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Abstract. We describe the structure of the parameter space
of a ring cavity according to a model due to Ikeda. We show
how families of isoperiodic solutions in phase space orga-
nize themselves in parameter space: The parameter space
of a ring cavity contains an infinite number of regularly ar-
ranged self-similar shrimp-shaped domains of stability. The
regularities found for the ring cavity have the same generic
arrangement observed for a canonical quartic map depend-
ing on two parameters. We explain the mathematical origin
of the regularities and discuss a number of questions related
to them in both discrete-time and continuous-time models,
and suggest a possible way of cleaning chaos from some
laser systems.

PACS: 42.50.Md; 05.45.+b

A result that solidified during the last few years as being a
fundamental truth pervading all natural sciences is that even
simple deterministic models can exhibit chaotic behaviors
which are essentially indistinguishable from truly random
processes. One immediate consequence of this is that the
distinction between deterministic and stochastic effects be-
comes a rather delicate matter and their mathematical de-
scription not necessarily unique. Thus, it seems appropriate
to reconsider well established subjects which rest upon spe-
cific mathematical formulations, either “stochastic” or “de-
terministic”, seeking for a more unified description.

The ability of generic dynamical systems to display
rather complicated behaviors has been known at least since
last century when Poincaré described the existence of “ho-
moclinic” phenomena while studying questions related to the
stability of a well-known dynamical system in Celestial Me-
chanics: the solar system. Since then, there has been always
a considerable interest in investigating and classifying all
flavors of dynamical behaviors which are buried and delim-
ited by the so-called stable and unstable manifolds, i.e., by
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the multidimensional surfaces implied by the equations of
motion. This interest has experienced an explosive growth
during the last 20 years or so.

A great difficulty in studying the plethora of dynami-
cal behaviors living on the exceedingly complicated multidi-
mensional surfaces generated by physical models is caused
by the fact that variables and parameters appear always
deeply intertwined in practice and in any theoretical descrip-
tion. The traditional way of separating and classifying possi-
ble dynamical states is by, first, representing in phase-space
diagrams all possible behaviors and then, second, delimiting
in parameter-space diagrams all regions characterized by
similar properties of interest. While alone the delimitation
of all possible behaviors in phase space is not necessarily a
trivial task, complete diagrams in parameter space are fre-
quently harder to obtain because each individual point on
such diagrams is usually obtained studying a whole phase-
space diagram which might contain more than one dynamical
behavior, depending on initial conditions, for example.

This paper reports diagrams in parameter space classi-
fying dynamical behaviors for a model proposed by Ikeda
[1] to describe the dynamics of an externally driven ring
cavity containing a Kerr medium. By now, laser systems of
all kinds have been employed as powerful tools to probe
nonlinear dynamics in general and to probe the intrinsic dy-
namics of lasers [2]. We hope that the detailed diagrams
reported here might stimulate experiments to check the reg-
ularities predicted by the model of Tkeda as well as its limits
of applicability. However, the regularities being presently
reported were observed in several other dynamical systems
being therefore generic.

We wish to investigate the organization of islands of
periodic and aperiodic (“chaotic™) behaviors in dynamical
systems defined either by discrete-time or continuous-time
models, searching for similarities. We start in Sect.1 with
the discrete-time model of Ikeda, showing that the param-
eter space of the ring cavity contains a very regular struc-
ture, composed of certain “shrimp-like” islands of periodic-
ity.which appear embedded inside wide “seas of chaos”, with
an arrangement essentially similar to that recently found to
exist in different mathematical models [3]. Then, in Sect. 2,
we present a model that contains a parameter space analogon
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to the ring cavity but that has the great virtue of allowing
analytical results to be easily obtained for it. Exploring cer-
tain algebraic varieties underlying this model, Sect. 3 shows
that the whole organization found in parameter space is ruled
by some very special numbers which satisfy an algebra of
radicals implicit in (14) and (15) below. We also show how
a result already known to Euler provides a powerful means
of bypassing completely the necessity of studying the phase
space, allowing one to concentrate directly on the structure
and properties of the parameter space. In Sect.4 we inves-
tigate regularities in parameter space of a dynamical system
defined by a differential equation, the continuous-time model
defined by (23), showing that there one finds regular islands
of chaos embedded in seas of regularity. We then exploit the
regularity with which chaos appears to describe a possible
way of “cleaning” chaotic behaviors from laser systems. Fi-
nally, Sect.5 summarizes our conclusions and offers some
suggestions for further research.

