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LETTER TO THE EDITOR 

Zeeman diamagnetism in hydrogen at arbitrary field strengths 
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$ Instituto de Fisica da UFRGS, 90000 Port0 Alegre, Brazil 

Received 2 December 1985 

Abstract. The non-relativistic energy spectrum of the ground state of hydrogen-like atoms 
in magnetic fields of arbitrary strength is investigated by using variational functions. We 
present four- and five-parameter functions which produce energies almost as good as the 
best ones available in the literature. 

In a recent article (Gallas 1985; hereafter to be referred to as I) it was proposed that 
a convenient basis for studying properties of hydrogenic systems in the presence of 
strong magnetic fields (i.e. the quadratic Zeeman effect) is one formed with functions 
of the generic type 

+(5, 77, cP)=Jexp(*imcP)f(5, 77) exp[-3(a5+brl+c577)1 (1) 

where 6, 7, cp are parabolic coordinates, f(5, 7) = I ; ~ = = o d , [ ’ ~ J  and a, 6, c and d, are 
convenient variational parameters. The main advantages advocated for such a basis 
were that it is exact at both the Coulomb and Landau limits and that it allows all 
matrix elements needed in the calculations to be conveniently represented in terms of 
a single integral. Using f(5, 7) = 1, the ground state of hydrogen was investigated in 
I where it was determined that, for that case, a = b. The motivation and difficulties in 
the study of the quadratic Zeeman effect (the ‘last’ unsolved problem of atomic physics) 
have been discussed recently in a number of review papers, for example by Kleppner 
et al (1983), Gay and Delande (1983) and Clark et a1 (1984). 

The purpose of this letter is to report the results of an investigation of the conver- 
gence properties of the basis proposed in I. To this end, we will now study the ground 
state of hydrogen using as the trial function 

+(e, 77) = .rr-1’2”, 77) e x p { - h ( 5 +  7)+ @ - / I )  

f(5377) = 1 +At+ 77)+ 4577 + S ( t 2 +  77. 

(2a)  

(2b) 

where 

Altogether this trial function contains five variational parameters: a, c, p ,  q and s. As 
we will see, (2) is able to produce remarkably accurate results that come very close to 
the best ones available in the literature. 

Following I, the Hamiltonian of the problem is written as 

H =  -lv2-zr-*+L 2 SY 2 b 2 + Y 2 )  (3) 
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and, correspondingly, the total energy is given by 

E = K + C + Z  
where 

K = -&(V2) 

c = -Z( I - 1 )  

z = p ( X 2 + y 2 ) .  

As usual, the magnetic field strength y is measured in units of 2.35 x lo9 G. Now the 
energy can be expressed as a function of the variational parameters and of the integral 

(see I for details). Writing 

N P 2 =  uo+voY 

K= N 2 ( u 1 + v 1 Y )  

C = Z N 2 ( u 2 + v 2 Y )  

Z = $ y 2 N 2 ( ~ 3 + 0 3 Y )  

we find 

2Pq 4PS 4P 
2 ~ 2  (2a2- c) +- (2a2+ 3c) +- (2a4+ a2c + 3c2) +z 

a2c3 a4c3 a c  

- - ( a 2 + 4 c ) - - ( a 4 + 3 a 2 c - c 2 ) - ~  q2 4qs 2q 

U 0 -  a 3 c 2  

ac4 a3c4 ac 

4s2 4s 
-- (a6+2a4c  + a2c2-6c3) -- ( a 2 -  c) 

a5c4 a3c2 

vo=- 2P2 (2a2+3c)  -7 2Pq (2a4+7a2c+2c2)  -7 4PS (2a4+5a2c+ c’) 
C2 ac ac 

-2p (2a2+ c)  +T q2 (a4+6a2c+6c2)  +T 4qs (a4+5a2c+3c2)  
ac C C 

2q 4s2 4s 
+T ( a 2 +  2c) +? (a4+4a2c + 3c2) +> ( a 2 +  c) + 1 

C C C 

p2 2pq 6ps p q2 2qs 4s2 2s 1 u1 = ?+-+-+- -- - -+- (a2+ 3c) +,+- 
a a2c a4 a2 ac2 ac2 a5c a 2a 

2PS q2 2qs 4s2 
ac a c  C2 C 

U, =p2-- 2 ’q ia2+c)+-+- l (a2+2c)+- (a2+~c) - - -2s  

---+- 4p2 4 p q + 8 p s ( a 2 - c ) - - ( a Z + 2 c ) - -  q2 4qs ( a 2 + c )  
a2c ac2 a3c2 a2c3 a2c3 2 -  

