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We investigate numerically totalistic cellular automata riles in four and five dimensions
that have been recently proposed by Chaté and Manneville and that show periodic or
quasiperiodic time sequences in the magnetization. We show how to implerhent such
rules fast on a Connection Machine. We confirm the proposed behavior by analyzing the
time and size dependence of the distance from the attractor. Also the dependence of the

initial configuration, the behavior of very small systems and mean-field calculations are
presented.
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1. Introduction

Can collective systems like cellular automata display ordered phases in which the
global magnetization varies periodically, quasiperiodically or even chaotically in
time after reaching an attractor in the thermodynamic limit? Until last year the
answer was believed to be “no” because of the rather convincing argumentation
given by Grinstein and-coworkers.»»? The totalistic cellular automata rules recently
presented by Chaté and Manneville,® however, seem to indicate otherwise: for di-
mensions d > 4 some numerical evidence was given for the existence of periodic and
quasiperiodic behavior. '

The appearance of these novel systems poses, of course, many questions. On
one hand one would like to be sure that the numerical work has not been fooled by
long transients or finite-size behavior. On the other hand the urgency now exists to
understand these new phases more profoundly. How stable are these phases under
changes in the initial configuration or under thermal noise? What happens on a
microscopic scale when the magnetization (density of ones) oscillates in steady state °
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(i.e., after waiting so long that the attractor is reached)? Is a mean-field description
possible? The aim of this paper is to contribute to answer these questions, by
simulating cellular automata involving up to 33,554,432 individual sites.

In the next section we describe the models used here. In Sec. 3 we present
and describe two computer programs written in Fortran 90 and .in PARIS for a
parallel computer, namely for a CM—-2 Connection Machine. Section 4 is devoted
to the investigation of small size lattices, i.e., lattices with no more than 32* =
1,048,576 sites. In Sec. 5 we discuss the transients and the dependence on the
initial configuration. Section 6 is devoted to the analysis of finite time and finite
size effects. In Sec. 7 we briefly discuss the effects of external noise and in the last
section we present some mean-field calculation and discuss the nature of the new

‘phases. The present paper reports complementary results to those recently given
- in Ref. 4.

2. The Chate—Mannevﬁle Automata

Let us consider a hypercubic lattice of dimension d, placing on each site 7 a binary
variable ;. Let us also define a local field

)= e 0

j=nn

where the sum goes over the central site ¢ and its nearest neighbors (von Neumann
neighborhood), i.e., over 2d+ 1 sites. Then the family of totalistic automata we are
interested in is defined by the rule

1, ifk < hi(t) <1

0, otherwise.

(e +1) = { 2
These automata, like the game of life have a “survival window”: If one considers
“1” as living and “0” as dead, sites can only survive if the density of surrounding
living sites is neither too high nor too low. k-and { are the upper and lower limit of
. the window respectively (see Eq. 2).

Chaté and Manneville® presented several examples of k and [ in four and five
dimensions for which the global magnetization presented either periodic behavior
or limit cycles. In particular they discussed the rule R 1= =R} o 1n Ref. 3 and rules
R} and R3 g i’ Refl. 5. The first two rules show- qua31-per10d1c behavior while R 3
has a penodlc orbit. We want to reinvestigate in this paper these three rules to
see whether they are stable or not with respect to several possible ‘perturbations’
of the rules, and, equally important, if they are not just a kind of long transient
behavior. We considered only the case of periodic boundary conditions.

The automata is defined on a hypercube having L sites along each of its d dimen-
sions, thereby having N = L¢ sites. We investigate two-state automata, i.e., each
site contains a two-state logical variable, either o; = 0 or 1. The physical quan-
tity that we want to consider is the global “magnetization” m(t) = (1/N) ¥, o3,
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namely the fraction (or “concentration”) of numbers “1” present at a given time in
the hypercubic lattice. Starting from an equiprobable random initial configuration
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"Fig. 1. Evolution space plots of m{t) x m(t + 1) for L = 16 (left column) and L = 32 (right
colurnn}, for 100 < t < 5,000. The top horizental doublet shows the evolution space for Rg,s’ the
middle doublet for Ri,s and that on the bottom for Rg,B'
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of “0” and “1”, like Chaté and Manneville, we monitored the temporal evolution
of m(t) as a function of L and d. Most of the time, after a rather short transient
the system is attracted to a finite region on an “evolution” plot of m(t 4+ 1) x m(t).
Examples of the observed behaviors are shown in Fig. 1, where m(t + 1) is plotted
against m(t) for t > 100. The three leftmost figures show for L = 16, from top
‘to bottom, the evolutionspace for rules R} o, Rf 5 and Rf ,, respectively, while the
rightmost ones show the same evolution space for L = 32. The trajectories seem to
approach a limit cycle and there are good indications for a quasiperiodic behavior.®
By looking at the movements of the plotter pen while the space for rules R‘ig and
Rg’g is plotted one realizes that they are obtained from a quasiperiodic rotation of
the three “spots” present for Rg’s. So, in those cases the periodic motion turnied
into a quasiperiodic one, with the magnetization wandering smoothly on a torus.
What we want to investigate in this paper 1s if these data are stable under changes
- in the initial configuration and initial concentration of “1” and “0”, in the system
size, in the observation times and under the influence of external noise.