1 Parameter space of the ring cavity

Under suitable conditions [1], the behavior of a ring cavity
may be described by the equation

z =a+bz Bii@(z;.)5 (1)

known as the Ikeda map [4-8]. In this equation, the complex
variable z; = x; + iy; represents the electric field at the
beginning of the ¢-th passage around the ring, a is related to
the input amplitude and b is the coefficient of reflectivity of
the partially reflecting output mirror. The quantity #(z;) is a
relatively complicated functional of the amplitude inside the
cavity. In the original formulation of Ikeda [1] one has

0(z) = |2112‘ (2)
while Hammel et al. [5] considered
6
B B — s 3)
L+ |2

A being the empty-cavity detuning and é an additional de-
tuning when a nonlinear medium is present. Here we will
consider the original model of Ikeda, (1) and (2). We observe
that the parameter space of the Ikeda map with 6(z;) = |z %,
(2), was previously considered by Carr and Eilbeck [7],
while that with (3) was recently studied in [9] in connection
with investigations of new phenomena due to the occurrence
of degenerate tangencies between certain manifolds.

As is known [2], the transmitted field in the ring cavity is,
in general, a multivalued function of the incident field. The
transmitted field might be either a periodic or an aperiodic
(“chaotic” or “turbulent™) function [1, 4-8] depending on
parameters and/or initial conditions.

Figure 1 shows several diagrams classifying parame-
ter regions characterized by producing similar periodicities
in the transmitted field. Each individual picture composing
Fig. 1 was obtained as a color PostScript bitmap by dis-
cretizing the corresponding parameter intervals into a mesh
of 600 x 600 equally spaced points and determining for each
point the periodicity of the asymptotic solution (attractor) af-
ter a transient of 800 iterations. Iterations were performed
along lines of constant reflectivity b, starting always at the

smallest input field-amplitude a from the arbitrary initial
condition zy = 0.001 + 10.001, discarding 800 iterations,
determining and plotting periodicities subsequently. While
determining periodicities along lines of constant b, the ini-
tial value z = z; was used only to start iterations at the
smallest value of a, say an, in each picture. To start itera-
tions for each newly incremented value of a we “followed
the attractor”, i.e., used the last value of z; obtained with
the previous value of a as the initial condition for the newly
incremented a.

All periods up to 24 were determined and are represented
in Fig. 1 by the different colors. Absence of numerically de-
tectable periodicities or periods longer than 24 were consid-
ered as “‘chaos” and plotted as white points in the diagrams.
In this figure, green regions correspond to period-one (fixed
points), dark-blue to period-two, light-blue to period three,
red to period four, violet to period five, etc. One sees that
adjacent to the wide green regions (period-one) one finds
the characteristic period-two doublings, represented in dark-
blue. Next, follow red regions indicating a new doubling
(to period four) and so on. Adjacent to every island char-
acterized by some period k one may recognize the first few
members belonging to full cascades k x 2", the “shrimps”[3],
seen more clearly on the lower part of figure. As is the case
with bifurcation diagrams, as the periodicity of the transmit-
ted field increases, there is a rather strong reduction of the
relative visible sizes of the parameter regions where families
of solutions having identical periodicities are stable.

Increasing the maximum period plotted in the figures to
32 or 64 produced pictures virtually identical under the reso-
lution of Fig.1. Notice that Fig. 1 is necessarily not complete
since for a given set (a, b) of parameters, even though there
might exist more than one stable solution for (1), it is only
possible to plot one of them at a time. This difficulty is
similar to the familiar one observed when plotting bifurca-
tion diagrams [10] but, as is frequently the case, does not
constitute any serious limitation.

Figure 1 displays a large number of regularities, the most
prominent being perhaps the shape similarity of the regions
corresponding to periodic motions and the regularity with
which they appear distributed in parameter space. Dominant
features are the shrimp-shaped clusterings of k x2" doubling
cascades that were also seen in the parameter space of the
Hénon map [3], their regular organization in parameter space
and the strong compression of their visible “volume™ as the
periodicity increases.