2q 4s2 4s 1 
(a4  + 3c2) -- -7 

a2c a4c3 a2c a 
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2P2 4P9 8PS g2 u 2 = -  ( 2 2 +  c) -- (a2+2c) -- ( a 2 + c )  -4p+---j ( a4+4a2c+2c2)  
ac C2 C2 ac 

4qsa 29 4s’ 4sa c +- ( a 2 +  3c) +- ( a2+  c) +, ( a4+ 2a2c + c’) +-+- 
c3 uc ac c a  

u 3 =  - - (2a4+7a2c-c2)+-(2a4+13a2c+8c2) 2P2 2P9 
u3c4 a2cs 

4PS 
a4cs 

2P g 2  
a2c3  ac 

u3c6 

+- ( 2 d +  l1a4c+3a2c2+3c3) 

+- (2a2+3c)  -7 (a4+ 10a2c+ 18~’) 

-- 4qs (a6+9a4c+12aZc2-2c3) 

29 4s’ 
ac4 a5c6 

a3c4 ac 

- - ( u * + ~ c ) - - ( u * + ~ u ~ c + ~ u ~ c ~ + ~ u ~ c ~ - ~ c ~ )  

4s 1 
-- ( a4+ 3a2c - 2)  -7 

2P’ 2P9 
C acs 

u3 = 7 @a4+ l l a 2 c + 9 c 2 )  -- (2a6+ 17a4c + 30a2c2+ 6c3) 

2P 
uc5 ac 

9’ 495 

29 4s2 

- 9 ( 2a6+  1 5a4c + 2 1 a2c2 + 3 c3) - ---j (2u4+ 7a2c + 2 2 )  

+: ( a 6 +  1 2 ~ ~ ~  + 36a2c2+ 2 4 ~ ~ )  +? ( a 6 +  1 l a4c+28a2c2+  1 2 ~ ~ )  
C C 

+: ( a 4 + 6 a 2 c  + 6 c 2 )  +T (a6+ 10a4c+ 23a2c2+ 12c3) 
C C 

(13) 
4s 1 +: (a4+ 5a2c + 3 2 )  +? ( a’+ 2c). 
C C 

Table 1 shows the effect of various possible combinations of the variational para- 
meters p, g and s on the energy. From this table one sees that by adding a variational 
parameter to the trial function one roughly obtains a further correct digit in the energies. 
By taking q = 2s the trial function of (2b) is reduced to 

f(5,77)= 1 + P ( 5 + d + S ( 5 + d 2 .  (14) 

f ( 5 9 7 7 )  = 1 + P(5 + 7 7 )  + 9577 (15) 

produces much better results than (14). Note that 5+ 77 is proportional to the radial 
distance between the particles ( r  = ((+ 77)/2) while (77 = x ’ f y ’ .  Therefore the vari- 
ational method favours linear terms in the variables appearing in the Hamiltonian (3). 

In table 2 we compare some of the most accurate results for the binding energies 
available in the literature with those obtained from our equation (4) by minimising 

Table 1 shows that 



L218 Letter to the Editor 

Table 1. Effect of adding various parameters to the trial function when y = 1 (corresponding 
to a magnetic field of 2.35 x lo9 G) .  Energies are given in au. 

Number 
of variational 
parameters a C P 4 S E E ,  

2 1.032 38 

1.057 83 
3 1.341 00 

0.971 72 

1.119 99 
1.643 74 
0.995 71 
1.275 82 

5 1.449 55 

4 

0.231 865 0 

0.447510 0 
0.201 546 0.211 539 
0.236659 0 

0.234472 0.090 151 
0.197 279 0.304 330 
0.427285 0 
0.331 701 0.144 130 

0.286 066 0.215 446 

0 

0.159 864 
0 
0 

0 
2s 
0.119 866 
0.128 115 

0.160 118 

0 

0 
0 

-0.007 617 

-0.011 302 
0.068 535 

-0.006 830 
0 

0.023 407 

-0.329 558 

-0.330 523 
-0.330 641 
-0.330 715 

-0.330 798 
-0.330 866 
-0.330 875 
-0.331 122 

-0.331 143 

0.829 56 

0.830 52 
0.830 64 
0.830 72 

0.830 80 
0.830 87 
0.830 88 
0.831 12 

0.831 14 

Table 2. Comparison of the binding energies E,=;y-E (in au), obtained by iising 
equation (4), with very accurate results from the literature (see text). The magnetic field 
strength y is defined in units of 2.35 x lo9 G. SO, Surmelian and O’Connell (1974); sv, 
Simola and Virtamo (1978); WR, Wunner and Ruder (1982); LZ, Le Guillou Zinn-Justin 
(1983); s, Silverman (1983). 

