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Abstract

This paper studies the dynamics of economic models when two parameters are simulta-
neously varied and concentrates on the dynamics of the cobweb model with adaptive
expectations. The simultaneous variation of several parameters intervening in economic
processes is a very realistic situation of interest. Using reliable numerical methods, we
argue that extended fractal sets in parameter space are relatively common characteristics to
be expected for models typically used to describe economic processes. In addition, by
choosing appropriate paths in the parameter space, it is possible to observe several different
routes to chaos.
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1. Introduction

The use of nonlinear models based on economic themes of growth and business
fluctuations to explain periodic and nonperiodic behavior of economic time series
is by now a well established research activity. Readers of this journal will be
familiar with the examples provided in Medio (1987) and Day (1991). Other
collections also have appeared. One of the most interesting aspects of this line of
research is the ability to trace the effect of parameter changes that have economic
meaning on the implied economic behavior, and in particular, how the quantitative
properties of the time series data that can be generated by a model can shift from
convergence to stationary states or stable cycles to nonperiodic, highly irregular or
chaotic behavior.

The primary technique used so far in these studies is the ‘‘bifurcation diagram’’
which provides a numerical (and necessarily approximate) picture of how the
““attractor’’ of the trajectory changes when a single parameter is varied. In this
paper we show how such studies can be extended when two parameters are varied
simultaneously, using some reliable numerical methods called the Iso-Period Plot
and Chaos Plot methods. For illustration, we use the cobweb model with adaptive
expectations described in this journal by Hommes (1994).

2. The cobweb model with adaptive expectations

Let p, be the price, p, the expected price, q¢ the demand for goods and q; the
supply for goods, all at time t. The cobweb model with adaptive expectations is
given by

q¢ = D(p,) (Demand function) (1)
q; =S(P,) (Supply function) (2)
q¢ = g% (Market clearing equation) (3)
p.=0., +w(p,_,—DP,_,).0<w< 1 (Adaptiveexpectations formula)
(4)

In the traditional version of the cobweb model, it was shown by Artstein (1983)
and Jensen and Urban (1984) that chaotic price behavior can occur if the supply or
demand curve is non-monotonic, see also Lichtenberg and Ujihara (1989). In the
case of linear supply and demand curves, the introduction of adaptive expectations
in the cobweb model has a stabilizing effect on the price dynamics, see Nerlove
(1958). However, the equilibrium price may still be unstable. Hommes (1994)
investigated the price behavior in the case of nonlinear, monotonic supply and
demand curves and showed that adaptive expectations need not be stabilizing and
prices can be chaotic. For simplicity assume that the demand curve is linearly
decreasing, and is given by

D(p,) =a—-bp,b>0 (5)
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Concerning the supply, the following two economic assumptions are made: (a)
If prices are low then supply increases slowly, because of start-up costs and fixed
production costs; and (b) If prices are high then supply increases slowly, because
of supply and capacity constraints. The simplest smooth curve satisfying these two
assumptions is an S-shaped function S(-) with a unique inflection point p. By
changing coordinates, we may assume that the inflection point of the supply curve
to be the new origin. Note that with respect to this new origin both “*prices’’ and
‘“quantities’’ can be negative. As an example of such an S-shaped supply function
we follow Hommes (1994) and choose

S,(x) = arctan(Ax), A >0 (6)

Egs. (1)-(6) yield a difference equation x,,,=F,
expected price dynamics, with F,, , , given by

E pwalX) = —wS\(x) /b + (1 —w)x +aw/b (7)

where aeR, b>0,0<w<1,and A> 0.

