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a b s t r a c t

We show that self-pulsations observed in a CO2 laser with feedback display two types of recurrent

period discontinuities when control parameters are changed. Periodic self-pulsations emerge organized

in wide adjacent phases in which oscillations differ by a constant number of peaks in their period.

The number of peaks increases through characteristic pulse deformations of the signal that we describe

in detail. The passage across the boundaries delimiting adjacent phases is abrupt and not mediated by

windows of chaos. In addition, we provide an explicit criterion for locating the discontinuity boundaries

between adjacent phases.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

A standard way to stabilize and control the output frequency,
wavelength and power of a laser is by using feedback loops, either
optical, electronic, or electrooptical [1]. The efficient design of
suitable feedback loops requires an understanding of the impact
of parameter changes. In fact, lack of such information makes it
quite unclear how to optimize system operation in order to
further develop quantum electronics and laser applications. While
the possible dynamical behaviors of lasers were classified in great
detail for many situations of interest [2,3], parameters considered
were essentially restricted to a few specific ad hoc values or
intervals. Most laser systems still lack an encompassing and
systematic analysis of their control parameters classifying the
nature and relative abundance of their stable pulsations.

The aim of this paper is to report stability diagrams character-
izing the nature and the global distribution of self-pulsations in a
class-B laser with optical feedback when more than one para-
meter is varied simultaneously. The working system considered
here is a familiar model of a CO2 laser with a feedback loop [4–7].
The control parameter space of this system was considered before
by Yang et al. [6] with a much higher level of detail then usual for
laser systems. These authors performed the standard linear
stability analysis and identified the boundaries between stable
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and unstable fixed-point (i.e. non-oscillatory) solutions of the
laser. However, they also computed numerically the period and
the number of peaks of the laser intensity as a function of two
parameters, r (feedback gain) and B (bias voltage), as defined
below in Eqs. (1)–(3). They observed that an increase in the
feedback gain, r, results in an increase in the number of peaks of
the laser intensity and found that an increase of the bias voltage,
B, induces an increase in the period of the signal. They observed a
divergence of the self-pulsing period T when increasing B after
fixing r at a particular value, viz. r¼0.21593.

The aim of this paper is to complement and extend the
pioneering work of Yang et al. [6]. The reason for this is the
recent upsurge of interest in studying the structure of parameter
space of laser systems due to both, the availability of more
powerful computers, and the development of automated techni-
ques to record experimental data. As one specific example, we
mention very recent interesting work of Toomey et al. [8]
reporting automated protocols to characterize experimental time
series data for optically injected VCSELs in terms of stability. Here,
for the CO2 laser we show that, first, in addition to the period
divergence observed by Yang et al. while tuning a single para-
meter (B), the laser displays a rather distinct type of disconti-
nuities when B and r are tuned simultaneously. Furthermore, we
find the laser self-pulsing to display a plethora of intricacies and
discontinuities not only in the period (frequency) as observed
before, but also in the intensity and in the number of peaks of
periodic pulses. High-resolution stability diagrams in the r�B

control plane reveal that sharp discontinuities in the number of
peaks form the boundaries of wide regions of stability, or phases.
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The number of peaks increases abruptly at the phase boundaries
as control parameters are changed (see Fig. 1). The location of
such boundaries requires tuning more than one parameter.
Second, while the laser contains a relatively narrow chaotic phase,
we show such phase to be about an order of magnitude larger
than previously observed by Yang et al. [6]. Further, instead of a
single islands of chaos, we find what appears to be an infinite
sequence of relatively similarly looking sequence of islands.
We find such chaotic phases to be riddled with large islands
characterized by periodic self-pulsations as described below.