An important question (discussed in the next section) is
to understand the mathematical origin of all these regulari-
ties. Further, we would like to be able to predict where in
parameter space one will find shrimps of stability for any
arbitrary period k and to learn how to control the system so
as to permit “jumping’’ directly and precisely, theoretically
with a single move, from one region of stability to another,
either with the same or with different period. In other words,
to find the proper group of transformations underlying the
equation of motion that would allow one to move from one
isoperiodic region to another, precisely.
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Fig. 1. Parameter space for the ring cavity, showing isoperiodic islands (in colors) embedded in a sea of chaos (represented in white). Green indicates
period k = 1, dark-blue k = 2, light-blue k = 3, red k = 4, violet k = 5, etc. The two magnifications on the bottom show “shrimps™: clusters characterized
by a main periodicity k followed by an infinite sequence of adjacent bifurcations k& x 2™. To enhance visibility in these figures, black was frequently used

to represent regions of doublings 2k for high values of k

2 The origin of shrimps of stability

In this section, we describe analytically the mathematical
origin of the regular shapes observed in the parameter space
of the ring cavity as shown in Fig. 1. To this end, how-
ever, rather than working with (1) directly (which involves
a complex variable and trigonometric functions), we sim-
plify matters and consider a more convenient model that,
while still retaining the dynamical features observed in the
ring cavity, is considerably easier to deal with analytically.
This model is defined [11] by the equation

Tea1 = f(T1,0,b) = (@ — 77)* — b, 4)

where x; is a real variable and a and b are real and arbitrary
parameters.

It is important to observe that this model by no means
implies loss of generality. Quite to the contrary, since we
may frequently assume generic equations of motion as being
defined by expansions in Taylor series, the model defined in
(4) contains the three terms of lowest order in z7, i.e., non-
linearly in x; and, therefore, represents the most fundamental
model of nonlinear dynamics[12]. In some sense, the model
of (4) represents a sort of a “hydrogen atom™ of nonlinear
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Fig. 2. Isoperiodic shrimps for the quartic map defined by (4). The middle row shows the parity of the multipliers m (see Sect. 3) for the canonical k = |
shrimp (in green) shown with magnifications in the first row. Black indicates m < 0 and violet m > 0. The last row shows magnifications of portions of
the parameter space containing shrimps similar to those found in the ring cavity (Fig. 1)

dynamics: it contains all ingredients of arbitrary models but
is a convenient normal form allowing one to derive results
analytically.

Figure 2 shows parameter-space diagrams for (4). On the
row at the top one sees the “canonical” shrimp,i.e., that one
starting with the lowest possible periodicity: 1 x 2™. The
single region of period £ = 1 is represented in green, the
two adjacent regions with period k = 2 are represented in
dark-blue, the four regions with period 4 in red, etc. The
row in the middle of the figure shows the parity of multipli-
ers [11] for the same intervals of parameters as in the top
row. The multiplier corresponding to a k—periodic orbit zg,

Ly Loy

s, Ty = xp 18 simply the derivative of fi.(x,a,b),
the k—th composition of the function f(x;,a,b) with itself.
More explicitly:

my = f};(.‘r,a,b) o W|

= f'(zo) f'(x1) -+ f'(xx1) (5)
giving, when applied to (4),

T=Ty

T 4:1“.0(:1:(2, —a)- 43:1(:1:$ —a): - 4:I:k_l(:l:§__| -a). (6)

We say that the parity of my is positive when my; > 0
and negative when m; < 0. As one sees from Fig. 2, the
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Fig. 3. The algebraic varieties defin-
ing the first six periodic solutions of
(13), represented by the borders lines
between regions of different colors.
Colors codify the relative magnitudes
of each k-periodic solution as fol-
lows: yellow: uy > 0 and dj > 0;
black: u, > 0 and dy < 0; green:
up < 0 and dy > 0; white: up < 0
and di < 0. The scales shown apply

