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We report on a systematic investigation of the stability of a CO2 laser subjected to delayed electro-optical feed-
back. Such a laser roughly displays three operational intervals of stability, which we characterize using high-
resolution stability charts and a video. Contrary to current belief, we find delays smaller than ∼1 μs to strongly
“clean complexity,” namely, to prevent chaos and periodic pulsations with many spikes. In contrast, complex
pulsations and chaos are significantly enhanced for τ > 1 μs. In this range, one finds a complex alternation of
periodic and chaotic phases, which are sensitive to the delay duration. © 2016 Optical Society of America

OCIS codes: (140.3470) Lasers, carbon dioxide; (190.0190) Nonlinear optics; (190.3100) Instabilities and chaos.
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1. INTRODUCTION

The study of the distribution of self-pulsations generated by
lasers with feedback is attracting increasing attention [1–10].
In CO2 lasers, feedback is known to induce rich dynamics such
as period-doubling cascades, Shilnikov homoclinic chaos, inter-
mittency, multistability, delayed bifurcation, quasi-periodicity,
and more [11–29]. In particular, the first quantum optics de-
vice to experimentally reveal the presence of deterministic chaos
and multistability was a Q-switched CO2 laser operating with
modulated parameters [25–27].

The CO2 laser is a class B laser [28] described by two rate
equations for the laser intensity and population inversion. But
class B lasers display no irregular spiking because the Poincaré–
Bendixson theorem forbids them in dimensions smaller than
three [24,29]. A popular method to bypass this restriction is
by implementing a feedback loop that adds an extra degree
of freedom and allows complex bursting and spiking [4–10].
A common feedback mechanism involves tuning the feedback
gain [10,14,21]. Extending an interesting work by Yang et al.
[21], we reported stability diagrams revealing a plethora of
unanticipated regularities such as frequency and peak disconti-
nuities in the control space, and pattern complexification based
on certain pulse deformations [7]. However, our previous work
considered only the case of instantaneous feedback.

A considerably more realistic situation involves considering
the impact of a time-delayed feedback loop. In this case, several
distinct periodic regimes, characterized by different amplitude
and frequency, may be possible for identical or nearly identical

values of the control parameters [22,23]. Such abundance of
regimes is usually difficult to quantify exhaustively [29–31].
Furthermore, delayed feedback implies the creation of an infin-
ite number of degrees of freedom. This brutal increase of the
phase-space dimensionality makes the analysis of lasers with de-
lay a challenging task, which has been much less addressed thus
far. However, lasers with delayed feedback have important prac-
tical applications, especially in the context of chaos control (see,
e.g., [32,33] and references therein).

The aim of the present paper is to report a systematic
numerical study of the impact of a feedback delay-time τ of
arbitrary duration on self-pulsations of a CO2 laser. For three
distinct control parameter planes, we provide high-resolution
stability charts and a video illustrating how the stability phases
evolve when parameters are tuned over extended intervals. Such
phases correspond to distinct self-pulsation modes of the laser
and are investigated for delays 0 ≤ τ ≤ 30 μs. We find that this
interval of τ can be roughly subdivided into three classes of
stability behavior, as illustrated by the video in the accompany-
ing supplementary material. Before discussing these classes and
the novelties underlying them, we first describe how they are
obtained and their main characteristics.

2. CO2 LASER WITH DELAYED FEEDBACK

The laser considered involves three variables: x�t�, the laser
intensity normalized to the saturation value, y�t�, the popula-
tion inversion normalized to the threshold value, and z�t�,
the feedback voltage normalized to 1∕π times the voltage
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of the electro-optic modulator. It is governed by the equa-
tions [34]

_x � kx�y − 1 − α sin2�z�t − τ��; (1)

_y � γ�A − y − xy�; (2)