While studying the pattern evolution of the laser self-pulsations
we observed that their number of peaks increases systematically in
a very specific way, through certain characteristic pulse deforma-

tions which we describe below in detail. Thus, bifurcation diagrams
of the laser intensity are shown to contain a remarkable feature: the
intensity undergoes peak-adding bifurcations mediated by pulse
deformations, not by windows of chaos, as it is usual. We establish
an explicit criterion, Eq. (6), allowing one to locate pulse disconti-
nuities, i.e. to determine the birth of new peaks in self-pulsations.
The present work also serves an additional purpose, namely to
provide reference stability diagrams against which to compare
phase diagrams obtained for much more complicated models of
the laser, including situations involving the presence of a delayed
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feedback, a classical problem in the field [9–13] that has great
technological interest for practical applications like, e.g. secure
communications [14–19]. In a separate work we report phase
diagrams for the same model studied here but taking also into
account the effect of a delayed feedback [20].
2. The CO2 laser with feedback

The model of the CO2 laser with feedback of interest to us is
described by three autonomous coupled differential equations invol-
ving three variables and seven parameters. Calling x(t) the laser
intensity normalized to the saturation value, y(t) the population
inversion normalized to the threshold value, and z(t) the feedback
voltage normalized to 1=p times the voltage of the electro-optic
modulator, the governing equations can be written as [4–7]

_x ¼ kxðy�1�a sin2zÞ, ð1Þ

_y ¼ gðA�y�xyÞ, ð2Þ

_z ¼ bðB�rx�zÞ, ð3Þ

here k stands for the unmodulated cavity loss, g is the population
decay rate, b is the damping rate of the feedback loop, r is the
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ently for delay-differential equations [22] and standard accumulations of shrimps

eak-adding cascade in x(t) along the black line in (a), Eq. (4), as indicated by the

ations, not by windows of chaos, as usual. See text. B and r are in the same units of
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feedback gain, B is the bias voltage applied to an electro-optic
modulator, A is a normalized pump parameter, and a is the
amplitude of the modulation [5]. Following Yang et al. [6], we focus
on the r�B control plane and fix A¼1.66, a¼ 5:8,
k¼ 9:6� 10�6 s�1, g¼ 0:03� 10�6 s�1, b¼ 0:5� 10�6 s�1. As
usual, B is normalized to 1=p times the half wavelength voltage of
the modulator [4–6].

The laser model of Eqs. (1)–(3) has already been extensively
studied since first introduced [4,5], and forms the basis for more
complicated situations, when delayed feedback is also included
[13–20]. This is the reason of our interest in classifying its
dynamical properties over extended regions of the control para-
meters. Detailed knowledge of such predictions for this paradig-
matic model is of course necessary to assess the need for better
models and the impact of changes associated with them.
3. Peak-adding not mediated by chaos

Fig. 1(a) and (b) shows stability diagrams obtained numerically by
solving Eqs. (1)–(3) using a fixed-step h¼0.002 fourth-order Runge–
Kutta algorithm on a grid of 1200� 1200¼ 1:44� 106 equally
spaced points (r,B). We started numerical integrations from the initial
conditions ðxð0Þ,yð0Þ,zð0ÞÞ ¼ ð1:0,1:0,1:0Þ. However, taking them ran-
domly, uniformly distributed in the interval ½0;1�, produces virtually
indistinguishably similar diagrams. The integration is numerically a
quite demanding task, performed on a cluster of 700 high-perfor-
mance processors. For each solution we counted the number of peaks
of x(t) and recorded whether pulses repeated or not.

Periodic pulsations were represented using 14 colors, as indi-
cated by the color-bar in the figures (described in detail elsewhere
[21]), to reflect the number of peaks within their period. Pulses
having more than 14 peaks were plotted ‘‘recycling colors mod 14’’,
i.e. taking as the color index the remainder of the integer division of
the number of peaks by 14. Multiples of 14 were given the index 14.
In this way all periodic pulses could be accommodated with the 14
colors available. Lack of numerically detectable periodicity was
interpreted as ‘‘chaos’’ and plotted in black. Fixed points (i.e. non-
oscillatory laser intensity) were plotted using two additional colors:
the color of the large domain marked ‘‘constant non-zero laser
intensity’’ in Fig. 1(a), and white, to represent x¼0 no-lasing
solutions. The no-lasing solutions appear as a very narrow white
horizontal stripe at the top of Fig. 1(a).