-1.0 a 3.0

multipliers expose the internal structure of each isoperiodic
domain. Multipliers show that each individual cell of stabil-
ity making the shrimp is divided into four quadrants, with
adjacent quadrants having different parities. As is easy to
recognize from (6), the lines delimiting regions of different
parity correspond to lines characterized by my = 0. Such
lines are known as “superstable” loci [13], loci which define

to all six figures

“centers” of stability inside each isoperiodic cell. From (4),
one sees that all m, = 0 loci in parameter space originate
from trajectories passing in phase space through at least one
of the zeros of the derivative of (4), namely, =; = 0, +y/a
or —/a. As one recognizes from the plots of the parity of
the multipliers, the fundamental quantities ruling the regular
organization of the parameter space are the “heads” of the
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Fig. 4. Boundaries of reality for period-two, k = 2, behavior as defined by (16) and (17). Note the particular signs which define the several segments
composing the superstable structure of period-two and which appear superimposed in the figure [see the case k = 2 in Fig. 3 and the text following (17)).
The scales shown apply to all figures. The “radical algebra” implied by this figure is discussed in [14]

regions of period k of every shrimp k x 2™. These heads are
defined by the unique parameter values existing inside each
isoperiodic region for which there is a true intersection of
both my = 0 loci, as explained below in the discussion of
Fig. 3.

We already had the opportunity to discuss the organiza-
tion of these regularities elsewhere [11]. Here, without going
into too much technical details that will be provided else-
where [14], we would like to summarize briefly a new result
defined in (14) and (15) below: The origin of the beautiful
mathematical mechanism that is at work in distributing priv-
ileges to very particular “noble” points in parameter space,
points which are infinite in number and around which one
invariably finds nucleation of stability. The key is provided

by certain twin numbers (a,b) from which, invariably, four
different superstable legs (i.e., loci along which my = 0)
emanate.

In parameter space, one finds two distinct classes of func-
tions, more precisely distinct affine algebraic varieties, defin-
ing superstable loci:

(i) The unique class Uy = fr(xz; = 0,a,b) determined by
k—periodic orbits passing in phase space through the
zero of the derivative at x; = 0,

(i) The degenerate class Dy = fi(z; = *++/a,a,b) de-
termined by k—periodic orbits passing in phase space
through either one of the two remaining zeros of the
derivative: z; = ++y/a or z; = —/a.



For example, as easily determined from (4), the first three
(of the infinite) members in each class are

Uy =a®-b, (7
0 =la 1o — bF]" — B, (8)
Us = {a —[a — (> — b)*)> - b}* - b, ©)
and

D; = —b, (10)
D; =(a — b*)? — b, (11)
D; = [a — {(a — *)* — b}*]*> —b. (12)

Now, the fact that the zeros of the derivative are them-
selves periodic points living inside each cell composing the
shrimps implies that for every k = 1,2,... one must have
the following equations containing the locations of the noble
points (a, b) in parameter space:

Ug,=0 and Dy = +/a. (13)

Figure 3 shows all solutions (which are superstable loci,
by construction) of the first six equations implied by U}, =
0 and D, = ++/a. For k = 1, it follows from U; = 0
that @ = +/b and from D, = +./a that b = ++/a. These
four branches are exactly those emanating from the twin
number (a, b) = (0, 0), the head of the canonical period-one
shrimp plotted in green/dark-blue/red/- - - in Fig. 2. The other
“intersection”, the “tail” located in (1, 1), is only apparent,
an artifact of projecting the full dynamics on the parameter
space. In fact, the branches b = ++/a and a = +v/b live in
different quotas z, i.e., in different Riemann sheets in the
full space (zx,a,b), the space where the surface containing
the complete dynamics is defined. The only real intersection
of the four branches a = £v/b and b = £+/a occurs at (0, 0).
For k = 2, two new intersections (twin numbers) appear, as
may be recognized from Fig. 3. For k = 3, there are five
new intersections, and so on. As k increases, the number of
intersections and of the parabolic superstable loci containing
them literally explodes. As already seen for £ = 4, even
the relatively high resolution of 400 dots-per-inch used to
plot the figures is not enough to resolve the high density
of parabolic arcs, with some of them appearing (incorrectly)
as dotted lines instead of continuous curves. Of course, this
only means that the resolution limit of the printing device
was reached. Dotted legs of the shrimps are not real effects,
neither here nor in any other figure shown in this paper.

