period-3 windows and the changes of distri-
butions remains unclear to us.

3.2. Controlling the velocity of traveling waves

As seen in the previous section, velocities are
mainly dominated by advection. In this section, we
argue that the velocities are not only dominated by
advection but, in fact, that the velocityv is actually
given by the parameterγ , i.e. v = γ .

Fig. 2shows the velocity as a function ofγ for two
representative values ofa, as observed on a lattice with
L = 64 andε = 0.5. In both examples, the top figures
show the asymptotic pattern on the lattice, as obtained
after a transient of 50,000 time-steps, always from the
same random initial condition. In both cases, the next
three figures display under successive magnifications
that the velocity (i) varies linearly withγ , a fact that
is easily corroborated by a fit to the data, and (ii) may
contain a ‘microscopic substructure’.

As is clear from the figure, the microscopic varia-
tion depends whether or not the local parametera lies
below the accumulation pointa∞ � 1.401155. . .
characteristic of the 2n cascade[24]. Fora < a∞, the
microscopic substructure is given by a stair-shaped
function that remains essentially constant within a
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Fig. 2. Velocity dependence withγ for two representative values ofa, for a lattice withL = 64 andε = 0.5. As the zooms show, there
are two different types of microscopic substructuring (see text).

given interval, with very sharp transitions. On the
other hand, fora > a∞, the microscopic substructure
presents random fluctuations aroundv = γ . The in-
terval of these fluctuations is of the same order as the
spread inv shown inFig. 1.

Similar results are obtained for other values ofL as
is illustrated inFig. 3.

All results so far were obtained forε = 0.5, which is
representative of what one sees forε ≥ 0.4. As shown

by Fig. 4, the velocity dependence withγ is no longer
linear, in the weak coupling regimeε < 0.4 and below
the accumulation point. In particular, notice the exis-
tence of a locking interval [−γ�, γ�] centered around
γ = 0. Outside the locking interval, we findv ∝ |γ |α
with 0 < α ≤ 1. In the weak coupling regime,α grows
with ε, reaching the valueα = 1 for ε � 0.2.

Therefore, fora < a∞, the weak coupling regime
is characterized by a velocity given approximately by
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Fig. 3. The shape and velocity of patterns do not depend significantly on the lattice sizeL. Notice that both patterns on the lattice, (a)
and (e), are roughly sinusoidal with a wavelength of eight sites. Herea = 1.7 andε = 0.5.

v = 0 when|γ | ≤ γ� and by

v = γ

|γ | (|γ | − γ�)
α + θ (11)

whenγ� ≤ |γ | ≤ ε, whereθ is the fluctuation due to
the step-function substructure. The step-function sub-
structure may still be seen, but having smaller steps.
Above ε ∼ 0.2, the velocity depends always linearly
with γ (α = 1).

For a > a∞, there are essentially no periodic
time-evolutions in the weak coupling[25].

3.3. Velocity in atmospheric gradient flows

The purpose of this section is to show that, essen-
tially, γ is a wind velocity component, namely the
geostrophic wind[4]

vg = − 1

fρ

∂p

∂n
, (12)

where p is the pressure,f ∼ 10−4 s−1 the mid-
latitudes Coriolis parameter,ρ the density and	n the
transverse natural coordinate, directed to the left of
the motion and perpendicular to it.
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Fig. 4. Nonlinear dependence of the velocity as a function ofγ for two typical values ofε in the weak coupling regime. A clear locking of
the velocity is seen for a symmetrical interval aboutγ = 0. The boundary of that interval is given byγ� ∼ 0.03. Outside this locking interval,
the velocity is proportional toγ α , with 0 < α ≤ 1. For ε = 0.1 and 0.15, we findα = 0.7 and 0.75, respectively. Herea = 1 andL = 64.

