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Leandro Junges1,2, Thorsten Pöschel1,3, and Jason A.C. Gallas1,2,3,4,a

1 Institute for Multiscale Simulations, Friedrich-Alexander-Universität, Nägelsbachstraße 49b, 91052 Erlangen, Germany
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Abstract. We report a numerical characterization of the stability of semiconductor lasers with delayed
feedback under the simultaneous variation of the delay time τ and the pump current P . Changes in
the number of External Cavity Modes are studied as a function of the delay time while the Regular Pulse
Package regime is characterized as a function of the pump current. In addition, we describe some remarkable
structures observed in the τ × P control plane, delimiting where these and other complex regimes of laser
operation exist.

1 Introduction

Recently, a number of theoretical and experimental works
investigated delayed optical feedback in semiconductor
lasers motivated both by engineering considerations and
by the need to grasp fundamental physical aspects as-
sociated with the many regimes of operation [1–3]. The
knowledge derived from such works aims to help the im-
provement of diode lasers, a key component for modern
telecommunication, data transmission, and data storage
technologies [4]. As demonstrated recently in a nice work
by Sciamanna et al. [5], delayed feedback systems with
their infinite-dimensional phase space remain a source
of rich fundamental dynamical phenomena, complicated
cases of multistability, and novel routes to chaos.

Nowadays, the paradigmatic model to describe semi-
conductor lasers with delayed feedback is the rate equation
approach known as the Lang-Kobayashi (LK) model [6].
For specific choices of parameters and laser regimes, this
model has been repeatedly found to reproduce well the
experimental findings although more recently it has been
realized that the LK has a number of limitations [7]. How-
ever, we are not aware of a systematic investigation of the
predictions supported by the LK model describing chaotic
solutions for extended intervals of control parameters. Fur-
thermore, detailed evolution upon changes of control pa-
rameters of the interesting laser regimes does not seem to
have been investigated for the LK model yet. The aim of
this paper is to offer a detailed investigation of what hap-
pens in the laser dynamics when two of the easiest control
parameters are changed simultaneously, namely, the delay
time τ and the pump current P of the laser.

a e-mail: jason.gallas@cbi.uni-erlangen.de

In the LK model [6], the temporal evolution of the
electric field E = A(t) exp[iφ(t)], and of the carriers N is
described by the equations [8]:

Ė = (1 + iα)NE + ηe−iωτE(t − τ), (1)

T Ṅ = P − N − (1 + 2N)|E|2. (2)

In these equations, the time is normalized to the cavity
photon lifetime (∼1 ps) and T is the ratio of the carrier
lifetime (1 ns) to the photon lifetime. The external round
trip time τ is also normalized to the photon lifetime. The
excess pump current P is proportional to (J/Jth,sol − 1),
where J is the injection current and Jth,sol is the solitary
laser threshold. Finally, α is the linewidth enhancement
factor, and η is the amount of feedback.

Despite of the great number of works that use the LK
model to simulate optical feedback, only a few of them
consider the stability of the phenomena considered under
changes of model parameters. Interesting dynamical be-
havior was found with the help of the LK model, such
as the regular pulse packages (RPPs), a situation where
the laser output presents a periodic solution composed by
a package of decreasing amplitude pulses [4], and the so-
called low frequency fluctuations (LFFs), where the laser
presents a chaotic pulsed output and the average of the
intensity suffers non-periodic dropouts [9,10]. Although
these phenomena are fairly well understood for specific
values of laser parameters, little is known about the range
of parameters where such phenomena can be effectively
measured. Sciamanna et al. [5] showed how the shape of
RPPs changes and LFFs arise as one increases the de-
lay τ while holding all the other parameters fixed. Heil
et al. [11] presented some bifurcation diagrams using η
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and ωτ as control parameters in order to show what kinds
of bifurcations lead to the RPPs. They also state that an
increase in the pump current P leads to an almost linear
increase in the period of the RPPs for the fixed parame-
ters considered by them. Tabaka et al. [12] analyzed how
the feedback rate η and the delay time τ influence the
appearance of RPPs, reporting a τ × η diagram showing
the regions where the RPPs appear. More recently, Behnia
et al. [13] presented a series of bifurcation diagrams in η,
ωτ and P , describing the behavior of the intensity when
these parameters are varied individually.