Studying both equations Uy, = 0 and Dy, = ++/a it is not
difficult to realize that the noble intersections that we seek
are invariably defined by a class of very symmetrical twin
numbers that solve simultaneously selected pairs with fixed
sequences of signs from the following set of twin equations:

r}.=:i:\/b:t\/a:|: bt+vat---, (14)

b::{:\/a:i:\/b:t\!ai\/bﬂ:--v, (15)

where the number of radicals in each sequence is the same
and is related in a simple manner to the periodicity k of each
cell composing the shrimps. From (14) and (15), one clearly
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sees that the heads of periodic shrimps are always necessar-
ily defined by algebraic numbers, i.e., by finite sequences
of radicals, while shrimps of aperiodic behavior must neces-
sarily have their heads defined by rranscendental numbers,
i.e., by infinite sequences of radicals. Equations (14) and
(15) define necessary conditions, “tunneling conditions”, for
pairs (a, b) to be heads of cells of stability: for a fixed combi-
nation of signs, a and b must be simultaneously invariant to
the operations indicated by the sequence of radicals in both
equations, i.e., they must remain the same numbers after tun-
neling through all radicals.

As an illustration of the algebra of radicals implied by
(14) and (15), Fig.4 shows the location of all superstable
branches and heads of stability for period-two motions. In
this case, we have to look for all pairs (a,b) which remain
invariant while tunneling simultaneously through some com-
bination of signs for all possible radicals defined as follows:

quaj:Ub:t\fa.;t\/f_Jzﬂ (16)

and

d=b+ti/at/bt/a=0. a7

In Fig. 4, for every possible combination of signs [as defined
in each figure and ordered in the same sequence as the signs
appear in (16, 17)] we abbreviate by v = v, + iv; the value
of either one of the complex numbers u; or d, (as also
indicated in each figure) and use the following convention
to paint every point, “pixel”, in parameter space:

black when v, > 0and v; =0,
white when v, <0 and v; =0,
blue when v, > 0andv; >0,
yellow when v, > 0andv; <0,
violet when wv.<0anduv; >0,
green when wv.<0andwv; <O.

To facilitate the analysis, we added to Fig. 4 the skeleton
corresponding to all superstable loci of period-two, painting
them white when appearing against a black background or
painting them black otherwise. From this figure, one may
directly read the physical solutions to (16) and (17) as well
as the proper combination of signs composing their parts.

3 How to bypass the space of variables

In Sect. 2 we obtained analytical expressions for the equa-
tions defining all superstable loci for (4) by considering two
particular families of functions, Uy and Dy, which were
generated by iterating the equation of motion in phase space
from very special initial conditions, “critical points”, defined
by zeros of the derivative of the equation of motion. In
this section, we show that, although such procedure is the
standard one used today, at least in the case of polynomial
equations of motion, it is possible to completely avoid hav-
ing to work in phase space. This fact is not without interest
since it not only allows one to greatly simplify and abbrevi-
ate the analysis but, much more importantly, allows one to
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obtain analytical insight. By totally bypassing the space of
variables we transform into an exercise in the theory of al-
gebraic functions a subject that, after Poincaré and others, is
currently dealt as a problem in topology. Since the number
of dynamical systems with equations of motion that may be
represented by polynomial series is not small, the procedure
to be described here may be applied to a quite large number
of physical situations with great advantage. Anyway, even
though the method described in the next paragraph might
be simple, the results that it generates are complicated and,
at least, very different from what one is used to find in the
literature.

As shown in Sect.2, to locate the points of interest in
parameter space, one has to deal with a set of two equations:

&= 1elz. a.b), (18)
M = f;(Iaa:b): (]9)

where k represents the period of the solution [11]. The first
equation defines the solution, while the second defines its
multiplier, i.e., its stability [13]. To avoid having to con-
sider the dynamics in phase space, all that needs to be done
at the outset is to eliminate the variable = between both
equations. For polynomial equations of motion this can be
done following a procedure already known to Euler (1707—
1783), namely, by calculating the resultant [15] between
both polynomials.