_z � β�B − rx − z�; (3)

where τ represents feedback delay. Here, k stands for the
unmodulated cavity loss, γ for the population decay rate, β
for the damping rate of the feedback loop, r is the feedback
gain, B is the bias voltage applied to an electro-optic modu-
lator, A is the normalized pump parameter, and α is the
amplitude of the modulation [18]. As usual [11–18], B is
normalized to 1∕π times the half-wavelength voltage of the
modulator. Following the literature, we fix A � 1.66, α �
5.8, k � 9.6 × 106 s−1, γ � 0.03 × 106 s−1, and β � 0.5×
106 s−1. Our goal is to investigate how the stability phases
change with τ in the r × B control plane. As mentioned, for
τ � 0 μs (no time delay), the dynamics were revisited and
extended by us [7], where an in-depth study of laser phases
in the r × B control parameter plane was presented. Such τ �
0 μs stability diagrams serve as reference to contrast the
changes induced by delays of arbitrary duration.

Laser self-pulsations were obtained by solving Eqs. (1)–(3)
numerically in a similar way as described elsewhere [35],
namely, over a grid of equally spaced points, using the standard
fourth-order Runge–Kutta algorithm with a fixed time-step of
the order of 10−3. A transient of 107 steps was discarded
with the subsequent 106 steps considered as the asymptotic
solution. Integrations were always started from a fixed initial
condition, x�0� � y�0� � 1, and from the same initial history
z�−τ; 0� � 1. The computation of high-resolution diagrams is
a quite demanding task that we performed on 1536 high-per-
formance processors of a SGI Altix cluster having a theoretical
peak performance of 16 Tflops. For each solution, we counted
the number of peaks of x�t�, determining from them whether
or not the pulses repeated.

Similarly to what happens for ordinary differential equa-
tions, the choice of initial configuration is also important when
dealing with delayed systems, specially when multistability is
involved (see [36]). The infinite number of initial conditions
and initial histories precludes a systematic exploration of their
effect. For this reason, in this work we opted to work with the
aforementioned fixed initial conditions. However, we per-
formed some ad hoc tests, which seem to indicate that our re-
sults are robust when replacing the above constants by other
ones. A detailed investigation of initial conditions and history
is a too demanding task, beyond the scope of this work. It is left
as an open problem.

Figure 1 illustrates typical examples of the results obtained.
Some panels are representative snapshots extracted from the
accompanying video. Colors denote the number of spikes per
period of the oscillations while lack of numerically detectable
periodicity is interpreted as “chaos” and plotted in black. The
number of spikes is recorded using 17 colors chosen arbitrarily
and organized so as to maximize contrast at the transition
boundaries of the several phases. Patterns with more than
17 spikes were plotted “recycling colors mod 17,” i.e., by taking

as their color index the remainder of the integer division of the
number of peaks by 17. Fixed points (i.e., nonoscillatory laser
intensity) were plotted using two additional colors: orange
for constant nonzero laser intensity, and white for no-lasing
(x � 0) solutions. For details, see [37–43].

Note that representing laser oscillations in terms of the so-
called isospike diagrams [37–43] shown in Fig. 1, i.e., recording
the number of spikes per period provides a much more inform-
ative representation than the familiar diagrams in terms of
Lyapunov exponents [44]. Isospike diagrams are not only able
to discriminate periodicity from chaos (as Lyapunov exponents
do) but, in addition, illustrate simultaneously how laser pulsa-
tions sharing a common waveform (i.e., the same number of
spikes per pulse) organize themselves [43,44].

3. IMPACT OF THE DELAYED FEEDBACK

The sizable changes undergone by the laser stability in the r × B
control plane may be seen in Fig. 1. As mentioned, this figure
presents a selection of snapshots for τ � 0 up to τ � 30, in
units of 10−6 s, the first few taken from the video. For τ �
0 μs (no delay), the leftmost panel on the top row in Fig. 1
coincides with results from the literature [7], as expected.
The other panels illustrate what happens as τ grows.

