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Abstract
The dynamics of twomutually delay-coupled semiconductor lasers has been frequently studied
experimentally, numerically, and analytically either forweak or strong detuning between the lasers.
Here, we present a systematic numerical investigation spanning all detuning ranges.We report high-
resolution stability diagrams forwide ranges of themain control parameters of the laser, as described
by the Lang–Kobayashimodel. In particular, we detail the parameter influence on dynamical
performance andmap the distribution of chaotic pulsations and self-generated periodic spikingwith
arbitrary periodicity. Special attention is given to the unfolding of regular pulse packages for both
symmetric and non-symmetric configurationswith respect to detuning. The influence of the delay –
time on the self-organization of periodic and chaotic laser phases as a function of the coupling and
detuning is also described in detail.

1. Introduction

The investigation ofmutually coupled semiconductor lasers has attractedmuch interest in the last few years
[1–3]. Themotivations aremanifold, due to several potential applications ranging from secure communications
[4, 5], opticalmemories [6, 7], high-power coherent light sources, and others [1]. This is why the last 15 years or
so have seenmany theoretical and experimental efforts to understand coupled semiconductor lasers [8–13].Of
particular interest is the understanding of a pair ofmutually delay-coupled lasers, since such systems display a
plethora of useful and intriguing behaviors like localized synchronization [14], quasiperiodicity [15], coupling-
induced synchronized chaotic dynamics and spontaneous symmetry–breaking (in the symmetric case) [16, 17],
chaotic achronal synchronization [18], bubbling [19], andmany others [1, 2].

Apart from thementioned practical applications, delay-coupled lasers are theoretically challenging because
of the underlying infinite-dimensional equations of the paradigmatic Lang–Kobayashi phenomenological
model normally used to describe them. For instance, the authors of [20–23] provided an in-depth analysis of
compound lasermodes (CLMs), the analogue of the external cavitymodes (ECMs) in the context of external
cavity-delayed semiconductor lasers. The case of two coupled external cavity lasers was considered in [24] and
[25]. Rogister and Blondel [26] presented a detailed study of the control parameter space spanned by the laser
coupling and detuning, showing howperiodic and chaotic phases self-organize. The theoretical analysis
provided by all of theseworkswas done considering an adaptation for coupled lasers of the Lang–Kobayashi
phenomenologicalmodel, whose results have shown good agreementwith experiments [14, 18]. (For first-
principles derivation of thismodel see, e.g., [27].)

The vast literature dealingwithmutually delay-coupled semiconductor lasers providesmuch insight about
the different dynamical behaviors of the system.However, for distinct reasons, the investigation of such systems
has been frequently divided into two non-overlapping classes, referred to as theweak and the strong laser
detuning limits. Furthermore, several publications deal with unstable phenomena, namely, phenomena that
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cannot be readily observed in laboratory experiments.Works dealingwith observable stable phenomena
frequently consider only fixed points, equilibria, and tame oscillations observed immediately afterHopf
bifurcations. Little is known about the location, shape, and extension of stable laser phases corresponding to
complicated laser self-pulsing of arbitrary periodicity or for phases of chaotic laser spiking.

The aimof this paper is to help bridge this lack of information by presenting a systematic numerical
classification of all sorts of oscillations, of arbitrary periodicity or chaotic, which are supported by twomutually
delay-coupled semiconductor lasers. Using the standard Lang–Kobayashimodel, we classify laser self-pulsing
for continuous coupling strengths and for detuning spanning from theweak to the strong laser detuning limits.
More specifically, we report high-resolution stability diagrams for quite wide ranges of themain laser control
parameters.

Two absolutely identical lasers with a coupling delay τ behave exactly like a single external cavity-delayed
laserwith delay time τ [28], a situation that we already considered in detail elsewhere [29] (see also the thesis
work byOtto [30]).However, this somewhat idealized situation is very difficult to achieve in practice. For
instance, variations in temperature can alter the lasers’ optical angular frequencies [26], leading to some degree
of detuning between the lasers. So, it is important to ask howdetunings of this or of any other origin affect the
dynamical performance of the coupled system. Are small detunings effective to destabilize laser operation?How
robust are the several laser phases to changes in parameters?What do themain alterations that control
parameter changes imply?

