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In the present work, we study the deterministic spin dynamics of an anisotropic magnetic particle in the presence of a time dependent
magnetic field using the Landau-Lifshitz-Gilbert equation. In particular, we study the case when the magnetic field consists in two terms.
One is perpendicular to the anisotropy direction and has quasiperiodic time dependence, while the other term is constant and parallel to
the anisotropy direction.We numerically characterize the dynamical behavior of the system bymonitoring the Lyapunov exponents, and
by calculating Poincaré sections and Fourier spectra. In addition, we calculate analytically the corresponding Melnikov function which
gives us the bifurcations of the homoclinic orbits. We find a rather complicated landscape of sometimes closely intermingled chaotic and
non-chaotic areas in parameters space. Finally, we show that the system exhibits strange nonchaotic attractors.

Index Terms—Chaotic dynamics, Lyapunov spectrum, magnetization dynamics, quasiperiodic (QP) modulation.

I. INTRODUCTION

N ONLINEAR problems have been widely studied in mag-
netism, cf. [1], [2]. Models have been used in both, dis-

crete [3]–[8] and continuous magnetic systems [9]. Recently,
the chaotic behavior of an anisotropic particle under a periodic
magnetic field was extensively studied in [7], [8]. Several ex-
periments of chaotic behaviors in magnetic systems have been
reported [10]–[13]. Typical magnetic samples are yttrium iron
garnet spheres [10]. It is worth mentioning that different types
of routes to chaos have been found using ferromagnetic reso-
nance techniques, such as period-doubling cascades, quasi-pe-
riodic routes to chaos, or intermittent routes to chaos. This im-
plies that there is no universal mechanism leading to chaos in
these systems, and therefore a theoretical description turns out
to be highly complicated.
On the other hand, quasiperiodically forced systems have

been theoretically and experientially studied in different
branches of physics over the last decades [14]–[17]. This type
of forcing is the natural extension of the single frequency
forcing, and indeed one can expect a more complex behavior.
In fact, the simplest invariant sets are tori-shaped ones [15].
Moreover, there are commonly other types of attractors, called
strange nonchaotic attractors, where “strange” implies a com-
plicated and non-smooth attractor topology, and “nonchaotic”
indicates that it does not have sensitive dependence on the
initial conditions [17].
The aim of this paper is to investigate the dynamical behavior

of an anisotropic magnetic particle under the influence of both,
a constant and a time dependent external magnetic field. The
latter is assumed to have a two-frequency quasiperiodic (QP)
modulation perpendicular to the anisotropy direction, while the
constant field is parallel to the anisotropy axis. We calculate nu-
merically the Lyapunov exponents, the Poincaré section, and the
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Fourier spectrum, thus characterizing the dynamical behavior.
In particular, the maximum Lyapunov exponent is presented in
the form of two-dimensional maps as a function of the relevant
parameters of the system [18]. In addition, in order to make a
theoretical complement to our numerical simulations, we cal-
culate analytically the Melnikov function [2], which is a tool to
determine chaotic regimes when chaos arises as an instability of
an homoclinic orbit (HO).

II. MODEL

We consider the dynamics of the magnetization of a
monodomain magnetic particle. The temporal evolution of the
system can be modeled by the dimensionless LLG equation:

(1)

where and with .
Here is the saturation magnetization that leads to
, and is the gyromagnetic factor, which is associated with
the electron spin and whose numerical value is approximately
given by . Also, de-
notes the dimensionless phenomenological damping coefficient
which is a material property with typical values of order
to in garnets and or larger in cobalt or in nickel or
in permalloy [7], which produces . Typ-
ical experimental values of are, e.g.

for cobalt materials and
for nickel materials, leading to

and , respectively. This implies
that and , respectively.
Also, let us mention that in these materials the macrospin ap-
proximation (monodomain particles) is valid for particles with
sizes of 10–20 nm, because for smaller sizes surface anisotropy
effects are relevant [19] and for larger sizes non-uniform mag-
netic states appear, like vortices in cobalt nanodots. In addi-
tion, the shape of the nanoparticle plays an important role in
the macrospin approximation [20].
The effective magnetic field, , acting on the magnetization

is given by , where is the external magnetic
field and measures the anisotropy along the axis, which we
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take as the z-axis in the following. This anisotropy is uniaxial
and the constant depends on the specific substance and sample
shape, and can be positive or negative. The external magnetic
field comprises both, a constant and a time dependent modu-
lation [14], that means