For example, to determine the location and stability of
period-one solutions (i.e., fixed points) for (4), from (18)
and (19), one obtains the system

a?—b—z—2ax+z*=0, (20)
—m —4daz+1° =0, (21)

where, for simplicity, we wrote 'm = m,. The resultant of
these two equations is given by the determinant of a 7 x
7 matrix and leads to the following surface in the space
(a,b,m):

m* — 12m® + (48 — 32abym? + 64(ab — Dm
~256(c — "N a” =ty = 0. (22)

In this way, without having to consider any sequence of it-
erates in the space of variables, one obtains an analytical
expression for a surface defining, among other things, the
boundaries of stability of period-one solutions. A particu-
larly relevant portion of this surface is the slice of stability
delimited by —1 < m < 1. For m = 0, the “center” of the
interval of stability, one easily recognizes in the last term
of (22) the relations defining the period-one loci of super-
stability: @ = +v/b and b = ++/a, clearly reproducing the
solutions of lowest order contained in the general expres-
sions in (14) and (15) and plotted in Fig.3. By studying
solutions for m = —1 and for m = 1, one delimits the full
interval of stability for period-one solutions. The period-two
surface is defined by the determinant of a 31 x 31 matrix. In
principle, analogous surfaces forming an infinite affine alge-
braic variety may be obtained for motions of any periodicity
but we will not elaborate this any further here [14].

We conclude this section observing that, as i1s well-
known, it is possible to encode and study dynamics using
sequences of symbols, the so-called “symbolic dynamics™.

The traditional approach in this field is to consider the dy-
namics in phase-space, codifying solutions with symbols
like, L(eft), R(ight), etc. The sequences of signs in (14)
and (15) open the possibility of an alternative characteriza-
tion, an “algebra of radicals”, based totally in studying the
dynamics directly in parameter space, a procedure which
expedites considerably the investigation of questions related
to the stability of dynamical systems in general and allows
one to relate the sequence of signs in (14) and (15) with
the number and ordering of jumps between Riemann sheets
[14]. As was shown in this Section, (14) and (15) are intrin-
sic properties of the dynamical systems, consequences of the
dynamics, and might be derived without any knowledge or
reference to what is going on in phase space.

4 How to clean chaos from driven systems

So far, we have considered only discrete-time dynamical sys-
tems and found that they are characterized by regular repeti-
tions of isoperiodic shrimp-like regions embedded in seas of
chaos. But, is it possible to have the opposite: similarly look-
ing islands of chaos embedded in seas of regularity? And,
if yes, is it possible to clean such islands of chaos from
physical systems? The answer to both questions is affirma-
tive as we now demonstrate. To this end, we will consider
a continuous-time dynamical system, i.e., a system with its
motion defined by differential equations, not discrete-time
mappings.

Regular distributions of islands of chaos may be found
in continuous-time models and seem to be relatively com-
mon features of such models. And, what is important from
the point of view of practical applications, we find that ir
is possible to clean chaos from wide regions in parameter
space by driving the system properly with periodic forces
having Fourier spectra more complicated than that of fa-
miliar trigonometric drives. To see this, we consider what
happens to, for example, a Duffing oscillator [16] when ex-
cited with the Jacobian elliptic function cn(t, 1), namely, to
the equation

F+at+z =b-cn(t,m), (23)

where a, b and m are free parameters, m being now the
standard notation for the parameter of elliptic functions [17]
and having nothing to do with the multipliers of Sect. 3.
Figure 5 shows the wave form and the period of the
function cn(t, m) for some values of m. The parameter m
provides a convenient way of moving continuously from the
familiar trigonometric pumping, when cn(t, m = 0) = cos(t),
to a “hyperbolic pumping”, when cn(t, m = 1) = sech(t). For
m values in the range 0 < m < 1, one has “intermediary”
pumpings with rich and regular Fourier spectra [17]. From
Fig. 5, one clearly sees that changes in m modify simultane-
ously both the wave form and the period of the oscillations.
As is known, one may use Lyapunov exponents [18] A
to produce a dichotomic division of the parameter space
into regions where there are either chaotic behaviors, char-
acterized by A > 0, or periodic behaviors, characterized by
A < 0. The determination of Lyapunov exponents for differ-
ential equations is a quite computer-demanding task, and to
obtain numerical values for exponents over a wide range of
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Fig. 5. Modifications of the wave form and periodicity of the elliptic func-
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wave form and the period of the drive. The period of en(t, m) is 4K (m)
[17]