These are themain questions addressed in this paper. To this end, we report results of numerical simulations
for awide range of control parameter space of twomutually delay-coupled lasers, contrasting their performance
with andwithout detuning. In addition, given the key importance of the delay parameter in this kind of system,
we extendwork done by Rogister and Blondel and investigate how the variation of the delay time τ affects the
lasers under the simultaneous variation of detuning and coupling.

2.Model of twomutually delay-coupled laser diodes

Asmentioned, pairs of single-mode semiconductor lasersmutually delay-coupled by their optical fieldwere
discussed previously, e.g., by Erzgräber et al [20–23], Li et al [24],Hicke et al [25], Rogister and Blondel [26],
and,most recently, by Yang et al [3]. Such a configuration is represented schematically infigure 1. It can be
modeled by a set of rate equations adapted from the Lang–Kobayashimodel [31], providing the temporal
evolution of the normalized slowly varying complex electric fields E t( )1,2 and the normalized excess carrier
numbers N t( )1,2 for both lasers 1 and 2, respectively.

In dimensionless units, themodel is governed by the equations [14, 26, 27]

α η τ= + + −ωτ−E N E E t˙ (1 i ) e ( ), (1)1 1 1
i

2

= − − +TN P N N E˙ ( 1 2 ) , (2)1 1 1 1
2

α η τ δ= + + − +ωτ−E N E E t E˙ (1 i ) e ( ) i , (3)i
2 2 2 1 2

= − − +TN P N N E˙ ( 1 2 ) . (4)2 2 2 2
2

In these equationswe use the optical angular frequency of laser 1 as a reference so that ω ω= 1while the detuning
frequency is given by δ ω ω≡ −2 1. Time is normalized to the cavity photon lifetime ∼ ps( 1 ), andT is the ratio of
the carrier lifetime ∼ ns( 1 ) to the photon lifetime. The delay time τ represents theflying time of the light between
the lasers (see figure 1), η controls the strength of the symmetric coupling, δ controls themagnitude of the
detuning between the lasers, P is the normalized pump current above threshold, and α is the linewidth
enhancement factor.

Note that equations (1)–(4) are written in the reference frame of the unchanged laser, i.e., laser 1.
Accordingly, the opticalfields of the lasers are represented by ωE t( )e t

i
i 1 , where ω1 is the optical frequency of

laser 1 operated solitarily at threshold. Apart from the difference in their solitary optical frequencies, both lasers
are considered identical [20].

Figure 1. Schematic representation of the twomutually delay-coupled lasers configuration. The delay time τ is controlled by the
distance L between the lasers.

2
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Unless stated otherwise, we use the following set of realistic laser parameters [29, 32]:

α ω
τ η

= = = − ×
= = =

−T
P

1710, 5, 1.962 10 ,
1.155, 60.4, 0.135. (5)

2

Here, we analyze the output of laser 1 (∣ ∣E1
2), but the output behavior of laser 2 is found to be qualitatively

identical to the one of laser 1, even in the asymmetric configuration. Therefore, the conclusions presented
remain valid for both lasers. Before proceeding, we remark that the initial history used to start numerical
integrations is an important piece of information to define the dynamics. Surprisingly, such information is
traditionally omitted in the literature, so that comparisons are difficult to bemade. The details about the initial
configuration used in this paper are given in the appendix.

3.Dynamical performance of twomutually delay-coupled laser diodes

As alreadymentioned, for δ = 0 andwhen starting from the same parameter values and initial configuration,
both lasers present the same output and behave exactly as a single laser with feedback froman external cavity of
flying time τ. But when the optical angular frequency of the lasers are different, namely for δ ≠ 0, this symmetry
is broken, and different dynamical behaviors arise.

We start by illustrating the typical temporal evolutions of ∣ ∣E1
2 for representative parameters of the coupled

lasermodel. Infigure 2we compare the solutions obtained for the casewith no detuning (δ = 0), shown in
figures 2(a)–(d), and the case with a very small detuning (δ = −10 4), shown in Figures 2(e)–(f). Figure 2(a)
shows a periodic oscillation of the laser intensity with one peak per period, obtained for η = 0.1285. Increasing
the coupling to η = 0.1342, the system enters a quasiperiodic regime, illustrated infigure 2(b). For η = 0.1600,
onefinds the so-called Regular Pulse Package (RPP) (figure 2(c)), a classical pulsation describedmost recently in
[29]. In the RPP regime, the laser output is characterized by a sequence of packages composed by decreasing
amplitude pulses with frequency related to the external cavity flying time. This type of regular pulsation has been
extensively observed and described in semiconductor lasers with delayed feedback (see [29] and several
references therein). An increase of the coupling to η = 0.1994 leads to a non-periodic regime, depicted in

