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It is generally believed that in optical bistabi1ity realistic 
fluctuations of the injected laser signal can influence the bistable 
behavior of the system in an important way. As an illustration of 
this general statement, we present in this paper the case of absorp
tive optical bistabi1ity (AOB) with random Gaussian fluctuations of 
the driving electric field amplitude. 

For such external fluctuations, the microscopic part of the dy
namical system can be described by a set of simple macroscopic state 
equations which, after a reduction of some of the degrees of free
dom, can be converted into a single non-linear state equation which 
shows explicitly the bistable behavior of the system. 

The theory of AOB in the limit of low-transmission mirrors and 
weak enough absorption gives the following well known relation be
tween the dimensionless transmitted x and the incident electric 
field y: 

dx 2Cx 
dt = -(x+1+x~) +y 

where the time is measured in units of the cavity bandwidth K and 
C is the order parameter of the system. 
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A partially coherent laser with a finite bandwidth results in 
a non-white additive noise in this non-linear macroscopic state 
equation. 

For a laser operating far above threshold the total electric 
field amplitude yet) consists of two components: a coherent part 
Ao and a small fluctuation o:y(t) which is Gaussian with the follow
ing mean value and correlation function: 

<oy(t»=O I t-t" < oy (t) oy (t ' ) > = a exp (- b ) (2) 

where the dimensionless parameters a and b describe the character
istic properties of the fluctuating laser amplitude. The parameter 
b = KOLC is the coherence time LC of the laser amplitude fluctuations 
in units of the cavity linewidth and the coefficient a measures the 
intensity of the noise which in most realistic experiments is a':::' 0.1, 
i.e. a better than 10% stabilization of the amplitude can be ob
tained. 

With such amplitude fluctuations the AOB equation (1) takes the 
form of the following nonlinear Langevin equation with an additive 
Orsnstein-Uhlenbeck stochastic process: 

dx 
dt = F(x) + oy(t) ( 3) 

where F(x) is the deterministric part of the dynamical evolution 1 
given by: 

2Cx 
F(x) = - (x+ l+x2) + Ao • (4) 

In Bef. 1 we have established for the stochastic equation (4) a pro
per Fokker-Planck equation in the limit of large laser linewidth 
(b < 1) and good stabilization of the amplitude fluctuations (a < 1) • 
For times larger than the transients t'V b, this Fokker-Planck equa
tion for the probability distribution of the transmitted field takes 
the following form: l 

ddd2 
--- P=- - FoP+D ~ KoP at dX ax" (5) 

where the nonconstant diffusion function K(x) has the following form: 

K(x) = (1+bF'(x»=1-b-2bC (l+x2 )2 (5) 

and where D= aob. 
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In the white-noise limit, i.e. i f b-+O with 0= ab= constant, 
we have K -+ 1 and the diffusion term takes the well-known constant 
form. In this case D plays the role of the diffusion constant. In 
general, Le. for b"l 0, the diffusion function 6 depends on the 
laser linewidth b. This dependence i s shown explicitly in Figure 1. 

In order to describe a proper Fokker-Planck equation, the dif
fusion function given by Eq. (6) must be positive. This condition 
is fulfilled for all values of x only if b < 1, Le. for values of b 
for which Eq. (5) should hold. 

From the Fokker-Planck equation (5) we derive the following 
form of the stationary solution ( ddt Pst -= 0), assuming natural boun
dary conditions: 

where 

Pst = N exp (_ U(x» 
D 

U(x) fdx F(x) + ab ~nll+bF' (x) I 
l+bF' (x) 

and N is a normalization constant. 

(7) 

(8) 

States of maximal probability are characterized by the absolute 
minima of the thermodynamical potential U(x). In Figure 7 we have 
shown the form of this thermodynamical potential for various values 
of the incident field Ao and for two values of b. It is clear from 
these curves that the depth and the width of the bistable minima de
pend on the laser parameters a and b. 

The most probably value s of Pst given by Eq. (7) lead to the 
following steady-state relation (U' (x) = 0) : 
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Fig. 1. Curves of the diffusion function K(x) for various values 
of x and laser bandwidth b. 
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Fig. 2. These two sets of curves show the shape of the thermodynami
cal potential U(x) for two values of b and for the input 
field Ao equal to : 13.7, 13.8, 13,9, 14.0,14.1 (a-e). 
The dotted lines correspond to the white-noise case given 
by b=O. All these curves were calculated for C=20 and 
a=0.4. 

2Cx 
x + 1+x2 (9) 

Eq. (9) can be regarded as a generalization of the deterministic bi
stability condition for the case of laser amplitude fluctuations. 

The bistable behavior of the system with laser amplitude fluc
tuations can be illustrated in Fig. 3 where we have plotted the sta
tionary probability given by Eq. (7) for different values of the co
herent laser field Ao. 
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Fig. 3. Development of Pst(x) as a function of the injected laser 
amplitude Ao for C=20, a=0.4, and b= 0.02317. 
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As in the case of quantum fluctuations 2 the random amplitude 
of the laser field leads to a small range of values of Ao in which 
the two peaks have a comparable area. Clearly the mean value of the 
transmitted field will coincide with one of the two deterministic 
branches exce1t in this narrow transition region where we have large 
fluctuations. 
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