A common point in the aforementioned works is that
for all parameters except P , the laser dynamics strongly
depends on the creation and destruction of the so-called
external cavity modes (ECMs), a specific type of solution
of equations (1) and (2) discussed in the next section. As
we show below, unlike what happens when changing other
laser parameters, variations of the pump current P do not
alter the number of ECMs, making it rather special.

The special condition of the current P and the dy-
namical richness provided by the infinite dimensionality
associated with the delay time τ , together with their easy
experimental accessibility, motivates the characterization
of the laser stability and multistability under the simul-
taneous variation of these parameters. In contrast with
previous works, which consider parameters changes over
restricted and specific intervals, we report detailed stabil-
ity diagrams providing high-resolution information over
the useful portion of τ × P control plane. We find in-
tricate distributions of laser operation regimes and re-
markably complex stability phases. By computing stabil-
ity diagrams for different initial laser histories we show
details concerning the existence and relative abundance
of multistability in the system. Our study uses a standard
methodology recently applied to other lasers and nonlin-
ear systems [14–17].

2 External cavity modes

The simplest but quite important non-trivial solutions of
equations (1) and (2) are the so-called external cavity
modes (ECMs), also referred to as continuous-wave so-
lution or CW-state [18].

This basic solution has constant intensity and inver-
sion, and a linear variation of the phase with time [18–20].
This solution can be written as:

E(t) = Ase
iωst, N(t) = Ns, (3)

where As, ωs and Ns are constants. Substituting equa-
tion (3) into equations (1) and (2), we get

Ns = −η cos(ω + ωs)τ, (4)

Ns =
1
α

(
ωs + η sin(ω + ωs)τ

)
, (5)

A2
s =

P − Ns

1 + 2Ns
. (6)

From equations (4) and (5) we derive a transcendental
equation for the phase

ωs = −η(α cos(ωs + ω)τ + sin(ωs + ω)τ). (7)

This equation can be solved numerically and it is easy to
show that the resulting ECMs are located in the Δφ × N
plane above an ellipse defined by:

(Nτ)2 + (Nατ − Δφ)2 = (ητ)2, (8)

where Δφ ≡ φ(t)−φ(t−τ). Half of these ECMs are nodes
(modes) and half are saddles (antimodes). The maximum
gain ECM, also called the maximum gain mode (MGM),
is defined as the (stable) fixed-point solution with greater
amplitude [21].

The ECMs were shown to form the backbone of the
dynamics of semiconductor lasers [18–20]. The ECMs are
represented by dots in Δφ×N×A space, with coordinates
(Δφs, Ns, As). The trajectories representing the most sig-
nificant solutions of the system, like RPPs and LFFs, con-
sist of trajectories wandering in such space and visiting the
vicinity of the ECMs. For this reason the properties of the
ECMs are central to characterize the laser dynamics.

As seen from equation (7), the variation of the parame-
ters α, η, ω or τ changes the number and/or the location of
the ECMs on the Δφ×N plane (note that, for the ECMs,
Δφs = ωsτ). As stated, previous works have shown that
the dynamical properties of the LK laser model are highly
dependent of the ECMs configuration, and the variation of
these parameters revealed a remarkable similarity in their
respective bifurcation scenarios, due to appearance and
disappearance of these new ECMs [11,12]. On the other
hand, the variation of the pump current P has no effect in
the ECMs disposition on the Δφ × N plane (only in the
laser amplitude) and no ECMs are created or destroyed.
Therefore, although considered in some studies [11–13],
the real effects of increasing P in the system are still un-
known. This is a question addressed here.