First stability range. Initially, when increasing τ from τ � 0
to about τ � 0.55 μs, there is a strong reduction of all complex
oscillations. As illustrated in Fig. 1 and detailed in the video, all
phases corresponding to oscillations having more than one peak
per period shrink quite rapidly. This phase reduction persists up
to about τ � 0.55 μs, despite the infinite increase of the di-
mensionality of the phase space. Thus, in sharp contrast with
popular folklore, the initial impact of the delay is to wash out
all complex oscillations from the laser.

Second stability range. From τ ≈ 0.55 μs up to about
τ ≈ 1.1 μs, Fig. 1 and the video show that only a large phase
of pulsations with one spike per period survives. To the best of
our knowledge, this unexpected constant behavior was not pre-
viously anticipated, neither by simulations nor by approximate
calculations. Because this stability range has a rather large mag-
nitude, it should be possible to detect it in experiments.

Third stability range. Finally, for τ ≳ 1.1 μs the complex
phases start to reemerge, the first being a green phase associated
to solutions with two spikes per period (see Visualization 1).
Further increase of the delay time makes this two-peaks region
to grow steadily. Additionally, some complicated arrangements
of islands of solutions having distinct numbers of peaks start to
develop “inside” the green phase. Some of these islands may be
seen in Fig. 1, inside the boxes in the panels for τ � 3.0 μs and
τ � 3.5 μs. As τ grows such islands also grow, with additional
islands proliferating inside them, revealing a nested series of
peak-doubling and peak-adding cascades that lead to a region
of chaotic solutions inside these concentric islands. As the video
shows, increasing the delay beyond about τ � 4 μs, the regions
of complex and chaotic solutions grow and an accumulation of
the so-called shrimps [45–47] can be observed to develop inside
them. At this stage, the dynamics are complex and rich. The
snapshots for τ � 15 μs and τ � 30 μs illustrate the situations
typically observed for large τ.
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The narrow white horizontal stripes on the top of the dia-
grams in Fig. 1 represent parameter values for which the laser
output is identically zero. Below the white stripes, there is a
narrow phase in black representing solutions with periods too
big to be ascertained without much numerical effort. For a de-
tailed description of the divergence of the period in this specific
region, see [7,21].

An important point to stress here is the relative invariance of
the large one-spike laser phase observed for 0.5 ≲ τ ≲ 1.1 μs

and that separates two regimes where complex dynamical ac-
tivity is observed. The differences observed in the qualitative
behavior before and after this rather bulky invariant interval
of τ emphasize the importance of the numerical calculation pre-
sented here. Most analytical calculations done in the context of
delayed-differential equations are interesting and laborious ap-
proximations derived for two opposite limits: either for small or
very big delays, mainly for semiconductor lasers [10,48–52]
(not for the CO2 laser discussed in the present paper).

Fig. 1. Illustrative snapshots from the video in the supplementary material, displaying the evolution of representative laser stability diagram when
the delay τ, in μs, increases. For τ � 0 μs, pulses in adjacent windows differ by one spike, configuring the presence of a horizontal spike adding
cascading of pulses. Initially, the effect of chaos is to reduce complex oscillations; then comes an interval 0.55 ≳ τ ≳ 1.1 μs where a large phase of 1-peak
oscillations dominates. For τ > 1.1 μs the complex phases emerge again, with rather intricate distributions of pulses (see text and the video). The panel
for τ � 3 μs shows a horizontal line for 0 < r < 0.27 at B � 0.25. A bifurcation diagram along this line is discussed in Fig. 2. Each panel depicts full
phase-space analysis performed for 400 × 400 � 1.6 × 105 parameter points. The video is a sequence of 200 similar panels (Visualization 1).
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Furthermore, the approximate analytical methods in existence
focus on the stability analysis of constant or simple periodic
solutions. Such methods are inadequate to extract insight about
the complex oscillations addressed in the present paper, which
involve a continuous spectrum of delay times and oscillations of
arbitrary periods and waveforms.