parameters, we used a fourth-order Runge-Kutta integrator to
solve (23) together with up to 140 nodes in parallel, “farm-
ing”, of an Intel Paragon XP/S 10, a scalable distributed
multicomputer. Each of these nodes contains two 1860 XP
microprocessors (application processor, message processor),
whose clock speed is 50 MHz, and 32 MB of memory. The
theoretical peak performance of the 1860 XP is 75 MFLOPS
(64-bit arithmetic). In other words, sets of exponents were
computed in parallel by an array of up to 140 workstations,
each one computing exponents for a slice of the parameter
space.

Figure 6 shows Lyapunov exponents obtained for m = 0,
1.e., under the familiar trigonometric excitation, representing
with black those parameters characterized by positive expo-
nents (chaotic behaviors) and with white those characterized
by non-positive exponents (periodic behaviors). From Fig.6
one easily recognizes the surprising existence of recurrent
“islands” of chaotic behaviors embedded in “seas” of peri-
odic behavior. As seen in Fig. 6, another interesting fact is
that both the islands as well as their internal seas of periodic
behaviors are very much similar to each other. In fact, all
these islands of chaos seem to have a common underlying
shape, the difference between islands being apparently only
the “stretchings” that one needs to apply parallel to the a-
and/or b- axis to make them congruent to each other. There-
fore, as the amplitude of the trigonometric pump increases,
we observe a well-defined regular repetition of self-similar
islands of parameters for which one finds similar chaotic be-
haviors in phase space.
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Fig. 6. Approximately self-similar islands of chaos (in black) embedded in
a sea of regularity (in white), for the Duffing oscillator, (23), with . =0
(i.e., standard trigonometric pumping). The numbers are simply labels to
facilitate visual comparisons. Each individual figure displays 1200 x 600
Lyapunov exponents

What happens now with these islands of chaos if one ap-
plies a Jacobian pumping and varies m between the trigono-
metric and the hyperbolic limits?

Figure 7 shows the changes induced in the oscillator by
the Jacobian excitation. One clearly sees that the net effect of
varying m (i.e., the wave form and periodicity of the drive),
1s to displace the islands of chaos in parameter space. The
effect of increasing m from m = 0 to about m = 0.7 is to
push and compress all islands towards (a, b) = (0,0). Com-
paring the cases m = 0.0 and m = 0.8 one sees (i ) the
relative self-similarity between the islands labeled “2” and
*“3”, and (i1) the compressions induced by the Jacobian exci-
tation in both islands. As m increases towards the hyperbolic
limit, more and more islands “come down”, accumulating all
of them in (0,0). In the limit m — 1, all chaotic behavior
collapses into the (a, b) = (0, 0) drain. Therefore, by suitably
choosing m one may “clean” wide parameter regions from
chaotic behaviors. Further, since it is natural to expect the
existence of a large variety of periodic motions in the pe-
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OO 0.5
Fig. 7. Cleaning chaos from a Duffing oscillator: evolution of the islands
of chaos with m. As m increases, the chaotic behavior accumulates in the
(a,b) = (0,0) drain of chaos. Shadings are as in Fig. 6, with individual
figures containing 600 x 600 exponents, except for n = 0 which shows
1200 x 1200 exponents. The numbers are simply labels to facilitate visual
comparisons. The scales shown for m = 0 apply to all other pictures

.0 a

riodic sea, one may well anticipate the possibility of using
m to induce changes between motions of different periodic-
ities without having to change a and/or b. The possibility of
cleaning wide portions of the parameter space from chaos
and the possibility of changing periodicity is of interest in
experimental situations where external drives are easier to
control than internal parameters [19].