Fig. 1(a) and (b) shows how self-pulsations are distributed and
organized in control parameter space. Fig. 1(a) displays a
sequence of adjacent regions containing numbers denoting the
number of peaks of the laser intensity. This organization agrees
well with Fig. 3 of Yang et al. [6] but considerably extends it,
indicating that chaos is more abundant than originally found and
that it recurs regularly in control parameter space. In addition,
Fig. 1(b) illustrates details of the inner structure of one of the
chaotic windows, the one inside the white box in Fig. 1(a),
showing that chaotic laser phases have a quite complex inner
organization, riddled by the familiar shrimp sequences [23–27],
namely by sequences of islands where we find periodic self-
pulsations which unfold in a complex and specific way, via the
pulse deformations described in the next section. As may be seen
from Fig. 1(b), the control parameter space has specific bound-
aries where the shrimp sequences accumulate [28]. The peculiar
adjacent arrangement of isospike regions in Fig. 1(a) shows a
subtle behavior, namely, a peak-adding cascade where the num-
ber of peaks grows arithmetically, not geometrically as for the
more frequently observed period-doubling cascade. More impor-
tantly, the several isospike windows are not separated by win-
dows of chaos as it is more common for adding cascades
(see Fig. 5 below) but, instead, here the number of peaks increases
abruptly from window to window, without any trace of chaos
between them.

Fig. 1(a) contains a black line defined by the equation

B¼ 0:184756þ0:304878r, 0:05oro0:48: ð4Þ

Along this line we computed the bifurcation diagram shown in
Fig. 1(c), which illustrates in more detail how the number of
peaks vary when two parameters are tuned simultaneously. As it
is easy to realize from Fig. 1(a), the bifurcation diagram presented
is representative of the diagrams obtained along most lines of
constant B, which display nothing else than a more restricted
unfolding of the bifurcation cascade.
4. Pulse deformations and isolated branches

In the previous section we saw that the bifurcation diagram of
Fig. 1(c) contains several isolated branches, namely single branches
that start quite abruptly for specific values of r and result in an
atypical peak-adding cascade, not mediated by chaos. We now show
that such isolated branches arise from pulse deformations when
parameters evolve. We also provide an explicit criterion, Eq. (6),
allowing one to determine the emergence of new peaks in self-
pulsations.

Fig. 2(a)–(d) displays examples of self-pulsations for r¼0.105,
0.180, 0.237, 0.290 and B as defined by Eq. (4). These four points
are indicated by white dots on the black line in Fig. 1(a). They are
located immediately before the boundaries marking a change in
the number of peaks of the laser intensity. Fig. 2(a)–(d) also
contains a vertical arrow to indicate the location of a ‘‘precursor’’
of a peak, i.e. the position where a new peak will arise when r is
increased slightly. The explanation of the successive peak creation
can be given referring to Fig. 2(e)–(h), on the right column.

Fig. 2(e)–(h) shows two curves in the y� z plane. The first one,
represented as a light parabolic arc, marks the solution of
f ðy,zÞ ¼ 0, where

f ðy,zÞ ¼ y�1�a sin2z: ð5Þ

This function is one of the two factors which appear in dx=dt

(see Eq. (1)). The other curve records the locus (y,z) obtained by
integration of Eqs. (1)–(3).

The characteristic signature of the birth of a new isolated
branch in the bifurcation diagram is the occurrence of intersection

points between these two curves as parameters are tuned.
The arrows in Fig. 2(e)–(h) show where new intersections will
occur when r is increased. Such intersections are responsible for
the several isolated branches seen at the bottom of the bifurcation
diagram in Fig. 1(c). Thus, the condition for the genesis of new
isolated branches in the bifurcation diagram, i.e. for new peaks in
self-pulsations, is

dx

dt
¼

d2x

dt2
¼ 0: ð6Þ

According to Eq. (1), this implies having

d2x

dt2
¼ k

dx

dt
f ðy,zÞþx

df ðy,zÞ

dt

� �
¼ 0, ð7Þ

where f ðy,zÞ is given by Eq. (5). That this relation is indeed true
can be verified numerically without difficulty. As it is obvious, the
explicit conditions in Eq. (6) may be used to locate discontinuities
in laser self-pulsations.

