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On the spacing of the quasi-Landau resonances 
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Abstract. Simple analytical expressions for the spacing between the quasi-Landau 
resonances, covering the whole energy range are derived. The expressions are obtained in a 
first-order WKB approximation considering the m = 0 spinless electron to move in the t = 0 
plane. In addition, we show a crossing over of the spacing at negative energies and that the 
spacing is not very sensitive to the presence of a centrifugal barrier. 

After the experiments of Garton and Tomkins (1969)’ much work was concentrated on 
the study of the spacing between the quasi-Landau resonances at zero energy. This was 
motivated by their observation of the absorption spectrum of Ba in a magnetic field 
B = 24 kG in which broad resoances spaced by approximately 1.5 hw were found near 
E = 0 (w  = eB/Mc is the cyclotron frequency where M is the electron mass). This 
striking feature of the spectrum was explained through a semiclassical argument by 
O’Connell (1974). WKB explanations of the same fact were provided by Edmonds 
(1970), Starace (1973) and by Rau (1979). An account of the current status of this area 
may be found in the work of Gay (1980). 

The main problem in studying the motion of a spinless electron moving in the 
combined Coulomb and magnetic fields is that the resulting Schrodinger equation for 
the system is not separable. Indeed, if one follows Landau and Lifshits (1977) and 
writes the wavefunction of the electron in cylindrical coordinates as (Starace 1973) 

(1) $(P ,  4 ’2)  =p- ’”f (p,  2 )  exp(im4) 
then it is easy to see that the Schrodinger equation of the problem at hand reduces to 

a2f a2f 2~ 
ap a2 ti T + T + T ( E -  V(p,  2 ) ) f  = O  

where 

h2 T e 2  1 
V (  p, 2) = - -j - 2 1 / 2 + - M w 2 P 2  2 M p  ( p Z + z )  8 (3) 

and where T =m2-$,  m being the magnetic quantum number of the electron. In 
equation (2) we have used the same symbol E to represent the energy shifted by 
-hwm/2. The complicated two-dimensional problem defined in equation (2) can be 
reduced to a tractable one-dimensional problem by studying the motion of the electron 
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in the z = 0 plane. This approximation, previously used in the works of Starace (1973) 
and Rau (1979), successfully predicts the experimental positions of the resonances as 
reported by Economou et a1 (1978) and, more recently, by Fonck et a1 (1980). In the 
present work we also assume this approximation to be valid so that the two-dimensional 
potential of equation (2) reduces to the one-dimenbional potential 

A 2 T  e 2 1  2 2  
V ( p ) = - - - ~ - - + - M O  p 

2 M P  P 8 
(4) 

where T = m 2 - $  was replaced by T = m2 because of the criterion for the applicability 
of the WKB approximation (Langer 1937). It is interesting, however, to note that 
different expressions for T were reported to reproduce experimental results correctly: 
using T = (m +;)' instead of T = m2 -$in equation (4) Economou et a1 (1978) obtained 
good agreement for the m = 1 and m = 2 sublevels of rubidium at 0 and 49 kG. More 
recently Fonck et a1 (1980) using T = O  found good agreement for the m = O  and 
m = -1 sublevels in barium and strontium at 25,40 and 47 kG. Fonck et af preferred to 
use T = m2 = 0 in their model of the electronic motion and attributed the good 
agreement obtained by Economou et af to an accidental compensation occurring for the 
spin-; Rb I atom. Anyway we observe that since the T/p2 term dominates at the origin 
the characteristics of the one-dimensional motion will depend very much on whether T 
is positive, negative or zero. 

As mentioned before, the spacing of quasi-Landau resonances was previously 
studied in a WKB approximation by Starace (1973) and Rau (1979). Starace calculated 
the spacing of the resonances numerically in the region of E 3 0 ,  modelling the 
electronic motion by equation (4) with T = 1. Rau, on the other hand, showed that for 
the particular case E = T = 0 the WKB integral reduces to a trivial one which was then 
evaluated analytically. The correct 1SRw spacing at E=O was obtained by both 
authors in spite of the different nature of the potentials used (the presence or not of the 
centrifugal term). 

In the present paper we assume m = 0 and derive analytical expressions for the 
spacing between the quasi-Landau resonances. These expressions cover the whole 
energy range and reproduce the 1Shw spacing at E = 0 as expected. In particular our 
expressions are also valid for negative energies for which interesting experimental 
results have been recently reported (Gay et a1 1980, Delande and Gay 1981). 

For m = 0 equation (4) reduces to 

e2 1 
V ( p )  = --++MMw2p2. 

P 8  

The WKB quantisation rule applied to this potential is 
112 r 2 1  

0 P 8  
(2M)'" 1'' ( E  + e - -Mu2p2) dp = (n + 1 / 2 ) ~ A  

where po is the only positive root of 
e' 1 
P 8  

E + - - - M u 2 p  = 0. 