It is easily verified that the following holds. If S\(0) < b(1 — w)/w then the
map F,, ., is increasing, and if $,(0) > b(1 — w)/w then F,  , has two critical
points ¢, and ¢,, ¢, <0 <c, (that is, ¢, and c, are the two points at which the
derivative of F, ,  , vanishes). Hence, if S,(0) > b(1 — w)/w then the map F,  ,, ,
is increasing on both the intervals (—~2,c,) and (c,,*), and F, , , is decreasing
on the interval (c,,c,). The map F,,, , has a unique fixed point, which is the
equilibrium price corresponding to the intersection point of the supply and demand
curves. An important question is: *“What can be said about the global dynamics of
the model, when the equilibrium price is unstable?’’ In this direction, Hommes
(1994) obtained results concerning period-2 behavior and Li-Yorke chaos in the
dynamics of the map F,, , ,. (‘Li-Yorke chaos’’ is implied when the map F, ,, ,
has a period-m orbit, where m is not a power of 2.) We now are going to
investigate how trajectories change when alternative combinations of two of the
parameters are changed.

b (X,) describing the

3. Numerical methods: Chaos Plot and Iso-Period Plot methods

Before presenting our numerical methods for deriving qualitative dynamics for
two varying parameters, we must review some technical concepts. Let F denote a
differentiable one-dimensional map depending on k parameters, where k is a
positive integer. For any x, write DF"(x ) for the derivative of the n" iterate of F
at x,, where n is any positive integer. The Lyapunov exponent A(x,) of the
trajectory of x, is defined by A(x,) =lim, _,, +log [DF"(x,)| where we assume
that the limit exists. (Here ‘‘log’’ means natural logarithm.) The trajectory of a
point X, is called a chaotic trajectory if (a) the trajectory of x, is bounded and is
not asymptotic to either a fixed point or a periodic orbit, and (b) the trajectory of
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X, has a positive Lyapunov exponent. For the map F, a chaotic trajectory is a
Li-Yorke chaotic trajectory and vice versa. For a continuous map, a chaotic
trajectory is a Li-Yorke chaotic trajectory but the reverse need not be true.
Although in practice we can only probe a finite number of iterates, we will often
speak of chaotic trajectories. Also we speak loosely of Lyapunov exponents as if
they could be computed with precision. We emphasize that a chaotic trajectory
exhibits sensitive dependence on initial conditions, that is, arbitrarily close to the
initial state x, there are points y, such that the trajectories of x, and y, do not
stay close to each other forever.

In the literature there exist several (nonequivalent) definitions of the notion
“‘attractor’’; for a discussion of this topic, see Milnor (1985). In this paper, we say
that a set A on the real line is an attractor if (i) A is compact and F(A) C A, (ii)
there exists an open neighborhood U of A such that for each point x in U the
distance between F"(x) and A converges to zero as n goes to infinity, and (iii) A
has a dense orbit (that is, there exists a point X, in A such that for every (small)
open ball B centered at a point in A, there exists a positive integer k such that the
k™ iterate x, is contained in B). An attractor A is called a chaotic attractor if A
contains a chaotic trajectory. Note that if F has a chaotic attractor, then F has
sensitive dependence on initial conditions and there are many choices for a
Li-Yorke scrambled set. For example, if A is a chaotic attractor for F, then A has
positive Lebesgue measure and is an example of a Li-Yorke scrambled set, but
there also many invariant Cantor sets (of measure zero) in A and each of them is a
Li-Yorke scrambled set. On the other hand, if F has a stable periodic orbit P, of
period m # 2" for any n, and if almost every initial condition will ultimately
approach P, then the collection of points whose trajectories will not approach P,
is a Li-Yorke scrambled set.

The numerical methods for plotting bifurcation diagrams and corresponding
Lyapunov exponent bifurcation diagrams are standard; see Nusse and Yorke
(1994). In these diagrams only one parameter is varied while all others are
maintained fixed. For illustration, see Fig. 1. We now describe the numerical
methods for creating Chaos Plots and Iso-Period Plots, in which two parameters
are varied and the other parameters are maintained fixed. The resulting pictures are
plots in the parameter space. These methods can be used to detect regions in
parameter space in which several attractors coexist and to study the prevalence of
periodic versus chaotic dynamics.

3.1. Chaos Plots

Let u and « be two parameters of a model under investigation. The pair
(i, a) is called a pair of chaotic parameters if the map F has a chaotic attractor
for these parameter values p and «. The purpose is to generate a set in the
parameter space such that for each point in this set the trajectory through some
fixed initial state x,, is chaotic (that is, it has a positive Lyapunov exponent). In
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(@)
2.0

-1.25 a 1.25

(b)
1.0

0.0

Lyap.
exp.