(2)
where the coefficients are constants.
Within on this dimensional scaling, the dimensionless fields
and frequencies are and with

. Since the amplitude of field and the frequencies
are measured in units of and , respectively, one finds
that for cobalt or nickel material the typical order of magnitude
is and GHz. Here, we vary theses values in the
same range of magnitude. Notice, that there are two relevant
cases for the ratio of the frequencies . When is
rational, the system is periodically forced, whereas an irrational

produces a two-frequency QP forcing.
For zero damping and without parametric forcing

(1) is conservative, and it can be derived from
a free energy, , where denotes
the free energy. The effective field is reduced to

, and therefore the components of (1) can be written as:
, and
. This set of equations has an exact family of

homoclinic solutions:

(3a)

(3b)

(3c)

with period where . The initial
conditions have the modulus restriction
. For a fixed free energy , we obtain

. Since must be real, the solutions are stable
until . On the other hand, with dissipation and by
the periodic injection of energy the magnetic particle is put into
an out-of-equilibrium state.

III. RESULTS

First, we characterize the dynamics of (1) by evaluating the
Lyapunov exponents (LEs). This method consists of quanti-
fying the divergence between two initially close trajectories
of a vector field. [18]. In general, for an effective -dimen-
sional dynamical system described by a set of equations,

, the th-Lyapunov exponent is given
by , where is
the distance between the trajectories of the th-component of
the vector field at time . They can be ordered in descending
form, from the largest to the smallest: .
The first exponent is the largest Lyapunov exponent (LLE).
Exploring the dependence of the LLE on the different pa-
rameters of the system, one can identify areas in parameter
space, where the dynamics is chaotic (LLE positive), and those
showing nonchaotic dynamics (LLE zero or negative). Since
we are dealing with a two-frequency forced system, at least
two of its Lyapunov exponents are always zero; hence the

Fig. 1. Value of the largest positive Lyapunov exponent (LLE) is shown in a
color-coded gauge as a function of the amplitude and frequency of the
second driving field, with fixed , , , and

. The resolutions are . The dashed (red) line
depicts a solution of the zeros of the Melinkov function given by Eq. (5) in the
text.

simplest attractor is a tori [16]. Another possibility is to
have three Lyapunov exponents equal to zero and in this case
the system shows a three-frequency QP behavior. We remark
that a quasiperiodically driven system can exhibit other types
of attractors, called strange nonchaotic attractors. They have a
non-smooth topology but do not have a sensitive dependence
on initial conditions (non-positive LLE) [17].
In contrast, there are other methods of quantifying the dynam-

ical behavior of a system such as the Fourier spectrum, Poincaré
sections, and correlation functions [1]–[8]. The classical one
is the Fourier spectrum, which we denote by . Using this
spectrum, one can define the spectral distribution function
as the number of peaks of with an amplitude greater
than . This quantity obeys different scaling laws depending
on the dynamical behavior. In particular, for a
two-frequency quasiperiodic behavior, for
a three-frequency quasiperiodic behavior, and ,
with , for strange nonchaotic attractors [14], [17].
In order to integrate the equations of motion and avoid numer-

ical artifacts, it is suitable to solve (1) in the Cartesian represen-
tation. In order to find the chaotic regimes, we have integrated
(1) via a standard fourth order Runge-Kutta integration scheme
with a fixed time step guaranteeing a precision of

for the magnetization field. The Lyapunov exponents are
calculated using the technique exposed in [8], such that the error
is of the order of 1%, which is sufficiently small for the purpose
of the present analysis.
Fig. 1 shows the color-coded LLE as a function of amplitude
and frequency of the second time dependent external

field. There are no chaotic regimes for frequencies ,
indicating that chaos occurs in the vicinity of the resonance con-
dition. Obviously, chaos requires a sufficiently large value of
the field amplitude, . Interestingly, inside the larger
chaotic areas one can observe small chaos-free areas exhibiting
rather complex boundary topologies between chaotic and reg-
ular regimes [18]. Finally, we observe that for small frequencies
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Fig. 2. Largest Lyapunov exponent (LLE) as a function of and , with
fixed , , , and . The resolutions
are . The dashed (red) line depicts a solution of the
zeros of the Melinkov function given by Eq. (5) in the text.