Summarizing, from the peak-adding cascade in Fig. 2 one
realizes the reason behind the emergence of extra peaks in the
laser intensity or, equivalently, extra branches in the bifurcation
diagrams: they arise from pulse deformations undergone by the
oscillations as the parameter varies.
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The isolated extra branches arising through the pulse defor-
mations described here should not be confused with similar
discontinuous branches seen in bifurcation diagrams which,
however, are due to multistability. The latter involve crossing
between distinct basins of attraction while in the former the self-
pulsation evolves continuously staying always inside the same

basin of attraction.
5. Period discontinuities in self-pulsations

The previous section described peak-adding cascades where
the number of laser spikes increased arithmetically and discon-
tinuously when parameters were tuned ‘‘diagonally’’, i.e. along
the general direction represented by the black line in Fig. 1(a).
The purpose of this section is to show that discontinuities appear
not only in the number of peaks (Fig. 1(a)), but that they also
appear in the period (frequency) of the pulses and that they can
be of two kinds.
Fig. 3(a) presents a phase diagram showing how the period T

varies as a function of the feedback gain r and bias voltage B.
In this figure one easily recognizes two dark-green regions, one
horizontal, in the upper part of the diagram, and another one
roughly parallel to the black line of Eq. (4). Two distinct kinds of
discontinuities are observed when varying parameters along the
pair of lines depicted in the figure.

The first type of discontinuity is shown in Fig. 3(b) which
illustrates how the period evolves along the black line. The inset
of this figure shows that a period discontinuity happens inside a
very narrow interval, between r¼0.1416 and r¼0.1426. These
values are plotted as red dots on the black line in Fig. 3(a) which,
however, in the scale of the figure, are too close to each other to
be distinguished as two distinct points. Between these dots runs a
curved vertical discontinuity boundary in the color coding,
indicating a discontinuity in T. This boundary is characterized
by jumps similar to the one shown in Fig. 3(b). As this figure
shows, additional discontinuities exist which, however, are much
less pronounced and whose amplitudes decrease very rapidly.
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A second type of discontinuity is shown in Fig. 3(c) and occurs
along vertical lines, here r¼0.21593. This particular line was
studied by Yang et al. [6] who noted a divergence of T as B grows.
Although the period can be calculated up to very high values, in
Fig. 3(a) we introduced a cut-off at T¼400, considering all higher
periods as divergences, i.e. as lack of periodicity. This was done to
magnify the visibility of the horizontal domain on the top of the
figure. Actual divergences occur near the upper boundary of this
domain. We stress, however, that the pair of dark-green regions in
Fig. 3(a) represents aperiodic pulses of a rather distinct nature.
While the horizontal dark-green stripe on the top of the figure
marks divergence of the pulse period, the other region with a more
complex shape, roughly parallel to the black line, marks non-

periodic oscillations, i.e. chaotic laser pulses.
Comparing Fig. 3(b) and (c) one sees that the nature of the

discontinuities along the black line display is much more complex
than along the vertical line. Furthermore, comparison of
Fig. 1(a) and (a) shows that discontinuities in the number of
peaks do not coincide necessarily with discontinuities of the
period, a fact clearly borne out in the two-peaks window in the
bifurcation diagram in Fig. 1(c).