Atmospheric highs and lows are typical examples
of gradient flow systems composed by air masses
with certain temperature distributions, which rotate in
closed trajectories[4]. Away from the ground (bound-
ary layer), friction forces may be neglected yielding
a wind velocity given by[5]

v = ±
(
f 2R2

4
+ f Rvg

)1/2

− f R

2
(13)

whereR is the curvature radius of the trajectory and
R, f andρ are considered to be constants.Eq. (13)

is the velocity of the real wind, also called gradient
wind since the system satisfies gradient flow condi-
tions [4]. On the other hand, the geostrophic wind is
the non-accelerating wind component.

As it is easy to see,Eqs. (11) and (13)have the
same functional dependence. In particular, the optimal
valueα = 0.5 is obtained forε ∼ 0.06, in the weak
coupling regime. In this case, one recognizes that the
asymmetryγ plays the role of the geostrophic wind
vg. Furthermore, by comparing|γ |/γ� with (fR)/(4vg)

for the typical (mesoscale) valuesR ∼ 105 m and
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vg ∼ 10 m/s, we find(fR)/(4vg) ∼ 0.25 and, from
Fig. 4, γ�/|γ | ∼ 0.3, in quite good agreement.

4. Spatial periodicity of wave-like patterns
modulated by asymmetry

In the previous section, we presented results show-
ing that it is possible to use advection to control the
velocity of traveling waves in rings of maps. Another
interesting feature due to advection is the possibility
of modulating the spatial periodicity which underlies
wave-like patterns.

Fig. 5 (left column) shows typical wave-like pat-
terns abundant in the region delimited by 1.6 ≤ a ≤
1.85 andε ≥ 0.4. Although such patterns are not per-
fectly sinusoidal, the figure shows that it is possible to
associate a wavelengthλ to each of them. This wave-
length remains constant in time.

Instead of attempting to measure wavelengths di-
rectly from the asymptotic pattern on the lattice, it is

Fig. 5. The wavelength of the asymptotic patterns (left column) is the same as that of the corresponding spatial correlationC(i, j) (right
column). Parameter values area = 1.7, ε = 0.5 andL = 64 for (a)γ = 0, (b) γ = ε/2, (c) γ = ε.

better to use a smoother function of the pattern. To
this purpose, we use the spatial correlation function

C(i, j) = 〈xixj 〉 − 〈xi〉〈xj 〉
〈x2

i 〉 − 〈xi〉2
, (14)

wherei andj label the space and〈X〉 represents a time
average ofX over∼104 time-steps, computed after a
transient of 105 time-steps. For each pattern, one hasL

‘different’ C(i, j) as functions ofi. For each of them,
the wavelength is given byλ = L/p, wherep counts
the number of local maxima. The final wavelength is
given by the average of theseL auxiliary wavelengths.
The spatial correlations are independent of the refer-
ence site used to compute their wavelengths.

Fig. 5 clearly shows that the wavelength depends
of the asymmetryγ , while Fig. 6 displays such de-
pendence via wavelength histograms computed from
a set of 50 random initial conditions determined for
the full range ofγ . As seen in this figure, for a fixed
value of γ , the wavelength remains essentially con-
stant, namely, it is independent of the initial condition
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Fig. 6. Dependence of the wavelength on the parameter of asymmetry: (a) histograms displaying sudden changes of the wavelength; (b)
the width δ of the intervals whereλ remains constant is approximately proportional toλ2, the continuous curve. HereL = 64, a = 1.7
and ε = 0.5.

Fig. 7. The transition between plateaus displays ‘hesitation’ between two wavelengths. The plot shows wavelengths computed for 1000
values ofγ , from a fixed random initial condition. Different initial conditions give similar results. HereL = 64, a = 1.7 andε = 0.5.
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imposed. Symmetric values of the asymmetry pa-
rameter have the same wavelength. The wavelength
reaches its maximum ofλ ∼ 8 site for a certain
interval aroundγ0 = 0. Outside this interval, there
are characteristic valuesγk, k = ±1,±2, . . . , of
the parameter of asymmetry where the wavelength

Fig. 8. The plateaus of constantλ. The tri-dimensional view (on the right) is shown projected in theγ ×ε plane (on the left), displaying the
transitionsλk . In the wave-like pattern region, other values ofL show similar results. HereL = 64, a = 1.7 for 100×100 values ofγ × ε.

abruptly changes, corresponding to the appearance
of an extra oscillation in the pattern. For a fixed se-
quence of indices, e.g. positive, the wavelength is
constant inside the interval [γk−1, γk], which we call
“plateau”. The characteristic valuesγk vary linearly
with λ.
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Fig. 9. The wavelengthλ as a function ofL. The asymptotic value ofλ in the limit L → ∞ (horizontal lines) depends onγ .