Figure 2.Typical temporal evolutions observed in the laser 1 intensity. Panels (a)–(d) are for δ = 0. (a) η = 0.1285, P1 oscillations;
(b) η = 0.1342, quasiperiodic oscillations; (c) η = 0.1600, RPP oscillations (the oscillation period is indicated in the insets); (d)
η = 0.1994, ‘quasi-RPP’ oscillations. Panels (e)–(f) are for δ = −10 4: (e) η = 0.1600 and (f) η = 0.1994, showing strongly aperiodic
oscillations.
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figure 2(d). This non-periodic solution reveals a sort of ‘quasi-RPP’ profile, very similar to the classical RPP but
with small amplitude differences between the packages. Note, for example, the small differences between the
large pulses of each individual package,magnified in the inset, which show an irregular distribution of
amplitudes.

The appearance of RPPs inmutually delay-coupled lasers in a totally symmetric configurationwas expected
by the aforementioned equivalence between this system and the delayed feedback laser. The questionwewant to
answer at this point is what happens if we somehowbreak the system symmetry. To this end, we consider a small
difference between the optical angular frequencies of the lasers, setting δ ω ω= − = −102 1

4. For the value
ω ω=1 that we use (see equation (5)), the above choice of δ leads to a difference between ω2 and ω1which is less
than 1%of the value of ω1. Taking the relaxation frequency of laser oscillations as a reference, given here by

ω = ∼ × −P T(2 ) 3.6 10RO
1 2 2, one sees that a detuning of 10−4 is clearly very small. But, as discussed below, it

is not withoutmeasurable consequences.
The temporal evolution of laser 1 intensity shown infigures 2(e) and (f) were calculatedwith the same values

of ηused infigures 2(c) and (d) (0.1600 and 0.1994, respectively) but for δ = −10 4, representing the asymmetric
detuning configuration. Differently fromwhat was obtained in the symmetric case, here we see extremely
irregular pulse packages in temporal evolution. Comparing the RPP offigure 2(c)with the non-periodic outputs
offigures 2(d) (δ = 0) and (e) (δ = −10 4), we see that in the symmetric case, the increasing of η induces a small
destabilizations of the RPP attractor, leading to phases that, despite being non-periodic, are not far fromRPPs
(figure 2(d)), while the asymmetry produces amuchmore intense effect, totally destroying theRPP pattern
(figure 2(e)).

Next, figures 3(a)–(c) display bifurcation diagrams of the localmaxima of the laser amplitude ∣ ∣E1
2 (which,

in this case, is identical of ∣ ∣E2
2) as a function of the bifurcation parameters τ,P, and η, for a perfectly symmetric

configuration (δ = 0). The vertical lines infigure 3mark the parameter valueswhere the temporal evolutions
shown infigure 2were calculated. Figures 3(a) and (b) show the influence of the delay-time τ and pump current
P variation, respectively. As expected, these diagrams agreewith similar ones computed previously for a single

Figure 3.Bifurcation diagrams comparing the evolution of laser 1 localmaxima as a function of τ,P, and η. Left column: symmetric
configuration (δ = 0). Right column: (slightly) asymmetric configuration (δ = −10 4). Yellow intervals: continuouswave operation
(CW), blue: one-peak oscillations, light-blue: two-peak oscillations, red: quasiperiodic oscillations, green: RPP, black: non-
periodicity. The constant parameters were taken from equation (5), apart from (a) and (d), where P=0.6.
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laser [29]. Infigure 3(a), there is a continuous sequence of transitions of laser regimes as the delay is increased:
constant output (CW, orange), one-peak oscillations (P1, blue), quasiperiodic oscillations (QP, red), and an
irregular alternation of regular pulse packages (RPP, green) and non-periodic oscillations (NP, black). The same
regimes appearing, however, in a different sequence are observedwhen the pump current is varied, namely, CW,
one-peak oscillations, quasiperiodicity, and the alternation of RPPs (green) and non-periodic oscillations (NP,
black).