-4.0

-1.25 a 1.25
Fig. 1. a — Bifurcation diagram of the cobweb model (8) with b= 0.3, A =7, w = 0.3. b — Lyapunov
exponent bifurcation diagram corresponds to Fig. la, for the cobweb model (8) with b=0.3, A=7,
w = 0.3. A positive value of the Lyapunov exponent indicates the existence of a chaotic attractor.
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other words, we generate the set of parameter values for which the orbit of x|
converges to a chaotic attractor. A Chaos Plot shows pairs of chaotic parameters
(., a) for the bifurcation parameters u between u, and pg and a between a;
and ag. The objective is to plot ( w,a)-values for which the trajectory through the
seed x, has a positive Lyapunov exponent. In this paper, Chaos Plots have been
constructed as follows. We choose to have a grid of 720 by 720 to be tested. Our
criterion is to plot the point (small box) in parameter space if the approximate
Lyapunov exponent is at least 0.001 after 10000 iterates of x,. This method for
creating Chaos Plots is implemented in the program Dynamics (Nusse and Yorke,
1994).

3.2. Iso-Period Plots

The point ( &, ) in parameter space is called a pair of period-p parameters if
the map F has a stable period-p orbit for these parameter values. An Iso-Period-p
parameter set consists of all pairs of period-p parameters ( u,a) for the bifurca-
tion parameters u between u, and py and a between a; and ay. If a stable
period-p orbit and a stable period-q orbit coexist, then the Iso-Period-p parameter
set and the Iso-Period-q parameter set intersect. The purpose is to describe how to
generate a set in the parameter space such that for each point in this set the
trajectory through some fixed initial state x, is approaching a stable period-p orbit
(that is, generally it has a negative Lyapunov exponent). In other words, we
generate the set of parameter values for which the orbit of x, converges to a stable
period-p orbit. In this paper, the Iso-Period-p Plots have been constructed by
determining periodicities and storing the informations as color Postcript bitmaps as
follows. We used a grid of 1200 (horizontal) by 1200 (vertical) to be tested. Our
criterion is to plot the point (small box) in parameter space in color p if p is the
smallest positive integer for which the trajectory through the seed x, has the
following property: after the first 1000 iterates of x,, the distances Ix1001+P—
X001l < € K001+ 2p = Xigo14pl <€, and [ 10043, = Xygp1+2p| < €, Where € is
some prescribed positive number. We consider 1 < p < 64 and select € = 0.0001.
An Iso-Period Plot is the union of all Iso-Period-p Plots, where 1 < p < 64. From
the above it is clear that we compare the successive end points of approximate
period-p orbits. The method for creating Iso-Period Plots is the same used by
Gallas (1993, 1994) to investigate the structure of the parameter space of the
Hénon map.

The two numerical methods above are complimentary. Nusse (1987, 1988))
analyzes a broad class of one-dimensional maps which includes the map E,, , ,-
The map F, , , , has a negative Schwarzian derivative if and only if wA? —b>0.
Using this fact, we have the following results from these papers, which guarantee
that it is sufficient to use just two initial conditions for creating both Chaos Plots
and Iso-Period Plots in Section 4.



J.A.C. Gallas, H.E. Nusse / J. of Economic Behavior & Org. 29 (1996) 447464 453

Theorem 1. Assume wA’ —b>0. If F,, , , has an attractor, then at least one
of the points ¢, or ¢, is contained in the basin of that attractor.

Theorem 2. Assume wA*—b>0. If both critical points ¢, and c, are
contained in the basins of attractors A| and A ,, then the trajectory of almost every
initial condition x, approaches one of these attractors A, and A,.