3 Complex laser regimes

In order to analyze how the delay-time τ and the pump
current P affects the system dynamics, we numerically
solved equations (1) and (2) using a standard fixed-
step fourth-order Runge-Kutta algorithm. Following Heil
et al. [4], we fix the following set of realistic laser
parameters:

T = 1710, α = 5,

ω = −1.962× 10−2, η = 0.135. (9)

The important selection of the initial history of the laser
is not always mentioned in the literature, so that com-
parisons are difficult to be made. Here, we arbitrar-
ily set the default initial configuration as N(0) = 1,
Er(t) = Ei(t) = 1 for t ∈ [−τ, 0], where E(t) = Er(t) +
iEi(t), unless otherwise mentioned.
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Fig. 1. Reference bifurcation diagrams of the laser intensity, comparing (a) the effect of the variation of parameters τ for
P = 0.6 and the effect of varying P when (b) τ = 62, (c) τ = 67, (d) τ = 67, but using different initial configuration than
those used in a, b and c, as specified in the text. The distinct colors represent different laser behaviors: orange denotes CW,
blue corresponds to regular oscillations, red to quasi-periodic oscillations, dark green to non-periodic solutions with narrow
windows of RPPs, light green to RPPs with narrow windows of non-periodic solutions, violet to non-periodic solutions. The
arrow indicates the emergence of a new branch, born by continuous deformation of the laser intensity (see text).

We start by analyzing the individual influence of vary-
ing τ and P using standard bifurcation diagrams. Fig-
ure 1a displays the local maxima of the laser intensity as
a function of τ while Figures 1b–1d illustrate how the laser
intensity varies as a function of P . The several vertical line
segments seen in these figures mark representative values
of bifurcation parameter used to evaluate the temporal
evolution and phase-space trajectory (among the respec-
tive ECMs), shown in Figures 2–4.

The impact of the delay-time on the laser intensity
when holding the pump current fixed at P = 0.6 is shown
in Figure 1a. In this case, we see the emergence of a series
of different laser regimes. From left to right one sees CW
(orange), one peak oscillations (blue), quasi-periodicity
(red), non-periodic oscillations (dark green), RPPs (light
green), and then back to CW output (orange). This se-
quence is strongly related to the change in number and
stability of the ECMs, as will be shown in details below,
in Figure 2.

Next, the natural question that emerges is what hap-
pens when the pump current P is also varied? Equa-
tions (4), (5) and (7) do not depend on P . Thus, unlike
what happens for the other parameters (τ , η, α, ω), the
current does not alter neither the number of ECMs nor
their (Δφs, Ns) coordinate in phase space, but only their
amplitude As (see Eq. (6)). To get the effects of the varia-
tion of the current in the system, we calculate bifurcation
diagrams having P as the bifurcation parameter for a few

representative values of τ , as shown in Figures 1b and 1c.
The bifurcation diagram of Figure 1b is calculated for a
fixed delay-time, τ = 62. In this case, the system starts in
a quasi-periodic regime (shown in red on the left side of
the figure), going then through non-periodic regime (dark
green), RPPs (light green), and chaotic solutions (violet).
The explicit solutions in each of these regimes are shown
in Figure 3 and described in detail below.

Increasing the delay to τ = 67, we see in the bifurca-
tion diagram of Figure 1c that the laser displays a behav-
ior which is apparently a combination of the transitions
shown in Figures 1a and 1b. As in Figure 1a, the sys-
tem begins on the left with a constant output (orange)
and, as we increase P , goes through a Hopf bifurcation
which gives birth to a constant oscillation (blue). Upon
further increase, at P � 1.09, a range of RPPs arises (light
green) followed by non-periodic solutions (violet), exactly
as in Figure 1b. If we repeat the calculation of Figure 1c
(τ = 67) using different initial configuration, the system
reveals a rather distinct sequence of solutions, due to mul-
tistability. The diagram of Figure 1d was constructed us-
ing the initial history N(0) = 1, Er(t) = Ei(t) = 1 for
t ∈ [−τ, 0], for P = 0 and “following the attractor”,
namely when increasing the current we use the previously
obtained solution as the new initial history.