3. Programming Details on the Connection Machine

All automata discussed in this paper were generated on a 16K processor Connection
Machine (CM-2) at the HLRZ(GMD) using two FORTRAN 90 programs: a version
intended to study lattices of small sizes (the “small size” limit) and another program, -
used to investigate bigger systems, taking advantage of the 32 bit wordlength of the
CM-2 and using multispin codmg techniques. Program 1 was used to investigate
small size systems. 7

integer, parameter :: seed=5855, tmax=5100
integer, parameter :: Li=16, L2=16, L3=16, L4=16
real, parameter :: size=L1#L2%L3+L4 ‘

" integer, array{L1,L2,L3,L4) :: a
real, array(tmax) :: m
integer tempo

cmf$ layout m(:serial)
open{unit=7, flle—’aus’, status=’unknown’)
= 0 ! initializes the full lattice ‘a? with zeros
call cmf _randomize{seed) ! fills randomly ‘a’ with 1 and O
call cmf random(a,2)
tempo = 1
m(tempo) = sum(a)/size ! counts initial magnetization
do 1000 tempo = 2,tmax ! starts time loop 7
a = a + cshift{a,l,~1) + cshiftl(a,1,1)

* + ¢shift(a,2,~1) + cshift(a,2,1} : -
* + cshiftla,3,-1) + cshift(a,3,1) ‘

* + cshift(a,4,-1) + cshift(a,4,1)
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where({ a.1t.4 .or. a.gt.8) ! applies automaton rule

a=0
elsewhere
a=1

end where

H

m(tempo)
1000 continue

sum(a)/size ! counts & saves m(t)

do 2000 tempo = 2;tmax ! output: t, m(t), m(t-1)

write(7,3000) tempa, m{tempo), m(tempo-1)
2000 continue
3000 format(2x,i6,4x,2(3x,gl12.6))

stop

end

Program 1. Program to investigate small lattices.

The program starts defining working drrays a(L,L,L,L) and m(tmax), with L
and tmax corresponding respectively to the number of sites along each dimension
and to the maximum time for which we want to follow the dynamics. The command
a=0 automatically sets all L* sites equal to zero and informs the compiler that a is
an array in the Connection Machine. Both call statements are intrinsic functions
_of the CM, with the net effect of filling a with a uniform random distribution of
“1” and “0”. To count the total magnetization of the lattice it suffices to say
- sum(a). Note the conveniency of FORTRAN 90 when dealing with array indexes.
" The same statement in FORTRAN 77 ‘would require four do loops. This comment
- applies also to the initialization of a. The heart of the program is the do loop
' 1000. This loop first updates the lattice: to each site of a we sum the actual
values of its &1 neighbors in 4 dimensions, according to the definition of a von
Neumann neighborhood. This is done by circularly shifting the contents of a, using
the function cshift(a,dim,shift). Since ais four-dimensional, dim may be 1,2,3
or 4. The parameter shift indicates by how much the dimension dim of a is to
be shifted: von Neumann neighborhood implies either shift= 1 or —1. After this
updating is performed the contents of each site, rather than being “1” or “07, are
integer numbers ranging between 0 and 9. The where statement restores then “1”
and “Q” in all sites by broadcasting the proper automaton rule simultaneously to
all processors. Therefore, after the where statement is executed, a contains the
updated lattice. The last line in loop 1000 counts and stores the magnetization. At
the end, the magnetizations are written on a file “aus” for later use. As can be easily
noticed, although this program is convenient to study small symmetric a(L,L,L,L)
as well as asyminetric a(L1,L2,L3,L4) lattices, it is obviously inefficient in both
use of memory and computing resources. The most obvious limitation comes from
_ the use of a full 32-bit integer to keep the binary state variable and the four-bits long
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sum of nearest-neighbors (in 5-D the maximum number living nearest-neighbors is
11, counting the central site, and can be easily represented using 4 bits only).