A criterion for the short-delay regime was postulated by
Arecchi et al. [34] to be τ ≲ 1∕β. For β � 0.5 × 106 s−1, their
definition implies short delays to be delimited by τ ≲ 2 μs. We
have been unable to compare our results with theirs because
the experimental data omits needed parameters while model
parameters seem to contain inconsistencies.

The video in the supplementary material is an animation of
200 equally spaced snapshots showing how the r × B laser
phases evolve as a function of τ ∈ �0; 10� μs. Each snapshot
shows 400 × 400 � 1.6 × 105 pixels, summarizing results for
a total of 32 × 106 parameters, a subset of a much larger
number of parameters that were investigated. Using, say, 50
processors simultaneously, it takes about 3.8 h to generate

a single frame. On a single processor, the total time required
to produce the video would be 200 × 50 × 3.8 � 38.000 h,
i.e., about 1580 days or, equivalently, 4.3 years.

The mechanism underlying the creation of shrimps is man-
ifested in the video: the islands that emerge embedded in the
chaotic phases are continuously reshaped with the growth of
the delay time, resulting in a distribution of nested shrimps. In
other words, the emergent islands of new stable laser modes are
responsible for the genesis of the shrimps in parameter space.
Such details would not be possible to observe without the
smooth variation of τ in the video.

4. BIFURCATIONS BY DEFORMATION

As described in the previous section, an increase of the delay τ
tends to change the diagrams of Fig. 1 such that some islands
of periodic solutions emerge within wide regions associated to
solutions with a specific number of peaks or inside regions of
nonperiodic behavior. The dynamical features observed for

Fig. 2. Top panel: bifurcation diagram for 0 < r < 0.27, B � 0.25, and τ � 3 μs (as indicated by the black line in the corresponding panel in
Fig. 1). Bottom panel (a)–(h): temporal evolution for values of r indicated by the vertical lines in the bifurcation diagram. Black horizontal segments
indicate laser off (i.e., x < 0.005).
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temporal evolutions inside these islands become more complex
as τ evolves. To clarify how the laser output is altered and gen-
erates such structures, we draw a bifurcation diagram, shown on
the top row of Fig. 2, for parameters values cutting the con-
centric islands located inside the green region (2 peaks) in
the panel for τ � 3.0 μs, in Fig. 1. This bifurcation diagram
is calculated along the horizontal black line of this panel, cross-
ing over the structure in question, and clearly presents a com-
bination of the well-known peak-doubling bifurcation and the
abrupt appearance and disappearance of isolated branches, re-
sulting from the peak generation by continuous deformation of
the temporal solution as the parameter is varied (the “peak-add-
ing phenomenon” [7,41]).

Figures 2(a)–2(h) show the temporal evolution of the laser
intensity x (in arbitrary units) for representative values of
r, indicated by vertical lines in the bifurcation diagram.
Figure 2(a) shows the peak A corresponding to the branch
A on the bifurcation diagram. In this figure, the arrow indicates
a deformation in the laser pulse that, upon further increase of r,
gives origin to a new peak B, associated with the branch B and
is clearly visible in Fig. 2(b). Initially, the amplitude of peak B is
smaller than A, but as r increases, its amplitude grows faster,
with B eventually becoming larger than A. This unfolding
can be followed in Figs. 2(b)–2(d). As r further increases past
a bifurcation, which occurs for r ≈ 0.146, peaks A and B split

into doublets �A;A 0� and �B;B 0�, as shown in Fig. 2(e). This
happens such that peak A 0, born smaller than B, grows faster
than B, overtaking it at r � 0.179 and remaining so until
r � 0.199, when peak B becomes bigger again. Curiously, in
the range of r where A 0 remains bigger than B, the peak A dis-
appears, returning when B becomes bigger than A 0 again. This
phenomenon may be seen in Figs. 2(f )–2(h) and following the
evolution of branches B, A 0, and A in the bifurcation diagram.
Peak A disappears smaller but reappears larger than B 0.