The first result (Theorem 1) implies that at most two attractors can coexist for
the map F, , , .. The attractors in the second result (Theorem 2) may coincide, that
is, the map F,, , , has one attractor and contains both critical points in its basin.
To state the main result for the Chaos Plots and Iso-Period Plots, the results above
imply that at most two attractors may coexist for F,, , , and that each attractor
will contain at least one of the points ¢, or ¢, in its basin. In particular, if F,, , ,
has attractor A and contains c, in its basin, then the trajectory of ¢, converges to
A. The case when ¢, is contained in the basin of attractor A is dealt similarly.
Hence, for creating a Chaos Plot, it is sufficient to use initial conditions x, = ¢,
and x, = ¢, rather than having to expiore all initial conditions. Similarly, if A is a
period-p orbit, then the trajectory of c, (or ¢,) asymptotes to a period-p orbit.
Hence, for creating an Iso-Period Plot, it is sufficient to use initial conditions
X, =, and x,, = c, rather than having to explore all initial conditions. Therefore,
we have the following result.

Conclusion. For the cobweb model with adaptive expectations (1)—(6), only
two initial conditions are needed for creating Iso-Period Plots and Chaos Plots
provided that wA% — b > 0. These initial conditions are Xg=¢; and X, =c,.

4. Periodic versus chaotic behavior in the dynamics of cobweb models

Under certain conditions, the dynamics of the cobweb model, defined by Egs.
(1)-(6), may exhibit periodic or chaotic behavior. How prevalent are these
alternative types of behavior? To give an answer, we investigate parts of the
4-dimensional (a,b,w, A)-parameter space by using the numerical methods dis-
cussed in Section 3. We first consider the four parameter family of maps F, , ,, ,:
R — R defined by Egs. (6) and (7). Hence,

F, pwa(x) = —warctan(Ax) /b + (1 — w)x + aw/b (8)

where a eR,b>0,0<w<1,and A> 0.

For Eq. (8) we restrict ourselves to investigate parts of the following slices of
the 4-dimensional (a,b,w,A)-parameter space: (i) b= 0.3, w=10.3, (ii) b= 0.05,
A =10, (iii)) b=0.25, A =4, and (iv) a=0.8, b= 0.25. We emphasize that for
each of these four slices, the condition wA> — b > 0 appearing in the theorems in
Section 3 is satisfied for parameters in the selected regions (specified below). For
example, in case (i) we have b=0.3 and w = 0.3, and the selected region is
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—125<a<1.25 and 2< A <52, so we have wA’ —b=03A2-03>09>0
for all (a,A) in the selected region.

4.1. Slice 1: b=03, w=0.3

We first select A =7. We now investigate how the dynamics of the model
depends on the height of the demand curve (parameter a), and we assume that a is
the bifurcation parameter. Fig. 1a shows a bifurcation diagram with the parameter
a as the bifurcation parameter. This figure suggests the following bifurcation
scenario. If a is small then there exists a stable equilibrium. If a is increased, then
the equilibrium becomes unstable and. period doubling bifurcations occur. After
infinitely many period doubling bifurcations the price behavior becomes chaotic,
as a is increased. Next, after infinitely many period halving bifurcations the price
behavior becomes more regular again. A stable period 2 orbit occurs for an
interval of a-values, containing a = 0. When a is further increased, once more,
after infinitely many period doubling bifurcations chaotic behavior arises. Finally,
after infinitely many period halving bifurcations, there is a stable equilibrium
again, when a is sufficiently large. In particular, there exist parameter values
a1 <a,<ay;<a,=0<ag<ag<a, such that

Ifa<a,,thenE, , has a globally stable fixed point;

- Ifa,<a<a,, then F,,  , has a period 3 orbit;

- Ifa=a,=0, then F,; , , has an unstable fixed point, a stable period-2 orbit,
and no other periodic points;

- Ifag<a<ag, then F,, , , has a period 3 orbit;

-+ Ifa>a,, then E,, , , has a globally stable fixed point.

Fora, <a<a, or as < a< aq, the map F,, ,, , is Li-Yorke chaotic, see Li and
Yorke (1975). Concerning the bifurcations scenario with respect to the parameter
a, the following properties can be shown to hold by combining results from
bifurcation theory (see Guckenheimer and Holmes (1983)) and results in Nusse
and Yorke (1988). Although the one dimensional maps studied in this paper have
one critical point, the results and techniques work for all differentiable maps, since
the critical point plays no role in the local bifurcations (cf. Hommes (1994)).

infinitely many period-doubling bifurcations occur in the parameter intervals

(a,,a,) and (ay,a,).

infinitely many period-halving bifurcations occur in the parameter intervals

(a,,a;) and (a,,as).