To understand how transitions occur in Figure 1
and what is happening with the system for each of the
aforementioned laser operation regimes, we calculate the
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Fig. 2. Time evolution and phase-space trajectory for six representative values of the delay time τ , indicated by vertical line
segments in the bifurcation diagram of Figure 1a. The ECMs are indicated as filled blue and hollow black dots, which represent
modes and anti-modes, respectively. The filled yellow/green dot correspond to the MGM (see text). Here P = 0.6 and (a) τ = 57,
(b) τ = 59, (c) τ = 60.6, (d) τ = 61.7, (e) τ = 62.8, (f) τ = 63.5.

temporal evolutions and the trajectory of this solutions in
Δφ×N ×A space considering some representative param-
eter values, indicated by vertical line segments in the bi-
furcation diagrams. A detailed description of the solutions
marked by such line segments in Figures 1a, 1b and 1d are
shown in Figures 2–4, respectively.

Now, let us consider in detail the variation of τ , shown
in Figure 1a. The solutions corresponding to the param-
eters indicated by the vertical lines (a-f) are presented in
Figure 2. As shown in Figure 2(a1), initially the laser has
a constant output, marked in orange on the left side of
the bifurcation diagram of Figure 1a. In this range of τ
the laser operates in the MGM, shown as a yellow dot
in Figure 2(a2). As we increase the delay, the laser goes
through a Hopf bifurcation and the solution turns into a
periodic oscillation (Fig. 2(b1)), marked in blue in Fig-
ure 1a. In phase-space, this trajectory forms a closed loop
near the MGM, shown in Figure 2(b2). Increasing τ , the
range marked in red indicates that the solution becomes
quasi-periodic through a torus bifurcation (see Figs. 2(c1)

and 2(c2)). After that, the quasi-periodic solutions seem
to begin to destabilize, and the size of the trajectories
in phase space grows rapidly. This process characterizes
the emergence of the RPPs solutions [4]. First there is
a wide region of non-periodic solutions with narrow win-
dows of RPPs, but these non-periodic solutions, shown in
Figure 2d, are very similar to the RPPs, as we can see
comparing Figures 2d and 2e. In the light-green region in
Figure 1a, we find the opposite: a wide region of RPPs
with very narrow windows of non-periodic solutions. A
typical RPP is shown in Figures 2(e1) and 2(e2). Note
that the period of the RPPs in the light-green region is
smaller than the corresponding ones in the dark-green re-
gion. This can be seen comparing temporal evolutions in
Figures 2(e1) and 2(d1). Although the solution in Fig-
ure 2(d1) is not periodic, we can see that the packages of
pulses are bigger in time than the RPPs of Figure 2(e1).

As the delay-time τ increases, new ECMs are born
and a new MGM emerges at τ = 62.63. This new MGM
is shown as a green dot in Figures 2(e2) and 2(f2) (the
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Fig. 3. Time evolution and phase space trajectory for six representative values of the pump current P , as indicated by vertical
lines in Figure 1b. ECMs are indicated as filled blue (modes) and hollow black (antimodes) dots, and the filled yellow dot
corresponds to the MGM. Here, τ = 62 and (g) P = 0.1, (h) P = 0.45, (i) P = 0.8, (j) P = 1.05, (k) P = 1.73, (l) P = 2.18.

old MGM, which is now an ECM, is shown in yellow for
clarity). What one sees when further increasing τ is that,
at some point after the creation of this new MGM, in this
case at τ = 63.28, the laser starts to operate in the new
MGM mode (Figs. 2(f1) and 2(f2)), and the sequence of
transitions described above starts all over again. The se-
quence described here when varying τ is very similar to
the sequences obtained in other papers when varying η,
and Cp = ωτ (approximated as a τ independent param-
eter) [4,11,12], confirming that what controls the dynam-
ics here is the emergence and change of stability of new
ECMs, since all these parameters influence the creation of
new ECMs (see Eq. (7)).