The sizes of the plateaus increase withλ according
to δ ∝ λ2, as shown inFig. 6(b).

Fig. 7 shows, with 10 times higher resolu-
tion the same plateaus shown inFig. 6 but on a
two-dimensional projection. This figure shows the
overwhelming constancy ofλ on the plateaus. At
the transitionsγk, it is easy to recognize a regime
of ‘hesitation’ between both wavelengths. A careful
analysis shows that such hesitation regimes are not
spurious but indeed exist.

The wavelength also varies withε. Fig. 8shows the
wavelength as a function ofγ andε. The boundaries of
successive plateaus of constant wavelength vary quite
abruptly and have an overall parabolic shape. In other
words, there is a dependency|γk| ∝ ε1/2 between the
characteristic valuesγk and the coupling strength.

So far, all simulations were done for a fixed value of
the lattice sizeL. In Fig. 9, we show the dependence
of the wavelength onL for three values ofγ . For not
too big rings (L � 100), one clearly sees a saw-tooth
dependence. The discontinuous jumps occur whenever
patterns acquire an extra oscillation, with the wave-
length abruptly changing fromL/p to (L+1)/(p+1),

p being the number of oscillations in the pattern. From
these formulas, one sees whyλ grows linearly while
p does not change.

An additional feature ofFig. 9 is the existence of
an asymptotic wavelengthλ∞ ≡ limL→∞λL.

5. Conclusions

In this paper, we introduced a simple model of cou-
pled map lattices, given byEq. (2), that in addition to
the usual diffusive termDi,t , contains a new termAi,t

which incorporates the effects of advection through
an asymmetryγ in the coupling between neighbors.
The contribution due to advection was derived directly
from the well-known physical operators, by discretiz-
ing them.

An interesting consequence of including advection
in lattices of coupled maps is that it provides a nat-
ural mechanism to tune the velocity of asymptotic
patterns, allowing one to generate velocities that are
up to 1000 times greater than the usual ones found in
the absence of advection.
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An interesting open question concerns the veloc-
ity values for both symmetric[8,25] and asymmetric
couplings, that are always below one site per step,
independently of the propagation direction being pos-
itive or negative. A preliminary investigation seems
to show this feature to be a consequence of having
coupling only betweenfirst neighbors.

Of great interest for atmospheric applications is the
fact that the advection (asymmetry) present in our
model was shown to correspond, in a suitable regime,
to the geostrophic wind velocity observed in circulat-
ing atmospheric systems.

Particularly attractive now is the possibility of us-
ing a more realistic model to address rather complex
phenomena that have impact in the atmospheric cir-
culation. For instance, the fact that the geostrophic
wind depends on the pressure field and that the hor-
izontal trajectories are along the isobars, the hori-
zontal pressure gradient being perpendicular to them
[26], indicates that such pressure field may be ade-
quately simulated with two-dimensional lattices of
coupled maps. Another promising possibility is to
use two-dimensional lattices of coupled maps in-
corporating advection to simulate ocean convection
[27].

While in the present study, two important pro-
cesses in atmospheric dynamics (more generally, in
geophysical fluid dynamics) have been incorporated
in the simulation performed with a one-dimensional
coupled map lattice, these processes are by no means
all inclusive. In fact, convection, a third crucial mech-
anism in the dynamics of geofluids, has not yet been
systematically studied with coupled maps. This is a
natural next step which may be implemented by con-
sidering two-dimensional lattices of maps coupled
not only horizontally but also in the vertical. Among
all physical phenomena involving convection, once
again, a promising application in geodynamics is the
simulation of ocean convection.
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