Recall that increasing the parameter a is just shifting the demand curve
vertically upwards. Hence, if the supply curve is shifted vertically upwards, then
both infinitely many period doubling and period halving bifurcations occur and
periodic and chaotic behavior interchange several times.

Since the map in Eq. (8) is one dimensional, there is just one Lyapunov
exponent corresponding to a trajectory. We now investigate how the Lyapunov
exponent depends on the parameter a. In Fig. 1b we present a Lyapunov exponent



J.A.C. Gallas, H.E. Nusse /J. of Economic Behavior & Org. 29 (1996) 447464 455

bifurcation diagram with respect to the parameter a. This interval is the same as
the one in Fig. 1a. Lyapunov exponent bifurcation diagrams indicate whether the
corresponding bifurcation diagram has a stable periodic orbit (negative Lyapunov
exponent) or a chaotic attractor (positive Lyapunov exponent).

We consider the region in the parameter space consisting of pairs (a,A) such
that —1.25 <a < 1.25, 2 <A <52. The objective is to plot the Chaos Plot and
Iso-Period Plot for this region as described in Section 3. The resulting Chaos Plot
is presented in Fig. 2a. In this case 17% of the grid parameters are chaotic
parameters implying that chaos is not so exceptional. The computation for the
creation of the Iso-Period Plot is performed exactly as described before in Section
3. The resulting Iso-Period Plot is shown in Fig. 2b. in this figure, the green area
consists of pairs of parameter values for which the dynamics will stabilize. The
blue area consists of pairs of parameter values for which the dynamics exhibits a
period-2 behavior. The light-blue area corresponds to period-3 behavior in the
dynamics, the red area corresponds to period-4 behavior in the dynamics, the
magenta area corresponds to period-5 behavior, the black area corresponds to
period-6 behavior, and the cyan corresponds to period-8 behavior, etc. Our
color-coding was chosen to obtain maximal contrast between different areas.

The bifurcation diagram of Fig. la and the Lyapunov exponent bifurcation
diagram of Fig. 1b correspond to the path A =7 in Figs. 2a and 2b. The figures
suggest that periodic behavior and chaotic behavior are complementary, that is, the
sum of the area of the periodic parameters and the area of the chaotic parameters
equals the area of the region. Unfortunately, there exists no theoretical result
which provides a result into this direction. Choosing any path in Fig. 2b, one can
predict the period of the periodic attractors that will be encountered when a
bifurcation diagram is created by following the parameter(s) along this path.
Similarly, one can predict when any attractor which is encountered is chaotic by
following the same path in Fig. 2a. Obviously, the structure of the sets of periodic
parameters and chaotic parameters is complicated. As is easily seen from Figs. 2a
and 2b, there are different routes to chaos in the cobweb model in the current slice
of the parameters space.

4.2. Slice 2: b=0.05, A= 10

We first select w=0.2, and create a bifurcation diagram by following the
attractor. In the resulting bifurcation diagram of Fig. 3a, several phenomena can be
observed: existence of a simple attractor with low period, existence of a chaotic
attractor (to be checked by the computation of Lyapunov exponents), the existence
of a period-3 attractor implying Li-Yorke chaos, and various bifurcations, such as
period-doubling and period-halving bifurcation. The corresponding Lyapunov
exponent bifurcation diagram is shown in Fig. 3b, and it indicates whether the
bifurcation diagram of Fig. 3a has a stable periodic orbit (negative Lyapunov
exponent) or a chaotic attractor (positive Lyapunov exponent).



