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Abstract. Simple analytical expressions for the spacing between the quasi-Landau reson- 
ances are derived in a first-order WKB approximation. The expressions are valid for any 
value of the magnetic quantum number and cover the whole energy range. In addition, 
several aspects of the effect of the magnetic quantum number on the spacing of the 
quasi-Landau resonances are discussed. 

In a recent paper (Gallas and O’Connell 1982, hereafter referred to as I) analytical 
expressions for the spacing between the so called quasi-Landau resonances were 
derived. The spacing was obtained through a first-order WKB approximation consider- 
ing the spinless electron as constrained to move in the z = 0 plane. (For details see 
I and the review article of Garstang 1977; the present status of the field is discussed 
by Gay 1980.) In I the magnetic quantum number of the electron was assumed to 
be m = 0, which means that the centrifugal barrier present in the WKB model is 
neglected. This previous work is now extended by taking the centrifugal barrier into 
consideration and quantitatively studying the influence of the magnetic quantum 
number on the spacing. This extension is motivated in part by the different Ansiitze 
used by experimental groups in interpreting their observations (Economou et a1 1978, 
Fonck et a1 1980, Gay et a1 1980). 

As discussed in I, the electron of mass M ‘sees’ the potential 

h 2 T e 2 1  2 2  
V ( p ) = - 7 - - + - M w  p 

2 M P  P 8 
where w = eB/Mc, B being the magnetic field; T is a known function of the magnetic 
quantum number m. The Langer-transformed Schrodinger equation gives T = m2,  
However, the expressions for the spacing to be derived here will not depend on any 
particular functional relation between T and m. 

Following I,  we plot in figure 1 the potential of equation (l), emphasising the 
points of interest for us here. For this potential the quantisation rule is given by 
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I l T = O  
Figure 1. Coulomb plus magnetic potentials as given by equation (1). 

where p = 8E/Mw2, q = 8ez /Mw2 and r =4h2T/(Mw)z, E being the energy of the 
electron including the paramagnetic shift -mAw/2. Under the usual assumption that 
E is a differentiable function of n, the spacing can easily be obtained from equation 
(2): 

p2 -1 

(-p4 + p p 2  + q p  - r)-’” p dp) 
d E  -=hw; (  I,, 
dn (3) 

In what follows we assume T s O  since this interval contains all functional relations 
T = T ( m )  hitherto used to fit the experimental data. The case T = 0 was considered 
in I. 

From figure 1 it is easy to see that for any energy value such that E> Vo the 
polynomial in parentheses in equation (3) will always have two real and positive roots, 
say p 1  < p2. The nature of the other two roots depends on the relation between E 
and Vc: for E > V, they are real, negative and different, say d < c < 0, and for E s V, 
they are complex conjugate numbers. All roots are found by solving the equation 

-p4+ p p 2 + q p  - r =  (P - P l ) ( P Z - P ) [ ( P  - b 2 )  +aZ] = 0 (4) 
when E < V, (b  and a are, respectively, the real and imaginary parts of the complex 
conjugate roots), or 

- p4 + PP’ + q p  - r = ( p  - p 1 ) ( ~ 2  - PI (P - c) (P - d )  = 0 ( 5 )  

when E > V,. Using these definitions the integral in equation (3) can be shown to be 
(i) for Vo< E s V,: 

where 

A2 = (pz - b)’+ U’ B2 = (p1- b ) 2 + a 2  

k 2  = [ (pz -pi ) ’  - ( A  - B)’]/4AB = - ( A  -B)’/4AB 

and where K ( k )  and rI(a2, k )  are the complete elliptic integrals of the first and third 
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kinds respectively (Byrd and Friedman 1975), and 
(ii) for E> Vc: 

where k 2  = [ (PZ -PI) (C - d ) l / [ ( ~ ~  - C)(PI - 4 1 .  
Equations (6) and (7) give the spacing of the quasi-Landau resonances for any 

T b 0. For the particular case T = 0 they reduce to the previously reported results 
(Gallas and O’Connell 1982), as expected. 