Present results 

four five 
variational variational 

y parameters parameters SO sv WR LZ 5 

0.2 0.59038 0.590 38 0.5904 0.590 38 0.590 38 0.590 38 
0.5 0.697 20 0.697 20 0.6972 0.697 21 0.697 21 
0.8 0.782 25 0.782 27 0.782 28 
1 0.831 12 0.831 14 0.8312 0.831 17 0.831 16 0.831 16 
2 1.022 06 1.022 13 1.0222 1.022 1.022 21 1.022 21 1.022 23 
3 1.164 26 1.164 39 1.164 53 1.164 53 1.164 61 
4 1.280 42 1.280 59 1.280 80 1.280 87 
5 1.379 91 1.380 13 1.380 1.380 40 1.380 24 

10 1.746 86 1.147 22 1.748 1.7478 1.7478 1.7436 
15 2.006 77 2.007 21 2.005 2.0081 
20 2.213 80 2.214 31 2.2153 2.2154 2.2153 2.145 
25 2.388 29 2.388 83 2.390 2.3889 2.3900 
40 2.798 57 2.799 19 2.795 2.8009 
50 3.015 08 3.015 74 

100 3.785 90 3.786 62 3.780 3.789 3.7891 3.790 5.2 
200 4.721 82 4.722 51 4.690 4.727 4.7266 4.725 7.5 
3 00 5.354 38 5.355 00 5.285 5.3603 5.355 
500 6.248 68 6.249 16 

1 000 7.649 50 7.649 75 7.6621 7.64 13 
2 000 9.283 90 9.283 99 9.30 9.3045 9.27 7 
3 000 10.355 74 10.355 77 
5000 11.83453 11.83453 

10 000 14.081 67 14.081 67 
20 000 16.620 68 16.620 68 16.70 16.55 
50 000 20.450 78 20.450 78 
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four (a, c, p and q;  s = 0) and five (a, c, p ,  q and s) variational parameters. We briefly 
recall that the results of Surmelian and O’Connell (1974) were obtained from a 
variational calculation employing up to about 180 variational parameters. Simola and 
Virtamo (1978) used the adiabatic approximation together with an iterative, self- 
consistent, numerical determination of eigenvalues. Wunner and Ruder (1982) solved 
a system of Hartree-Fock-type equations. LeGuillou and Zinn-Justin (1983) used a 
‘suitable summation’ requiring, as input, coefficients of standard perturbation theory 
up to the 62nd-order and 27-digit arithmetics. Silverman (1983) used a ‘generalised 
Euler transformation’. Considering the relative sophistication of the aforementioned 
calculations, two points are noteworthy in our work: first, the energies are given in an 
analytical closed form; second, the numerical values obtained from (4) come very 
close to the best ones available. In particular note that our results (even with four 
variational parameters) are better than some of the results from the literature. Compar- 
ing our variational calculations with four and five parameters one sees that s is basically 
zero at both Coulomb and Landau limits, attaining its maximum value (for the cases 
shown in table 2) at y = 100 when a = 3.611, c = 49.06, p = 1.257, q = 5.893 and s = 
0.2757. In this case K = 26.947 54, C = -5.121 14 and Z = 24.386 97. 

In conclusion, the factors exp[ - ;( a[ + bv + c t q ) ]  do indeed accelerate convergence 
in energy calculations of hydrogenic atoms in arbitrarily strong magnetic fields. The 
results reported here have stimulated us to calculate more strict bounds for the binding 
energy than reported in table 2. We hope to be able to report these soon. 

The work of our group is being partially supported by the Brazilian Research Council 
(CNPq) through grant 40.6917/84-FA. PCR is on leave of absence from the Departa- 
mento de Ciencas Exatas da FEJ-uDESC, 89200 Joinville, Brazil. 

Note added inprooJ By ‘scaling’ the variational parameters according to c = a2E,p = a@, q = (aE)2i,  s = 
and noting that 

one may considerably simplify our equations (5)-(10). This makes the numerical work more efficient and 
stable. The expression for the energy may contain more than one stable minimum. Some of the energies 
in table 1 do not necessarily need to be the absolute minimum. However, the ordering in the table is always 
maintained. 
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