The top panel in Fig. 2 contains nonlabeled small peaks vis-
ible at the bottom of the bifurcation diagram, immediately after
peak B 0 in Figs. 2(e)–2(g). Such peaks are born and disappear
obeying the same peak-adding mechanism described above.
The difference is that, in those regions, the continuous defor-
mations are changing the solution on a smaller scale.

5. SPIKING ON τ × R AND τ × B DIAGRAMS

In this section, we consider the modal structure in two addi-
tional control planes, τ × r and τ × B. The motivation is to learn
what sort of changes the modes undergo as a function of the
feedback gain r and the bias voltage B applied to the electro-
optic modulator as a function of the delay τ.

Figure 3(a) shows an extended portion of the τ × r plane,
computed for B � 0.25, the same value used in Fig. 1. This

Fig. 3. Top row: parameter windows illustrating the complex accumulation of stable laser phases on the τ × r for B � 0.25. Along the line
segment in (c), the number of spikes of the laser pulses increase by two as r increases, accumulating on the large window characterized by pulsations
with two spikes. In (c), one also recognizes that self-pulsations have a constant number of spikes along the horizontal stripes forming shrimp [45–47]
legs. The bottom row shows that peak doubling and adding occurs simultaneously inside the shrimps. Each panel shows 600 × 600 parameter points.
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diagram reveals a number of remarkable facts about the peculiar
self-organization of the laser pulsations. For r ≲ 0.15, one es-
sentially finds solutions having either a nonzero constant am-
plitude or simple periodic oscillations with one peak per period.
For r small enough, the laser does not oscillate independently of
the value of the delay. In other words, the dimensionality jump
of the phase space plays no role in sufficiently small delays.
Complex oscillatory modes become possible above r ≃ 0.15,
first in small domains for relatively large values of τ of the order
of τ ≳ 7 μs.

A conspicuous feature observed in Fig. 3(a) as r grows is the
large green phase, which denotes oscillations with two peaks per
period. This phase dominates the left side of the stability dia-
gram, together with the black domain representing nonperi-
odic, “chaotic,” laser modes. Oscillations with a larger number
of spikes per period become also abundant for r ≳ 1.5 and
τ ≳ 3 μs. As indicated in the figure, when r grows in that re-
gion, one sees what in this scale appears to be an abrupt tran-
sition from 2 to 5 pulses per period. Under magnification, it is
possible to realize the existence of a 2 → 4 peak-doubling and
then a 4 → 5 adding. The right-hand-side boundary of the
2-peaks green phase displays a peak-doubling cascade, seen
more clearly in Fig. 3(b). Following this doubling cascade there
is an alignment of shrimps [45–47], namely a sequence of self-
similar periodic phases with complex internal distribution of

modes, with number of peaks that grow apparently without
bound. Such sequence is shown magnified in Fig. 3(c), where
a line segment indicates the direction along which the phases
accumulate as r grows. To move along this line requires tuning
two parameters simultaneously.

The three shrimps inside white boxes Fig. 3(c) are magnified
in the bottom row of the figure. Each panel displays the num-
ber of peaks for the three largest of the infinite number of
phases belonging to the shrimps in Figs. 3(d)–3(f ): (6,12,7),
(8,16,9), and (10,20,11), respectively. In such shrimps, the
number of peaks of the largest stability region grows by two
from shrimp to shrimp when r grows toward the green accu-
mulation boundary of two peaked oscillations. The next two
largest regions reveal a surprising mode unfolding: while in the
upper region laser oscillations follow a peak-doubling cascade, in
the lower region they follow a peak-adding cascade [7,41]. More
complex mode subdivisions are clearly visible, but they are
more difficult to characterize systematically by other means
than graphically.