The temporal and phase-space evolutions related to
the values of P , indicated by the vertical lines (g–l) in
Figure 1b, are shown in Figure 3. For low values of P ,
the system presents a quasi-periodic solution (Fig. 3(g1)),
oscillating between the MGM, marked in yellow, and its
closest ECM, as one can see in Figure 3(g2). Increasing
the current, we reach a range with non-periodic solutions
similar to RPPs, with small windows of RPPs, marked in

dark green in Figure 1b. A representative solution of this
regime is shown in Figures 3(h1) and 3(h2). Comparing
this solution with the one shown in Figure 2d, represent-
ing the dark green range in Figure 1a, we see that we
achieve the same type of laser operation regime, but with
a smaller value of the current (compare the parameter val-
ues in the figure captions). For higher P values we find a
range rich in RPPs, corresponding to the light green re-
gion in Figure 1b. Here, we find “classical” RPPs, shown
in Figures 3(i1) and 3(i2), where the packages are com-
posed by a big pulse, followed by pulses with decreasing
amplitude, exactly as observed in Figure 2e. In this region,
we also find some narrow windows of non-periodic “near
RPPs” solutions. This type of solutions is shown in Fig-
ures 3(j1) and 3(j2). Note that the “near RPPs” solutions
observed here, in the windows of non-periodicity inside
the light green region of Figure 1b, are slightly different
from the ones shown in Figure 3h, corresponding to the
dark green range. Here, the first pulse of the packages is
bigger than the following ones, but not as bigger as in Fig-
ure 3(h1), and the temporal duration of the packages here

http://www.epj.org
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Fig. 4. Time evolution and phase space trajectory for six representative values of the pump current P , indicated by vertical
lines in Figure 1d. ECMs are indicated as filled blue (modes) and hollow black (antimodes) dots, and the filled yellow dot
corresponds to the MGM. Here τ = 67 and (m) P = 1, (n) P = 5, (o) P = 8, (p) P = 8.4, (q) P = 9, (r) P = 10.

is smaller. This behavior seems to be a property of the in-
crease in the current, because when we further increase P ,
the RPPs observed (Figs. 3(k1) and 3(k2)) modify their
shape, compared to the ones seen in Figure 3i, in a way
that the first pulse of each package reduces considerably
its amplitude compared to the following pulses, while the
period also gets smaller. A similar effect was observed re-
cently by Sciamanna et al. [5]. Finally, in Figure 3l, the
packages are non-periodic and present first an increase and
then a decrease of the intensity from pulse to pulse. It is
important to emphasize that, unlike the situation when
varying τ , the increment of P increases continuously the
average amplitude of the laser pulses.

The temporal and phase space evolutions for repre-
sentative points along Figure 1d are shown in Figure 4. In
this case, we see that, as in diagram 1c, it also starts with
constant output (orange), followed by a regular oscillation
(blue), characterized by a closed loop around the MGM,
as shown in Figure 4m. As we increase the current, the

solution undergoes a continuous deformation [16,17] until
an additional peak is created and a second branch ap-
pears in the bifurcation diagram (light blue). The point
where this second branch appears is highlighted in Fig-
ure 1d by an arrow. The double peak oscillation and the
trajectory near the MGM can be seen in Figure 4n. For
higher values of P the system enters a quasi-periodic re-
gion, marked in red, and exemplified in Figure 4o. After
that, a small window of periodic solution appears. This
solution, shown in Figure 4p, keeps its trajectory in phase
space near the MGM. Further increasing the current, the
solution becomes non-periodic, but with phase-space tra-
jectory still close to the MGM, as shown in Figure 4q. At
P ≈ 9.54, the attractor suffers a sharp “expansion” and
chaotic behavior dominates. An example of a typical so-
lution inside this region is shown in Figure 4r. Note that,
for the choices of the delay-time (τ = 67) and initial con-
figuration used to calculate the diagram in Figure 1d and
its representative solutions in Figure 4, we do not observe

http://www.epj.org


Eur. Phys. J. D (2013) 67: 149 Page 7 of 9

0.0 120.0τ
0.0

8.0

P

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.0 120.0τ
0.0

8.0

P

(a)

0.0 200.0τ
0.0

20.0

P

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.0 200.0τ
0.0

20.0

P

(b)