Figure 3(c) shows the bifurcation diagramwhen increasing the coupling parameter η. In this case, the system
presents amix of behaviors seen in the variation of τ andP. For low values of η, the same transitions seen for the
variation of τ take place. This kind of transitions hold until η ≈ 0.2, when the sequence CW, one-peak
oscillation, and quasiperiodicity disappears, with only the irregular alternation betweenRPPs and non-periodic
solutions remaining, similar towhat is seen infigure 3(b), for large values ofP.

Comparing the bifurcation diagrams offigures 3(d)–(f), calculatedwith δ = −10 4, with the ones shown in
figures 3(a)–(c), calculatedwith δ = 0, we can clearly see that a small detuning is sufficient to generate a great
alteration in the systemdynamics. The other parameters and initial configurationwere held the same.

Comparing the diagrams offigures 3(a) and (d), where the delay time is the bifurcation parameter, we note
that the typical sequence of transitions, seenwhen increasing τ in the symmetric configuration, aremaintained
in the asymmetric case, but while the symmetric case presents only one-peak oscillations betweenCWand
quasiperiodic phases, shown in blue infigure 3(a), in the asymmetric configuration, after theCWphase, an
extremely narrowP1window takes place (not labeled in the bifurcation diagram), followed by a phase with an
additional branch created by continuous deformation of the output waveform [29, 33, 34], and two-peak
oscillations (P2) take place in this region, as shown in light–blue infigure 3(d). Still, the small increasing in δ also
generated a considerable enlargement and increase in the pulse amplitudes in the non-periodic phases, as can be
seen by comparing the regions in black (NP) between figures 3(a) and (d).

Another interesting feature thatwe can observe comparing figures 3(a) and (d) is that, in the same range of
the delay time τ, the diagram calculated using δ ≠ 0 presentsmore sequences of the transitions described above
compared to the case with δ = 0, i. e., the transitions CW, P1 oscillations (P2 oscillations), quasiperiodic
oscillations, and aperiodic oscillations (+RPP), happens in a shorter range of the delay when the system
symmetry is broken. For the case of a single laser with delayed feedback from an external cavity, which is
analogous to the symmetric configurationwe are considering here, this sequence of transitions was explained
before [29]: the increasing of τ leads to the creation and destabilization of ECMs, a solutionwith constant
amplitude and inversion, and a linear variation of the phasewith time, which strongly influences the system
dynamics. In the case ofmutually delay-coupled lasers, we have solutions which are analogous towhat ECMs
represent for single lasers with delayed feedback, the CLMs.However, as pointed by Erzgräber andKrauskopf
[22], the relation between the creation and destabilization of such solutions and the lasers dynamics aremuch
more complicated here than in the case of a single laser with delayed feedback, and it is very difficult to
understand the overall picture of how theCLMs depend on the systemparameters. Be that as itmay, Erzgräber
andKrauskopf gave a relation between theCLMs and parameters α, η,ω, τ, and the detuning δ.We believe that
the increase in the number of transitions over the observed range of τ in the asymmetric configuration is a result
of the influence of the detuning δ in theway that the delay time alters the number and/or the stability of CLMs,
but a deeper theoretical analysis is needed to clarify this point. This analysis is beyond the scope of this paper and
will be performed elsewhere.

The impact of increasing the pump currentP is also strongly affected by the small difference in angular
optical frequencies, as can be seen by comparing figure 3(e) withfigure 3(b). Thefirst big difference between
thesefigures is the two-peak solution, indicated in light–blue in the asymmetric case, andwhich is absent in the
symmetric case. Another interesting difference is that, after the quasiperiodic phases, shown in red, the irregular
alternation between aperiodic and periodic (RPP) solutions, shown in black and green, respectively, in
figure 3(b), does not take place in the asymmetric case, but only a completely chaotic phase arises , showing
solutionswith higher peaks. As for the variation of the feedback rate η, the impact of having δ ≠ 0 is even
stronger. Comparison of figures 3(f) and (c) shows that, although small, the asymmetry was enough to
completely destroy all periodic solutions, leaving behind a continuous chaotic phase withmuch higher output
amplitudes.