A simple differentiation of equation (6) with respect to n gives the spacing as 

( 5 )  

(7) 
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In figure 1 a schematic view of the potential of equation ( 5 )  is given. Although 
physically meaningless the region p < 0 is also included. V ( p )  has a relative minimum 
V, = ( 2 7 M ~ ~ e ~ / 3 2 ) ' / ~  > 0 at pc = -(4e2/M"2)113. From this figure it is clear that 
equation (7) can be factored in two different ways depending on the relative magnitudes 
of E and V,. Besides the real positive root pO, equation (7)  may have: (i) for E 6 V,, two 
complex conjugate roots and (ii) for E > V,, two negative and different real roots. The 
case E s V, includes the particular value E = 0 studied by Rau (1979). Now, since we 
know the nature of the roots of equation (7) for any value of E the integrand in equation 
(8) can be factored accordingly. The resulting integrals are trivial elliptic integrals. 

...... * 
9 

Figure 1. Coulomb plus magnetic potentials as given by equation (5) (Coulomb field: . . . ; 
magnetic field: - - - ; sum: -). For E > V, the three roots of E -. V ( p )  = 0 are real and 
different. For E 6 V, one root is real and the other two are complex conjugate. 

For E s V, equation (8) can be written as 

where a, b and po are obtained from the solution of equation (7), namely, 

8E 8e2  
M" MU 

-p  + y p + - - = (  2 - p o - p ) [ ( p  - b)'+ a'] = 0. 

Since the above polynomial does not contain a second-degree term it follows that 
b = - p 0 / 2 .  The integral in equation (9)  can then be easily evaluated in terms of 
complete elliptic integrals. The result is 

-1 
- = = U -  dE T(po(AB)-1'2 [ - 2 B K ( k )  + ( A  + B ) l l ( a 2 ,  k)]) 
dn 2 A - B  

where 

A 2  = (9pz+4a2) /4 B 2 =  ( p i + 4 a 2 ) / 4  

a2 = - (A - B ) 2 / 4 A B  k 2  = [ p i  - ( A  - R) ' ] /4AB 

and where K ( k )  and II(a2, k j  are the complete elliptic integrals of the first and third 
kind, respectively (Byrd and Friedman 1975). 
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For E > V, equation (7) factors as 

8E 8e2  
M u  M u  -P + - 3 P  + 7 = ( P o - P ) ( P  - c ) ( P  -4 

where d < c < 0 <po (see figure 1). It then follows 
-1 

1/2) 
P dP 

dn [ P ( P o - P ) ( P - c ) ( P - d ) l  

where kZ = [(c - d ) p o ] / [ - d ( p o - c ) ] .  
Equations (11) and (13) are the main results of this letter. The elliptic integrals in 

these expressions can be very easily and accurately calculated with the algorithms of 
Carlson (1979). 

It is not difficult to see that when E = V, the complex conjugate roots have zero 
imaginary part (a  = 0 in equation (10)) and the integral of equation (9) reduces itself to a 
pseudo-elliptic one. In this case the spacing can be written in terms of elementary 
functions and simplified to 

(14) 
d E  
- = f i ~ ( 3 + 3 ~ ’ ~ ) / 4 =  1.183hu. 
dn 

The values E = V, and E = 0 are the only ones for which equation (9) can be reduced to 
pseudo-elliptic integrals. 

Figure 2(a) shows the energy spacings of the quasi-Landau resonances as obtained 
from equations (1 1) and (13) above. In this figure the spacings were calculated for the 
same field values as Starace (1973). Note, however, that Starace considered the case 
T = 1 while we are presently assuming T = 0. As is easy to see from figure 2 the spacing 
of 1.5fiu at E = 0, first obtained for T = 0 by Edmonds (1970) and O’Connell(1974), is 
reproduced here. By comparing figure 2(a) with figure 1 of Starace it is easy to see that 
although the T = 1 and T = 0 models are very different (the presence or not of the 
centrifugal term) they predict roughly similar spacings for E > 0. We also calculated the 
spacing for negative energy valbes. These are shown in figure 2(b). It is interesting to 
observe the crossing over of the constant B lines and that the energy spacing increases 
as E decreases. These conclusions agree with O’Connell’s semiclassical treatment (see 
his equation (9)). 

In figure 3 we give the spacing of the quasi-Landau resonances, for arbitrarily fixed 
energy values, as a function of the magnetic field. In this figure we see the asymmetry of 
the spacing with respect to the E = 0 line. 

In the present letter we derived analytic expressions for the spacing of the quasi- 
Landau resonances within the first-order WKB approximation. The expressions are 
valid for a m = 0 spinless electron moving in the z = 0 plane, as usual. The expressions 
extend the work of Rau out of the E = 0 case. By studying the behaviour of the spacing 
as a function of the energy we found a crossing over at negative energies for any pair of 
B fields. Finally we observe that similar expressions to ours have been derived by 
Akimoto and Hasegawa (1967) and that their results are incorrect. From their 
equations (4.2), (A.16), (A.17) and (3.2) one finds dE/dn = hu/2g(t). When E = 0, 
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Figure 2. Plot of the energy spacing dE/dn against energy E for B = 10,17,25,32,40 and 
47 kG. Both dE/dn and E are in units of the cyclotron energy ho = ehB/Mc. ( a )  
Behaviour above the ionisation limit (E=O); (6) crossing over at E = O .  Note the 
asymmetry at negative energies. 
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Figure 3. Plot of the spacing of the quasi-Landau resonances against magnetic field B for 
E = -10, - 5 ,  0, 5 and 10 in units of hw. 
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according to their equations (A.3) and (A.8), t = 1 and from (A.18) follows g(l.O)= 
0.5994 giving dE/dn = 0.8342hw which is incorrect. 
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