(@)
52.0

2.0

-1.25 a 1.25

(b)
52.0

2.0
-1.25 a 1.25

Fig. 2. a — Chaos Plot for cobweb model (8) with b= 0.3, w=0.3. The black area is the set of
parameters for which the model has a chaotic attractor. In this part of the parameter space, chaos is not
so exceptional (approximately 17% of the parameters are chaotic parameters). b — Iso-Period Plot for
cobweb model (8) with b= 0.3, w=0.3. The green area indicates that the dynamics will stabilize
(period-1 behavior). The dark blue and red area indicate that the dynamics will exhibit a period-2 and
period-4 behavior, respectively. Light blue area indicate period-3 behavior. For more details on the
colors, see the text.
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12.0

0.0

Lyap.
exp.

-4.0 |

0.2 a 1.6

Fig. 3. a — Bifurcation diagram of cobweb model (8) with b =0.05, A= 10, w =0.2. b ~ Lyapunov

exponent bifurcation diagram corresponding to Fig. 3a, for the cobweb model (8) with b=0.05,
A=10, w=0.2.



0.2 a 1.6

0.0
0.2 a 1.6

Fig. 4. a ~ Chaos Plot for cobweb model (8) with b= 0.05, A=10. The black area is the set of
parameters for which model (8) has a chaotic attractor. In this part of the parameter space,
approximately 12% of the parameters are chaotic parameters. b ~ Iso-Period Plot for cobweb model (8)
with b = 0.05, A= 10. The color coding is the same as in Fig. 2b.
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Fig. 4a shows the Chaos Plot for 0.2 <a< 1.6 and 0 <w < 1, calculated as
described above. In this case approximately 12% of the grid parameters are chaotic
parameters. The corresponding Iso-Period Plot is shown in Fig. 4b.

The bifurcation diagram of Fig. 3a and the Lyapunov expohent bifurcation
diagram of Fig. 3b correspond to the path w= 0.2 in Figs. 4a and 4b. Fig. 4b
shows that periodic behavior in the dynamics of the cobweb model is prevalent. In
particular, period-1, period-2, period-3, period-4, and period-5 will dominate.
Similar as in the first slide, the figures suggest that periodic behavior and chaotic
behavior are complementary. Choosing any path in Fig. 4b, one can predict the
period of the periodic attractors that will encountered when a bifurcation diagram
is created by following the parameter(s) along this path. Similarly, one can predict
when any attractor which is encountered is chaotic by following the same path in
Fig. 2a. Obviously, the structure of the sets of periodic parameters and chaotic
parameters is complicated. As is easily seen from Figs. 4a and 4b, there are
different routes to chaos in the cobweb model in the current slice of the parameter
space. On the other hand, there also exists reasonable paths for which no chaotic
behavior will be observed. In particular, if a path is followed in a unicolor region,
then the period of the periodic attractor does not change.

4.3. Slice3: b=025, A=4

Fig. 5a displays the Chaos Plot for — 1.5 <a< 1.5 and 0.1 <w < 0.9. In this
case approximately 12.5% of the grid parameters are chaotic parameters. The
corresponding Iso-Period Plot is shown in Fig. 5b. As one sees, they present
consistent characterizations.

Once again, the figures suggest that periodic behavior and chaotic behavior are
complementary (that is, the sum of the area of the periodic parameters and the area
of the chaotic parameters equals the area of the region). Fig. 5b shows that
periodic behavior, in particular period-1, period-2, and period-4 behavior, is
prevalent. There are two annuli of parameters (a,w) in this slide for which there is
period-4 behavior. Inside these two annuli, the structure of the sets of periodic
parameters and chaotic parameters is complicated. For parameters inside these two
annuli, the figure suggests that the sets of parameters for which there is periodic
behavior in the dynamics for a certain specified period, are annuli. Once again, it
is easily seen from Figs. 5a and 5b, that there are different routes to chaos in the
cobweb model in the current slice of the parameter space.

4.4. Slice4: a=0.8, b=0.25

Fig. 6a exhibits the Chaos Plot for 2 <A <52 and 0 <w < 1. In this case
approximately 10% of the grid parameters are chaotic parameters. The correspond-
ing Iso-Period Plot is shown in Fig. 6b. Once again, the figures suggest that
periodic behavior and chaotic behavior are complementary.