Comparison of the bifurcation diagrams calculated using δ = −10 4 with the ones using δ = 0 reveals amost
interesting phenomenon: the complete disappearance of the RPPs in the asymmetric case. The domains of
parameter spacewhere RPPs take place are evidenced by the regionsmarked in green in the bifurcation diagrams
infigures 3(a)–(c). These RPP regions emerge interspersedwith regions of aperiodic oscillations and are vastly
distributed over parameter space, specially seen under the variation of the feedback rate η infigure 3(c).When
the optical angular frequencies’ difference is tuned to δ = −10 4, we observe the complete disappearance of the
RPPs over the entire observed range of τ,P, and η, as can be clearly seen infigures 3(d)–(f), respectively.

5

New J. Phys. 17 (2015) 053038 L Junges and J ACGallas



The disappearance of RPPs for a detuning as small as 10−4 suggests that the dynamicalmechanismbehind
this property is the destabilization of the RPP attractors by the symmetry-breaking related to the difference in
optical angular frequencies of the lasers. In the case of external cavity lasers, the RPPs are known to present a
phase space trajectorywhich visits a defined sequence of ECMs [29, 32]. As discussed above, we believe the
complex influence of the detuning inCLMs’ properties to be such as to destabilize the RPP attractors, leading to
muchmore irregular solutions, such as the ones observed infigures 2(e) and (f).

4. Behavior of RPPs overwide control parameter ranges

The bifurcation diagrams infigure 3 describe how the laser output in a delay-coupled configuration changes
under the variation of just a single of the fundamental parameters τ,P, and η, while holding all other parameters
constant.We also showed that the RPPs, which are abundant in the symmetric configuration (δ = 0), disappear
when the difference in optical angular frequencies is not zero, even for an amount as small as δ = −10 4. A natural
question now is to ask, what happens undermuch larger variations of δ and of other parameters? Is the vanishing
of RPPs a general property in parameter space, observable alsowhenmore than one parameter is varied
simultaneously? To clarify these questions, we performed a detailed numerical investigation, calculating high-
resolution phase diagrams over wide parameter ranges. The construction of such diagrams follows the
procedure described in [29, 33, 34].We analyze the laser self-pulsations over large control parameter windows,
classifying themdichotomically as periodic or non-periodic oscillations and, subsequently, counting the number
of localmaxima per period of the periodic pulsations.

Figure 4 shows isospike stability diagrams [35] obtainedwhen simultaneously varying τ andP, and τ and η
over wide ranges. The diagrams infigure 4 depict the number of spikes (localmaxima) contained in one period
of the periodic lasers pulsations, recorded using 17 basic colors, as indicated by the colorbar in the figure and
explained in the appendix. The ranges of parameters representing the bifurcation diagrams infigure 3 are
indicated by the labeled lines over the diagrams. The analysis of laser 1 presented the same diagrams of laser 2 for
all set of parameters considered.

The τ × P diagram shown infigure 4(a)was calculated considering the symmetric configuration (δ = 0).
As expected, this panel coincides with one obtained in [29] for a single laser with delayed feedback (and using the
same set of parameters and initial configuration). A sequence of ‘hills’ of CW, one-peak oscillations and
quasiperiodic oscillations is seen, where the height of the hills decreases as τ is increased. In the region between
the hills onefinds an alternation of colorful stripes corresponding to RPPs and to non-periodic oscillations. This
behavior has been described and explained in detail in [29]. Figure 4(b) shows a stability diagram in the τ η×
control plane for the symmetric configuration, evidencing two types of behavior. For low values of the delay,

Figure 4. Stability diagrams showing the impact of the detuning frequency δ in the control parameter plane. Left column: symmetric
detuning, δ = 0; right column: (slightly) asymmetric detuning, δ = −10 4. The RPPphases (shown as colorful stripes in (a) and (b))
disappear in the asymmetric case (see text). Orange: CW,white: quasiperiodic oscillations, black: aperiodic (chaotic) oscillations. The
labeled linesmark the ranges of the bifurcation diagrams shown infigure 3.
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stripes of CW, one-peak oscillations, and quasiperiodic oscillations alternate with stripes of RPPs and non-
periodic oscillations. These stripes follow nearly hyperbolic curves η τ∼ 1 in the diagram. In contrast, for larger
values of the delay, onefindsmore irregular stripes alternating RPPs and non-periodic oscillations. These two
types of behavior can be appreciated along the vertical line ‘C’ infigure 3(c), a line that clearly crosses both
regions despite the fact of crossing the diagram vertically.