and field there are nonchaotic behavior. In fact, the dashed (red)
line displays a branch of the zeros of the Melnikov function,
which is given by Eq. (6) below. These zeros provide a threshold
for regular behavior. Fig. 2 shows the color-coded LLE as a
function of both, the constant and the second oscillating field
amplitude, and , respectively. Here, the chaotic region
occurs in a compact pattern of a rather characteristic shape.
We found numerically that the chaotic region exists approxi-
mately inside the curve , where ,

and for . The dashed (red)
line depicts the zeros of the Melnikov function. We observe that
in both figures the theoretical calculations are fully compatible
with the numerical simulations.
Fig. 3 shows a 3D Poincaré section of at time interval mul-

tiples of and the spectral distribution function, , as
a function of for three different nonchaotic regimes (non-pos-
itive LLE) at three different values of with the other pa-
rameters fixed. From the Poincaré section we observe that, in
the first two cases the curves are smooth and they are closed,
while in the third frame the section is clearly non-smooth. In
all cases we are performing a numerical fit. In the first case we
found that with, , in the second case

with , and finally in frame (c) the
fit gives where and . The
standard error of the fits are in the range . Hence,
from these scaling laws we can conclude that for and

the system exhibits a two-frequency and a three-fre-
quency QP behavior, respectively; whereas for the
system exhibits as a strange nonchaotic attractor.
Since (1) is a nonlinear non-autonomous system, a complete

theoretical description (with analytical solutions) is not pos-
sible. Nevertheless, there exists a criterion to calculate the bi-
furcation of HOs. This method uses the Melnikov function [2].
In order to perform this technique, let us introduce, instead of

, the canonical variables
[2]. In these coordinates, (1) can

be expressed as a two dimensional vector equation
, where accounts for the conservative term

Fig. 3. 3D Poincaré section of at time interval multiples of and the
spectral distribution function, , as a function of for three different of

at fixed , , , , , .
The values of are (a), (b) and (c). The
inset in displays the amplitude of the Fourier transform.

and accounts for the time dependent magnetic field as well as
the complete dissipative term. Here
is the set of control parameters. If we assume that the conserva-
tive system possesses a homoclinic solution , the Mel-
nikov function is given by [2]

(4)
where and is the period of the HO.
The marginal condition, when the homoclinic orbit becomes un-
stable, is given by . This is a necessary con-
dition for the occurrence of non-periodic behavior and gives a
lower bound for the actual chaotic regime.
In our case , hence we need of only

its first component, which is given by
. In addition, the ho-

moclinic orbit of the conservative system given by (3), which
in -representation can be written as and

. Hence, after straight-
forward calculations, we find that (4) can be cast in the form

(5)
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where, , ,
. Figs. 1

and 2 show part of some branches of the zeros of the (5) for the
same parameters used in the numerical simulations and

. One can observe that numerically found chaotic
regions are on the unstable side of theMelnikov function, whose
zeroes indeed act as a lower bound.

IV. SUMMARY

The dynamics of the magnetization of an anisotropic par-
ticle in the presence of both a constant and a two-frequency
quasiperiodic time dependent external magnetic field has been
studied using the Landau-Lifshitz-Gilbert equation. We have
determined the parameter regions where a positive Lyapunov
exponent exists and the theoretical bounds for the thresholds
of the chaotic regime. Also, we found that the system exhibits
strange non-chaotic attractors. Since in the present work the
order of magnitude of the field and the frequencies is in the kOe
and the GHz range, respectively, and since it is possible with the
present technology to measure the ferromagnetic resonances in
a wide range [10]–[13], [21], we suggest as experimental set-up
nanodots with a size of 20 nm (where the monodomain ap-
proximation is valid) under a quasi-periodic field, thereby ob-
serving the non-stationary behavior found numerically in the
present work.
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