0.1

(b)
0.9

0.1
-1.5 a 1.5

Fig. 5. a - Chaos Plot for cobweb model (8) with b=0.25, A=4. The black area is the set of
parameters for which the model has a chaotic attractor. In this part of the parameter space,
approximately 12.5% of the parameters are chaotic parameters. b — Iso-Period Plot for cobweb model
(8) with b= 0.25, A = 4. The color coding is the same as in Fig. 2b.
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Fig. 6b shows that periodic behavior, in particularly period-1, period-2, period-3,
and period-4 behavior, is prevalent. The structure of the sets of periodic parame-
ters and chaotic parameters is quite complicated, but very intriguing. A blow-up of
Fig. 6b is given in Fig. 6¢c. Connected subsets of parameters (A,w) in this slide for
which there is period-m behavior have a quite complicated shape. Gallas (1993,
1994)) coined these components of parameters shrimps. (A component is a
maximal connected set.) Similarly as in the other cases. It is easily seen from Figs.
6a and 6b, that there are different routes to chaos in the cobweb model in the
current slice of the parameter space.

4.5. Summary

In all four slides of the parameter space, one realizes from the Chaos Plots and
Iso-Period Plots that the dynamics for any given quadruple of parameters

(@)
52.0

2.0

|

0.0 w 1.0

Fig. 6. a — Chaos Plot for cobweb model (8) with a= 0.8, b= 0.25. The black area is the set of
parameters for which model (8) has a chaotic attractor. In this part of the parameter space,
approximately 10% of the parameters are chaotic parameters. b — Iso-Period Plot for cobweb model (8)
with a = 0.8. b= 0.25. The color coding is the same as in Fig. 2b. ¢ — Blow-up of Fig. 6b. White
shading corresponds to parameters leading to chaotic behavior. Many similarly looking parabolic-like
structures (‘‘shrimps’”) are embedded in the white region. Similar colors represent similar periods. For
example, the light-blue region indicates parameters producing period-3 dynamics. Adjacent to the color
corresponding to period m, one sees additional colors which indicate the location of the mX2"
cascades. For example, the color black (adjacent to the period-3 region) represents period 6, etc.




462 JA.C. Gallas, H.E. Nusse / J. of Economic Behavior & Org. 29 (1996) 447464

" 0.05 w 0.20
Fig. 6 (continued).
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(ag,bg.Ag,W,) may dramatically differ from the dynamics for slightly different
parameter values. In the parts of the parameter space shown in the figures, there
are a number of places where the situation is rather complicate. On the other hand,
period-m behavior (say, for example, m = 1, 2, 3, 4, 5) is prevalent. Fig. 6¢ shows
with more detail the region where one observes the shrimps in parameter space.
All in all, this shows ipso facto the richness of dynamical behavior seen when, in
addition to considering the variation of the parameters involved, one exploits the
consequences of simultaneously varying more than one parameter.

5. Conclusion

By explicitly considering the influence of simultaneously varying two or more
parameters for the cobweb model with adaptive expectation, we showed that there
are a number of features that are to be expected to be observed, i.e., measured, in
the variable. We used reliable numerical methods as a tool to investigate the
periodic (Iso-Period Plots) versus chaotic behavior (Chaos Plots) in the dynamics
of this model. Colored regions in the parameter space indicate periodic behavior in
the dynamics of the cobweb model, and the white regions indicate chaotic
behavior. For creating Chaos Plots and Iso-Period Plots, one generally needs a lot
of initial conditions to be tested. For the cobweb model with adaptive expectation,
we showed that only two initial conditions have to be tested. We find the
appearance of fractal structures in parameter space indicating qualitatively differ-
ent dynamics when the parameters are perturbed slightly. Generally, by choosing
appropriate paths in the parameter space, one may see different routes to chaos.
The resulting pictures imply that periodic behavior is more prevalent than chaotic
behavior in the dynamics of the cobweb model with adaptive expectation. The
used plotting methods can be applied to parameter spaces of other economic
models equally well. The methods that are presented in this paper, may be
considered as a tool to investigate the dynamical behavior of a variety of economic
models. Many (unobserved) phenomena are waiting to be discovered.

6. For further reading

Chiarella (1988) and Day and Hanson (1991).
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