The stability diagrams infigures 4(a) and (b) contain severalmulticolored stripes representing oscillations
havingmany spikes per period, as indicated by the colorbar. The largemajority of the oscillations havingmore
than two spikes can be shown to be RPPs, asmay be seen in the green regions in the bifurcation diagramsA, B,
andCoffigure 3. Figures 4(a) and (b) display, respectively, 7.38% and 20.83% solutions withmore than two
spikes, i.e., solutions that are very likely to be RPPs.When the symmetry is broken, e.g., for δ = −10 4, the
diagrams offigures 4(c) and (d) reveal a complete absence of the regionswithmore than two peaks per period
over the entire windows, suggesting this absence to be a general property of the symmetric-asymmetric
transition. In addition, the hills infigure 4(c) and the stripes infigure 4(d), both formed byCW, one-peak
oscillations, two-peak oscillations, and quasiperiodic oscillations, are thinner than the ones seenwhen δ = 0. As
mentioned above, this is due to the role of δ in the creation/destabilization of CLMs.

The nonzero value of the detuning used so far is obviously quite small, since it ismuch smaller than the
reference value of the frequency of the relaxation oscillations of both lasers (ω ∼ × −3.6 10RO

2). So, it is natural
to askwhat happens for larger detuning. To answer this, figure 5 illustrates detunings for twomuch larger values,
namely, for δ = × −2 10 2, a value close to ωRO, and for δ = 0.2, a value considerably higher than ωRO. In both
cases there is a distribution of periodic and non-periodic phases very similar towhatwas observed previously in
figure 4(d) for very small detuning. Therefore, figure 5 shows that themain impact of the detuning in the system
performance comes from the transition between the symmetric configuration (δ = 0) to the asymmetric
configuration (δ ≠ 0), the relativemagnitude of the detuning being relatively unimportant. Despite that, an
increase of the detuning seems to gradually reduce the size of the stripes with transitions betweenCW, one-peak
oscillations, and quasiperiodic oscillations. On the other hand, for a large detuning, we can observe a big phase of
one peak and quasiperiodic oscillations for small values of the coupling η. Also, some very small regions ofmore
complex periodic solutions appear in the central region of this diagram. These regions suggest that RPP
solutionsmay, eventually, reappear in the system for specific values of the detuning. This tendency evidences the
need of amore comprehensive and embracing analysis of detuning effects in the system.

5. Impact of delay on the coupling versus detuning control plane

So far, we have described the different types of solutions that can be obtained for the laser intensity when
considering specific values of the detuning between the lasers.We found that even a very small detuning δ is able
tomake theRPPs, normally quite abundant in the symmetric configuration, practically disappear over the
considered parameter ranges.We also showed that an increase of the detuning tends to enlarge the regions of
non-periodic solutions in the system. Butwhat happenswhenwe consider the influence of the detuning over a

Figure 5. Influence of larger detuning isospike stability diagrams. (a)moderate detuning: δ ω= × ∼−2 10 RO
2 , (b) high detuning

δ ω= × ≫−2 10 RO
1 .
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muchwider range?Does a strongly detuning between the lasers necessarilymeansmore non-periodic phases
over the parameter space? Analyzing the bifurcation diagram shown infigure 6, which considers the detuning δ
between the lasers as the bifurcation parameter, it is possible to recognize that this is not always true. In this
diagram, for values of the detuning up to δ ∼ 0.308, the laser presents a CWoutput. Above this value, the system
enters awide region of δwhere the solution displays non-periodic oscillations. Nevertheless, somewindows of
RPPs can be seen over this phase of non-periodic outputs, showing that periodic solutions can be achieved for a
specific set of parameters in the asymmetric, δ ≠ 0, configuration of the lasers.

Thus, despite of the destabilization of RPP attractors observed above, triggered by the symmetry-breaking
provided by even very small differences in the lasers’ optical angular frequencies, the influence of the detuning
on the systemdynamics can be such as to promote recurrent returns of these solutions, for suitable values of the
detuning. Amore specific and detailed explanation on how δ influences the appearance and disappearance of the
RPPwindows in parameter space would require an in-depth analysis of the complicated influence of this
parameter onCLMproperties. As alreadymentioned, such analysis is beyond the scope of the present paper.