Using the same representation as in Fig. 2, Fig. 4 shows the
cause of the discontinuous period jumps in Fig. 3(b) when passing
between r¼0.1416 and r¼0.1426. Despite the fact that the red
part of the trajectory (representing intervals where x40) in
Fig. 4(c) to be larger than in (d), they both correspond to an
essentially identical lapse of time, as can be seen comparing the
red segments in Fig. 4(a) and (b). From these figures one may also
recognize that in Fig. 4(a) the laser stays considerably longer with
x¼0 than in Fig. 4(b), what results in a sharp increase of the
period. On the other hand, by comparing the black segments in
Fig. 4(c) and (d) we see an increase in the inversion y of the laser
such that, when it decays, there is also an increase in the observed
laser amplitude.

Finally, Fig. 5 shows details of the laser stability diagram for
a parameter region dominated by chaotic self-pulsations.
Fig. 5(a) displays 1200�1200 Lyapunov exponents used to dis-
criminate chaos (i.e. positive exponents, shown in colors) from
periodic pulses (negative exponents). The Lyapunov exponent
distribution agrees well with the phase diagram based on the
number of peaks in Fig. 5(b) where colors emphasize periodic
pulsations. This figure contains three line segments for which we
computed bifurcation diagrams, given in the left column. In the
bifurcation diagram of Fig. 5(c) there is a discontinuity in
the number of peaks along the leftmost line in Fig. 5(b), similar to
the ones described above. However, the sequence of bifurcations
along the two remaining line segments display peak-adding
cascades of the more common type, namely, cascades mediated
by windows of chaotic pulses, observed previously in other systems
[29,30]. Note that the pair of peak-adding cascades converge
toward a wide accumulation horizon [28] characterized by three-
peak pulses, the same number of pulses by which the cascades
increase from shrimp to shrimp. This regular organization was
observed before for an optically injected semiconductor laser [28].
Thus, while in some regions of the control parameter space one
observes novel discontinuous phenomena associated with pulse
deformations, it is also possible to find wide parameter regions
where the organization is of the more frequently reported kind. The
abrupt disruption of cascades of stability regions by the appearance
of new peaks arising from pulse deformations shows that, while
stability phases may display identical shapes in control parameter
space, their inner distribution of pulses may be rather distinct.
6. Conclusion and outlook

In conclusion, we described in detail several characteristics of
self-pulsations obtained from a systematic numerical investiga-
tion of a CO2 laser with feedback. Self-pulsations were shown to
display continuous deformations of their waveforms as para-
meters are varied. Such deformations create and destroy peaks
in the oscillatory patterns. Peak creation and destruction results
in rich and intricate isolated branches appearing and disappearing
in bifurcation cascades. As a result of the added flexibility of
incorporating an odd number of branches, sequences of branching
cascades for the laser may emerge in rich combinations of the
familiar adding and doubling bifurcations something that, we
believe, was not yet appreciated. Such branching cascades in the
number of peaks of the self-pulsations produce highly intricate
mosaics of periodicity domains in control parameter space as
exemplified in Figs. 1(b) and 5.
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Note that the sequence of small pulses following the funda-
mental one in figures such as Fig. 2(b)–(d) decay with a decreas-
ing rate as the coupling r is increased, but the separation between
the pulses has roughly the same duration. A simple calculation of
the solitary laser equations with zero feedback shows that the
period of the relaxation frequency is of the order of 6 ms and,
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indeed, corresponds to the period of the decaying relaxation
oscillations that follow the main peak. Additionally, as r is
increased, it affects the damping of the laser, which decreases.
Therefore, the pulsations following the main one are sustained
longer. In this context, an interesting problem is to compute some
of the spectra of the time series to characterize the fundamental
frequency structures with and without feedback.

We hope that peak-adding cascades not mediated by chaos as
well as the discontinuities in the frequency and laser intensity
reported here may motivate their experimental corroboration in
the near future. A few simple ways of recording experimentally
novel phenomena in laser stability diagrams were discussed
recently for a semiconductor laser with optoelectronic feedback
[31] (see also Ref. [32]). An interesting related problem is to
extend our stability diagrams by investigating systematically the
distribution of self-pulsing when a delayed feedback is added
[14–19]. Results for the CO2 laser and for some laser diodes
showing a number of remarkable features are being finalized for
publication [20].
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