Figure 4 shows results similar to Fig. 3 but for the τ × B
control plane.Mutatis mutandis laser modes organize quite sim-
ilarly in both planes. In particular, cascades of peak doublings
and addings as well as their accumulations can be followed with
no difficulty by suitably tuning parameters from top to bottom
along the white line in Fig. 4(d).

Fig. 4. Top row: global views of control plane τ × B for different values of r. The box in (c) is magnified in panel (d). Bottom row: successive
magnifications of the box (c), illustrating a typical downward accumulation cascade of periodic laser modes. In (d), the line segment runs from
(4.130, 0.25413) to (4.633, 0.22599). As in Fig. 3, from shrimp to shrimp the number of peaks of the largest phase increases by two peaks via
a doublet-adding mechanism (see text). Each panel shows 1200 × 1200 parameter points.
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Figure 5 presents additional information concerning the
unfolding of oscillatory modes along the white lines in
Figs. 3(c) and 4(d). The idea of this figure is to further clarify
details of the nature and organization of laser pulsations. In
Fig. 5, the top panels are bifurcation diagrams depicting local
maxima of the laser intensity x recorded along the pair of white
lines, defined by the equations

r � −0.005705� 0.073480τ; τ ∈ �4.0992;5.2287�; (4)

B � 0.485214 − 0.055952τ; τ ∈ �4.1300; 4.6330�: (5)

Note that, to be able to follow such accumulation cascades, one
must tune two parameters simultaneously. Both bifurcation
diagrams look quite similar, their ordering as well as the cascade
unfolding inside every periodicity window, configuring a

surprising isomorphism and signaling to symmetries in the
underlying surface embedded in the multidimensional space
formed by all control parameters.

Figures 3(d)–3(f ) manifested clearly the self-similar shrimp
nature. In contrast with the more common structure [45], in-
side them one now finds combined cascades of peak-doubling
and peak adding. In addition, Figs. 3 and 4 revealed that, in
such cascades, the number of peaks of the phases with largest
“volume” increases by two units from shrimp to shrimp. In this
context, a natural question to ask is what sort of changes
laser modes undergo when proceeding along the cascades.
The answer is given in Fig. 5 for both cascades. The left column
refers to the march along Eq. (4), for Fig. 3, while the right
column refers to Eq. (5), for Fig. 4. The top panels in Fig. 5
show bifurcation diagrams for intervals defined in Eqs. (4)

Fig. 5. Top-left: bifurcation diagram calculated for Eq. (4), namely, over the white line (crossing the shrimps) in the τ × r diagram of Fig. 3(c).
(a)–(e): Temporal evolution showing laser oscillations near the “center” of the shrimps, marked by vertical lines in the bifurcation diagram. Top-
right: bifurcation diagram calculated for Eq. (5), namely, over the white line in the τ × B diagram of Fig. 4(d). (f )–(j): Corresponding temporal
evolutions at the vertical lines in the bifurcation diagram.
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and (5). They contain five vertical lines labeled from (a) to (e),
on the left panel, and from (f ) to (j), on the right. Parameters
defined by these vertical lines are located at the center of the
shrimps discussed above. The temporal evolution for the se-
lected parameters is displayed on the panels below the bifurca-
tion diagrams.

Figures 5(a)–5(e) show the temporal evolution along the
cascade on the τ × r control plane. Figure 5(a) refers to the first
shrimp, where the oscillation shows six peaks per period. This
pattern is periodic, formed by the repetition of three pulse dou-
blets, indicated by blue, red, and green dots, each doublet con-
sisting of a small and a big pulse. Similar colored dots are
also used to identify the branches that the pulses produce in
the bifurcation diagram. The oscillations of the next shrimp,
Fig. 5(b), have eight peaks per period: the same three doublets
as before plus a new doublet marked with yellow dots. Next,
Fig. 5(c) shows 10 peaks per period: the four previous doublets
plus a new doublet, marked in violet. This peak-doublet addi-
tion persists in subsequent shrimps, a new doublet being added
to the large peak on the left when one moves from shrimp to
shrimp, as illustrate for two more steps in Figs. 5(d) and 5(e).
This doublet-adding mechanism mimics a similar mechanism
observed previously by us in a considerable simpler scenario,
involving a single delay-differential equation describing a
physiological delayed system, the prototypical Mackey and
Glass system associated with dynamical diseases [41].