50.0 75.0τ
0.0

2.5

P

1 2 3 4 5 6 7 8 9 10 11 12 13 14

50.0 75.0τ
0.0

2.5

P

(c)

A

B C

50.0 75.0τ
0.0

11.0

P

1 2 3 4 5 6 7 8 9 10 11 12 13 14

50.0 75.0τ
0.0

11.0

P

(d)D

Fig. 5. Laser stability diagrams summarizing the several phases and their boundaries classified according to the number of peaks
per period of the amplitude A(t) for two different initial histories. (a) using Er(−τ, 0) = Ei(−τ, 0) = N(0) = 1 for all points in
the diagram, and (b) using Er(−τ, 0) = Ei(−τ, 0) = N(0) = 1 for all τ with P = 0 and “following the attractor” (see text). The
arrow in (a) indicates the “shadow” of a different solution, revealing multistability. This different solution also appears in (b)
(both arrows mark the same point). Magnifications of the boxes in (a) and (b) are shown in (c) and (d), respectively.

RPPs solutions in the system! The solutions related to the
light green region in Figure 1d, despite of being periodic,
are not RPPs, as evidenced in Figure 4p.

4 Laser stability diagrams

So far we have described the evolution of the laser dy-
namics in the traditional way, by considering how laser
oscillations change along a few specific paths in param-
eter space. A natural question that arises is about the
relative extension of the individual laser phases in control
parameter space. In other words, how do all such solu-
tions of interest evolve when more than one parameter is
varied simultaneously? What stability mosaic is built in
control space by the several oscillatory phases of the laser?
Do such phases display a systematic variation? To address
these questions we performed a detailed numerical analy-
sis, producing high-resolution stability charts with a stan-
dard procedure [14–17]. For selected parameter windows,
we determined if laser oscillations are chaotic or periodic
and counted the number of peaks (maxima) of all periodic
oscillations.

Figure 5 displays the complex alternation of chaotic
and periodic phases together with their individual bound-
aries and shapes. The computation of such high-resolution
stability charts is numerically very demanding and was

performed on a SGI Altix cluster of 1536 high-performance
processors, over a period of several weeks. In Figure 5, the
number of peaks (local maxima) is recorded using 14 basic
colors, as indicated by the color-bar in the figure. Pulses
having more than 14 peaks were plotted “recycling colors
mod 14”, where the color index is taken as the remain-
der of the integer division of the number of peaks by 14
(solutions with 15 peaks per period are marked with the
same color associated to the ones with 1 peak, 16 peaks
are marked with same color of 2 peaks, and so on). Multi-
ples of 14 were given the index 14. In this way all periodic
pulses could be accommodated with the 14 colors avail-
able. The fact that some of the colors in the color-bar
look similar causes no real difficulty because the general
trend is always made clear by the colors of the neighbor-
ing phases. Non-zero fixed points, representing constant
output, were plotted in orange. Lack of numerically de-
tectable periodicity was plotted in black. Diagram (a) (and
its magnification (c)) was calculated considering the initial
configuration N(0) = 1, Er(t) = Ei(t) = 1 for t ∈ [−τ, 0],
where E(t) = Er(t)+ iEi(t) for every point (τ ,P ). On the
other hand, diagram (b) (and its magnification (d)) was
calculated using the above initial configuration for points
with P = 0 and then, after each increment of P , by consid-
ering the last obtained solution as the initial configuration
for the new computation, a procedure sometimes referred
to as “following the attractor”.
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The bifurcation diagrams shown in Figures 1a–1d rep-
resent the dynamics observed along the single parame-
ter paths A, B, C and D indicated in Figures 5c–5d. By
comparing these figures one may easily recognize the ex-
tension of the individual dynamical phases described in
detail above. The colorful stripes located on the right side
of the blue region of every teeth-like “hill” structure rep-
resent quasi-periodic solutions. In Figure 5c, the region
where one such stripe of quasi-periodicity crosses line A
is indicated by a thicker red bar. These regions of quasi-
periodicity are related to the parameter ranges shown in
red in the bifurcation diagrams of Figure 1.