Taking into account the relatively ease of experimentally varying the coupling and the detuning intensities in
this system, Rogister and Blondel [26] performed a detailed numerical analysis of the η δ× control parameter
space for afixed value of the delay time (τ = 20). They presented stability charts dividing the behavior of the
laser intensity in parameter space into four types: stationary, periodic P1 (one peak per period), periodic P2 (two
peaks per period), and other regimes.When increasing the coupling, their periodic phases presented transitions
stationary/P1 oscillations in almost triangular phases centered in regionswith small detuning of the charts.

Their findingsmotivate us to investigate what happens for other values of the delay τ.More specifically, we
wish to understand how the periodic phases self-organize for values of τ spanning amacroscopic range of the
short-cavity regime. So, in order to showhow the separation between the lasers affects the overall picture in
control parameter space, we analyze the η δ× diagrams, constructed like the ones offigure 4, for several values
of the delay-time τ, as shown infigure 7.

We start with the case without delay (τ = 0). In this case, the diagram is almost symmetric with respect to
δ = 0 in a way that, for τ δ≳ ∣ ∣2 , the laser operates in theCWregime, and for τ δ≲ ∣ ∣2 the laser oscillates with
one peak per period, apart from small regions near the curve τ δ= ∣ ∣2 ,wheremore complex oscillations
appear. For τ = 1 the region of one-peak oscillations diminishes, and a thick phase of non-periodic oscillations
emerges betweenCWand one-peak regions. The symmetry of the diagram also starts to vanish. At τ = 5 the CW
regions begin to self-organize, forming a sequence of almost triangular phases. These phases present an internal
structure where an increase in η produces a transitionCW, one-peak oscillations, and quasiperiodic oscillations.
Further increase of the delay gradually reduces the size and increases the number of the triangular phases, which
are located along the δ = 0 horizontal line in the diagram, and get deformed for bigger values of the feedback
rate η. This effect is shown in the diagramswith τ ranging from10 up to 50. As the delay–time is further
increased, these phases suffer a narrowing, turning into small, almost vertical stripes for τ = 50, placed in a
growing background of non-periodic oscillations. Note that our diagram for τ = 20 is very similar to the ones
constructed considering the same delay value, shown in [26]. The small differences are due to the different
choices of the frequencyω and the fact that we show amuch broader range of the coupling and the detuning
parameters. The initial history used to produce the phase diagrams of [26]was notmentioned.Our results are
robust against slight variations of the initial history.

Figure 6.Bifurcation diagram showing that increasing δ can lead to a phase of non-periodic solutions interspersed by regions of RPPs,
which recur periodically in specificwindows.Here, the delay is τ = 10, and the coupling is η = 0.255.
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The sequence of transitions observedwhen increasing the coupling parameter along the triangular phases in
figure 7 is the same sequence observed along the hills infigures 4(a) and (c)when the delay–time is increased:
CW, one-peak oscillations, and quasiperiodic oscillations (for some parameter values, a two-peak oscillation
phase also appears between the one-peak and quasiperiodic phases). The same sequence is also observedwhen
the simultaneous variation of these two parameters is considered, as can be seen infigures 4(b) and (d).When
starting from theCWoperation, the above scenario shows that an increase in either the delay–time or in the
coupling coefficient produces very similar effects in the overall performance, leading to the same sequence of
transitions in the oscillatory pattern for a considerably large range of parameter values.

Themajor effect of the delay time is to compress the periodic phases into regions characterized by smaller
values of themagnitude of the detuning.This result contributes to the understanding of how the almost triangular
structures of periodic solutions seenpreviously in thediagrams for τ = 20 arise, here and in [26].Wealso note that
increaseddelays tend to enlarge the size of the aperiodic (chaotic) phases for largedetuning in the system.

6. Conclusions and outlook

A remarkable and unexpected result of our simulations is that frequency differencesmuch smaller than the
relaxation oscillation frequencies of the lasers are enough to significantly alter their dynamical performance.