Figures 5(a)–5(e) also record the period T of the oscilla-
tions, revealing a roughly constant period increment from
shrimp to shrimp: 262.84 − 194.514 � 68.326, 330.53−
262.84 � 67.69, 398.0 − 330.53 � 67.47, 465.73 − 398.0 �
67.73. Figures 5(f )–5(j) show that the doublet-adding mecha-
nism is also at work on the τ × B control plane. First, note that,
in Fig. 4(d), the white line misses the parabolic 7-peaks arc.
This shows that generic accumulations occur along slightly
curved paths, which, however, are well approximated by line
segments. The mild curvature explains why the doublet-adding
mechanism starts from Fig. 5(g) [not from Fig. 5(f )]. More
specifically, the difference between the two sequences of tem-
poral evolutions in Fig. 5 is that a new and very small peak
appears in Figs. 5(g)–5(j), indicated by a light blue dot, due
to the fact that, differently from the white line in Fig. 3(c),
the white line in Fig. 4(d) now crosses the corresponding
shrimps over the region of peak-adding, near the top of such
structures. Apart from the curvature deviation, the unfolding in
both columns is the same. On the right columns, the incre-
ments of the periods are 257.13 − 225.42 � 31.71, 295.57−
257.13 � 38.44, 338.03 − 295.57 � 42.46. Now, the period
is also increasing but the increments get bigger from shrimp to
shrimp. This marked difference should not be difficult to ob-
serve in experiments.

6. CONCLUSIONS AND OUTLOOK

Thus far, stability charts for CO2 lasers with feedback were
known only for the r × B control plane and for instantaneous
feedback (τ � 0 μs). Such results have now been considerably
extended, revealing what happens in the presence of delayed
feedbacks of arbitrary duration τ. Broadly speaking, we de-
scribed the existence of three delay regimes for the r × B control

space. As described in Section 3, these laser stability delays for
each of these regimes differ from the current expectations for
delayed lasers.

Laser phases display several hitherto unseen features such as,
for example, a series of shrimp accumulations associated with
the emergence of concentric islands of periodic oscillations in
control space, with increasing complexity (greater number of
peaks per period) combining sequences of peak-doubling and
peak-adding cascades, resembling in some aspects what was
observed recently in the flow governing a complex enzyme
reaction [43,53]. The effect of the emerging islands on the
temporal profile of the laser intensity has been elucidated. To
observe such remarkable variations in laser pulsations, one must
adjust two parameters simultaneously.

We also reported stability charts for two additional control
planes of the laser, namely, the τ × r and τ × B planes shown in
Figs. 3 and 4, respectively. Modal distribution in these distinct
planes looks surprisingly similar, isomorphic. The characteristic
signature of the mode complexification along such cascades was
found to consist of a doublet-adding mechanism, which can
come in two varieties: either displaying a constant or nonconst-
ant increase of the period of the largest phase of adjacent
shrimps. In experiments, the simultaneous variation of two
parameters started to be considered in high resolution only
quite recently—not for lasers but in experiments involving elec-
tronic circuits [54]. In this respect, the detailed diagrams pre-
sented here can contribute to finding suitable configurations to
conduct laser experiments. Lasers are well-known systems for
traditionally revealing a plethora of fundamental and applied
novelties. We hope that the simulations reported here may help
to motive their experimental corroboration in the near future.
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