The two distinct types of initial configuration used here
revealed wide domains of multistability in the laser. In
Figure 5a, we see a series of “hills” of decreasing mag-
nitude as τ grows. Apart from the mentioned stripes of
quasi-periodicity, each hill is subdivided into two main
large domains of “simple” behavior, namely into a region
of constant laser amplitude (in orange) and a region of
oscillatory solutions (in blue). Figure 5b, obtained using
different initial conditions, display a similar sequence of
hills, but i) existing for considerable higher values of P
(note changes in scales), and ii) with magnitudes that
seem to remain constant (i.e., not to decrease) as a func-
tion of the delay. One may also recognize traces of the
multistability in Figure 5a with the “shadow” indicated
by the arrow. Between and above these hills we can see
stripes of periodic solutions, forming striations, or “swirl-
like” structures, between the hills, which can be better
visualized in the magnification shown in Figure 5c. The
solutions associated with the stripes of the swirls are the
RPPs, evidenced previously by the light-green range in
the diagram of Figure 1b, which was calculated over the
line B in Figure 5c, crossing the swirl from bottom to top.
Thus, Figure 5c shows how the RPPs evolve when two
laser parameters are tuned simultaneously.

From the Figures 5a and 5c, we notice that the se-
quence of transitions shown by the diagram of Figure 1a,
which was also observed in previous works [4,11,12] (for
other parameters that, like τ , also alter the number of
ECMs), is just observed for small values of the pump cur-
rent P , and the bigger the delay time, the smaller the
currents values where this behavior is observed. This is so
because the hills height gets smaller as τ increases and this
behavior is observed when we cross the hills sequentially.
On the other hand, if we consider the different initial his-
tory described above (used to calculate the diagrams of
Figs. 5b and 5d), we see that the sequence of transitions
observed in diagram 1A is observed for much larger values
of the current, since the hills of Figure 5b are much higher
and do not decrease with the increasing of the delay. This
shows that in order to maintain and follow specific ECMs
and RPP one needs to suitably tune initial conditions.

5 Conclusions

The laser stability was studied under the simultaneous and
wide variation of the delay time τ and the pump current P .
Our τ × P laser stability diagrams show how the several

regimes of laser operation (CW, quasi-periodicity, RPPs,
chaos...) arise and indicate the parameter ranges where
such solutions can be found. The diagram showed swirl-
like structures, formed by undulated horizontal stripes of
RPPs solutions interspersed with non-periodic (chaotic)
solutions. Such structures alternate along the τ direction
being separated by regions of CW/oscillating solutions.
This repetition is due to the sequential creation and desta-
bilization of new ECMs as one increases the delay time.
This scenario was corroborated by computing bifurcation
diagrams in Figure 1a and by following the temporal and
phase-space evolutions in Figures 2a–2f.

As mentioned, analogous effects were observed earlier
under the variation of η and ω, since both parameters are
well-known to influence the creation and destabilization
of ECMs [11,12]. However, in sharp contrast, here the in-
crease of the current does not alter the number of ECMs,
just their amplitude, leading to an increase in the average
amplitude of the solutions as we increase P . The laser was
also shown to display a regular alternation of regions of
multistability, leading to different operation regimes as P
increases over the CW/oscillating region (exemplified here
by holding τ = 67 fixed). The analysis of the rich dynami-
cal variety present in the laser stability diagrams presented
was not at all exhausted here. For instance, the stability
diagrams display a large number of domains where inter-
esting laser regimes coexist and need to be characterized
and further explored. The interplay of such complicated
coexistence scenarios is potentially of interest when con-
sidered as initial conditions in problems of synchronization
of networks of mutually coupled lasers [22–25]. Finally, we
mention that our stability diagrams show in detail control
parameter windows where chaotic laser oscillations are to
be expected. As it is known, such oscillations are presently
being explored as carriers for encrypted communications
using semiconductor lasers [26,27]. Apart from τ and P ,
the laser contains a number of additional control param-
eters whose global impact, however, still remains to be
investigated.
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clusters.

References
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