Figure 7. Isospike stability diagrams [35] illustrating the impact of increasing the delay time τ on the coupling (η) × detuning
frequency (δ) charts. Orange: CW,white: quasiperiodic oscillations, black: aperiodic oscillations.
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Themajor difference observed is that the RPP phases, abundant in the symmetric case, disappear in the
asymmetric configuration, giving birth to phases of highly aperiodic oscillations. This effect was observed over
largewindows of the τ × P and τ η× control parameter spaces.Hohl andGavrielides [14] had previously
considered a symmetry-breaking of twomutually delay-coupled diode lasers for different pump currents and
coupling strength. They discovered an interesting type of localized synchronization characterized by intensity
oscillations with very different amplitudes. Our stability diagrams serve now as a guide to select control
parameters for enhanced synchronization of this type overwide parameter ranges in the small-cavity regime.

In addition, we analyzed how an increase of the delay time alters the distribution of regular and chaotic
pulsations in the η δ× parameter plane.We explained how the periodic structures seen in the stability diagrams
obtained previously for a single value of the delay are born.Wefind that the system starts with large regions of
CWand one-peak oscillations for the case without delay. As the delay is increased, sequences of almost
triangular structures, composed byCW, one-peak oscillations, and quasiperiodic oscillations are arranged along
the regions around δ = 0, while aperiodic phases dominate regions of large detuning.We detected a great
resemblance between the effects induced in oscillatory patterns when increasing the delay time and the coupling
coefficient, leading us to believe that both parameters destabilize theCWsolutions in a similar way.Obviously, a
large number of questions still remains to be answered: for instance, the characterization ofmultistability and its
impact in the lasers, as well as the robustness of the coupled lasers against unavoidable parametermismatch
between them. From a theoretical point of view, the lack of amathematical analysis of the questions discussed
here draws attention to a pressing reality: there is absolutely no theoretical framework yet to address the
systematic unfolding of solutions beyond the traditional analysis offixed points and themany approximations
derived for the tame oscillations that emerge immediately afterHopf bifurcations [37].

Acknowledgments

The authors are indebted toAthanasios Gavrielides for a critical reading of themanuscript and helpful
suggestions. LJ was supported by aCNPqPost-Doctoral Fellowship, grant 150898/2014-2. JACG is grateful for
support fromCNPq, Brazil. All bitmapswere computed at theCESUP-UFRGS clusters in PortoAlegre, Brazil.
This workwas supported by theDeutsche Forschungsgemeinschaft through theCluster of Excellence
Engineering of AdvancedMaterials and by theMax-Planck Institute for the Physics of Complex Systems,
Dresden, in the framework of theAdvanced StudyGroup onOptical Rare Events.

Appendix

The isospike stability diagrams [35, 36] infigures 4, 5, and 7were obtained by numerically solving the laser
equations equations (1)–(4) using the standard fourth-order Runge–Kutta algorithmwithfixed-step, h= 0.005,
over amesh consisting of 500× 500 equally spaced points. For everymesh point, we started numerical
integrations from afixed and arbitrarily chosen initial configuration: =N (0) 11,2 , and ′ = ′ =E t E t( ) ( ) 1r i

1,2 1,2

for τ− ⩽ ′ ⩽t 0, where = +E t E t E t( ) ( ) i ( )r i
1,2 1,2 1,2 . Thefirst 107 time-steps were discarded as transient time

needed to approach thefinal attractor. The subsequent 107 iterationswere then used to compute the number of
spikes contained in one period of the oscillations. As indicated by the colorbar in thefigures, a palette of 17 colors
is used to represent periodic pulses withmore than 17 spikes per period of the oscillations of ∣ ∣E t( )1

2.We
‘recycled colorsmodulo 17’meaning that the color index used is obtained as the remainder of the integer
division of the number of spikes by 17. Solutions with 18 spikes per period aremarkedwith the same color
associatedwith one spike, 19 spikes aremarkedwith same color of two spikes, and so on.Multiples of 17were
given the index 17. In this way all periodic pulses can be accommodatedwith a palette of 17 colors. In addition,
non-zerofixed points, representing constant output, are plotted in orange, quasiperiodic solutions are plotted in
white, and a lack of numerically detectable periodicity is plotted in black. The isospike diagramswere obtained,
after discarding the transient, by recording the localmaxima of the time series, togetherwith the instant when
they occur, and recording repetitions of themaxima. The computation of stability diagrams is a quite
demanding numerical task thatwe performedwith the help of 1536 processors of a SGIAltix cluster having a
theoretical peak performance of 16Tflops.
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