The possibility of using external modulations to clean
chaotic behaviors from dynamical systems is anticipated to
have many interesting applications in modulated lasers as,
for example, in CO; lasers either with modulation in the
losses of the resonator, in the pump or in the resonator fre-
quency, as considered, for example, in the works listed as
[20]. Modulations are also of great interest for semiconduc-
tor lasers [21] and NMR lasers [22], to name just a few.
We hope to report quantitative predictions for some of these
SySIC]T]S sS00n.

5 Conclusions

This paper considered the parameter space of a ring cav-
ity showing that it contains a great number of isoperiodic
domains embedded in a sea of parameters for which the dy-
namics 1s characterized by aperiodic solutions (chaos). We
described a simple model, (4), that contains the fundamen-
tal characteristics of the ring cavity but has the advantage
of allowing one to obtain analytical insight from it. Using
this advantage, it was possible to realize that the regularities
in parameter space originate from a particularly beautiful
set of numbers which satisfy certain “tunneling conditions”
defined by (14) and (15). We demonstrated that the usual
classification of trajectories in phase space is not necessary
to understand the great number of regular features present
in parameter space of dynamical systems defined by polyno-
mial equations of motion. In particular, all superstable loci
may be obtained directly from considerations based exclu-
sively in parameter space, as exemplified by (22). Further,
one may work directly in parameter space to derive the tun-
neling conditions and to use them, for example, to predict
precisely parameter locations where one will find interesting
phenomena such as the homoclinic phenomena that bothered
Poincaré and many others since then.

We also considered the parameter space for a flow (i.e., a
continuous-time dynamical system) in phase space, showing
that for a driven Duffing equation there are islands of chaos
embedded in a sea of regularity as the amplitude of the drive
increases. By choosing the drive conveniently, one may dis-
place the islands of chaos in parameter space, cleaning chaos
from the system. The possibility of cleaning chaos is antic-
ipated to be of interest for removing chaos from parameter
space of, e.g., modulated lasers.

Knowing that the parameter space of the discrete-time
model of the ring cavity contains so many self-similar
shrimps of periodicity, it is natural to ask whether sim-
ilar subdivisions might exist in the parameter space of
continuous-time dynamical systems like the Duffing equa-
tion or a modulated laser. Thus, an interesting open ques-
tion now is the detailed description of the “fine structure”
of the sea of periodic motions in continuous-time dynami-
cal system. We plan to address this question in subsequent
work.

Acknowledgements. The author thanks Hans-Jiirgen Herrmann and Dietrich
Wolf for their kind interest in his work and for many helpful discussions.

Appendix
Generating  from a non-periodic orbit

In this appendix, we show how to construct the number
m =3.141592 . . . from the infinite sequence of numbers con-
stituting a particularly interesting non-periodic orbit which
is also a superstable orbit.

It is not difficult to show that for a specific value of the
control parameter of the quadratic map, the building block
of (4), one obtains the following general expression

arccos Ig =



where the infinite sequence of numbers x; is generated by
the dynamical system

/1
Ly = 5(] +$E), [,20,1,2,3,....

As seen, for every initial condition —1 < z < 1 the equa-
tion above shows how every infinite sequence of points x;
conjures to produce a well-known trigonometric function.
The particular number 7 is obtained by always choosing
consistently the positive branch of the square-root function
and starting iterations from the critical point z¢ = 0. Notice
that the left-hand side of the formula above guarantees that
there is no value of ¢ in the future for which one will ever
again be back to the starting point xg = 0, i.e., for all ¢ #
0, one necessarily finds x; # 0. The above choice 5 = 0
generates a superstable orbit with infinite points, a chaotic
sequence of points which conjure to produce a kind of order:

2

o et
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It is easy to verify numerically that this formula converges
extremely fast to the known value of 7. Many other numbers
may be obtained in a similar way, for other choices of initial
conditions.

Using the general formula above, one may obtain many
other things, for example, an explicit formula relating the
sequence of signs of each point z; of the orbit to its pre-
cise location on the appropriate Riemann sheet. This is a
simple consequence of the multivaluedness of the arccos
function. The above results show that, by suitably combin-
ing the set of all initial conditions z together with the set
of all their descendents, one may generate a well-known pe-
riodic function and also generate a fundamental constant of
mathematical physics.
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