Before proceeding, we discuss in this paragraph the effect of the magnetic field 
upon the quantities V, and Vo. When T = 0 it is clear from equation (1) that Vo + -00, 

independently of the applied magnetic field, and that V, = ( 2 7 M o ~ ~ e ~ / 3 2 ) ” ~ .  When 
T > 0 it is always possible to make the difference V, - Vo arbitrarily small by increasing 
B sufficiently. However, as long as the Coulomb term is not neglected, Vc- VO will 
always remain greater than zero. For not too high T values, say T < 15, VO will be 
greater than zero whenever B >Bo, Bo - lo6 kG. For fields currently available in 
laboratories one has B << Bo and, for fixed T, Vo is practically independent of the 
magnetic field, The energy levels of the model described by equation (1) at very high 
B fields were recently discussed by Kara (1981) and Kara and McDowell (1981). 

In numerical applications of equation8 (6) and (7) we calculated the elliptic integrals 
using the accurate and efficient algorithms developed by Carlson (1979). The positive 
roots p1 and p2 were calculated by the well known Newton method: using lo-’ and 
lo4 as trial values for p1 and p2 respectively, the roots always converged within four 
or five iterations to accuracy. From the polynomials in equations (4) and (5) it 
is easy to see that by defining X = -(pl +p2)/2, Y = p1p2-4/(Xo2)>0 and the dis- 
criminant D = X 2  - Y it is always trivial to know if a given energy is above, below 
or at V,. For D > 0, E > V, and the other two roots are c = X + D 1 l 2  and d = X -D1/’, 
For D s 0, E s V, and it follows that b = X and u 2  = -D. When D = 0, we are exactly 
at E =  V,. Since one always has to find p1 and p2, these last remarks considerably 
simplify the computation of dE/dn by avoiding the explicit need for determining V,. 

Using equations (6) and (7) above with T = 1, we computed and plotted the spacing 
for the same field values as were previously calculated numerically by Starace (1973) 
and plotted in his figure 1. To visual accuracy both figures are identical. The effect 
of the magnetic quantum number on the spacing can be seen in figure 2(u), where 
for T = 0 and T = 100 we have plotted the spacing as a function of the energy for 
the magnetic fields typically used in experiments. Since T = 100 gives m = 10 (assum- 
ing T = m2) ,  one sees that the effect is not very big. In particular, the use of T = (m + i)’ 
(Economou et a1 1978), T = m2 (Fonck et a1 1980) or T = (Iml +4)2 (Gay et a1 1980) 
for low m values and for fields between 10 and 50 kG will give essentially the same 
result. The quantitative difference can be inferred from figure 2(b). In this figure one 
also observes ‘degeneracy’ at the ionisation limit (E = 0): for T = 0 all the curves cross 
at 1.5 hw independently of the magnetic field. In figure 2(c) we show in even more 
detail the region where the T = 100 curves cross. This clearly shows that for T # 0 
the above mentioned ‘degeneracy’ is ‘removed’ with every pair of curves crossing at 
different E and dE/dn values. 

Figure 3 shows the effect of T, as a function of the magnetic field, on the spacings. 
It is interesting that the asymmetry with respect to the dE/dn = 1.5 hw line observed 
in I can even be reversed for high enough T values. 
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. .  . 

Two cuts of the hypersurface dE/dn =f(E,  B, T )  are shown in figure 4. For 
constant energy the T dependence becomes more important as B increases. For 
constant magnetic field the effect of T becomes more pronounced as the energy 
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decreases. For values typically used in experiments, figure 5 gives more detailed cuts. 
Note the different vertical scales. Comparing the slopes of figures 5(a) ,  ( b )  and ( c ) ,  
one sees that the effect of T becomes more important for the combination B increasing 
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Figure 3. Spacing of the quasi-Landau resonances as a function of the magnetic field for 
E = -10, -5,0,5 and 10 in units of hw and for T = 100 (full curve) and T = 0 (dotted curve). 
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Figure 4. Two cuts of the hypersurface dE/dn =f(E ,  B, T). 
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Figure 5. The spacing against T for B = 10, 17, 25,  32, 40 and 47 kG. ( a )  Below the 
ionisation limit; ( 6 )  at the ionisation limit and (c) above the ionisation limit. 

and E decreasing. It is interesting to note the convergence around T = 800 (m = 28) 
in figure 5(a) .  

As a final remark we observe that the quantisation rule itself (equation (2)) can 
be analytically integrated. This result will be reported elsewhere. 
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