Much improvement in the use of memory and computing resource can be achie-
" ved by dropping down to the level of the machine language PARIS on the CM
(PARallel Instruction Set). This level allows computations with integers of arbi-
trary lengths such as one-bit integers for the state variable and four-bit integers
for the sum of neighbors. However such solution presents still some inefliciencies in
dealing with very short field lengths.

Our second program uses a radically different approach and completely over-
comes the deficiencies just mentioned. Moreover this approach, which uses the
technique of multispin coding, can be programmed in a high level language such as
Fortran 90 if one is willing to work with the restriction that one of the dimensions
of the lattice be equal to 32 (the wordlength of the CM). This last restriction can
be relaxed by dropping to the Paris level. 'This approach uses both memory and

computing in an efficient way. The main point is to code one of the dimensions of
" the problem along the length of a parallel variable using the well known technique
of multi-spin coding, and then to compute, using logical operations, the bit-wise
representation of the sum of living nearest-neighbors.

For illustration (see program 2) we used a four-dimensional CM fortran array of
integers (32 bits) to represent the state of a 5-D lattice with one of the axis being 32
bits wide. The trick now is to manipulate only words of 32 bits in order to compute
the sum of all “living” nearest neighbors. As stated abeve this sum, a number
" between 0 and 11, can be represented with four bits. Let us call these bits s, 51, 52
- and s3. So the aim of the program is to calculate for each site the value of these bits,
which give the binary representation of the sum of living nearest-neighbors fot each
site. For example, (53, 82, s1, s0) = (1, 0, 0, ) indicates 9 living neighbots. These
fours bits can be computed from logical operations on a using SHIFT operations to
get access to the neighbors. Let’s denote the 11 bits by bp to by;. We start with

(53, 82, 51, 50) = (0, 0,0, 0).

The usual way would go through the addition steps using a carry ¢ in each binary
place. First we add by and b; and put the sum in sg and s; (A corresponds to the
logical AND; @ to XOR; V to OR and - to NOT):

81 = bg A -b]_,-
8p = bg@bl.

Then we add b, to sy generating a carry ¢ (in binary place 1) to be added to 10

c=5g A by,
8y = 50 @ by, 1

"s1=8 V ¢
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Note that since this is only the third bit added this last operation cannot generate
a carry into s, as this would only be possible if the sum reached. 4. Next, we add
by as follows: -
o ¢c=8y A bs,
sg = 59 @ b3,
83 =381 A ¢
s1=5 ®c,

continuing in a similar fashion until b, is added.

We were able to reduce the number of logical operations involved in the method
just described by using the technique of full addition.® According to this technique,
three bits bo, b1, b2 can be added together with 5 loglcal operatlons to generate the
results rq and r;. The operations are

= (b A b1) V {bo ®b1) A by,
7"0:(50®bl)®b2.

This operation will now be represented using the notation:

(r1, ro) = fulladd(by, by, ba2).
Lo .

A “fulladd” involves only 5 operations because by ® by appears twice. The full

adder can be used effectively by doing this 11-bit sumn using two catry bits in each

binary place. We'll denote the first set of carry by co, €1, c2 and 3. Whenever

a second carry ¢ is generated in some binary place, the full adder is immediately
invoked generating in the next b'inary place either the result, the carry ¢, or the
second carry c in the next place. At the start of the 11-bit addition, all the sum

bits sq, 51, S2 and s3 and all the carry bits ¢q, ¢, ¢2 and c3 are set zero (cleared).

We proceed as follows: ‘ '

“self add” .

S{}i—-bo

Then we add by and by using the full adder to generate sg, $1

(S]_,SD) — _fulladd(bg, b]_, 62) .

Next we want to add bs and by to s¢ generating a first carry in position 1:

(c1, s0) — Sulladd(so, bs, ba).

This ¢; is a carry to be added to s;. However we do not do this immediately. We
will instead wait until a second carry is generated in this position. Having two
carries we will.then be able to use once again the full adder. So, now we are ready
to'add bs and bg to sy, thereby generating the second carry c,

(¢, sa) «— fulladd(so, bs, bs) .
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Since we now have two carries in position 1 we can use the full adder to compute
sy and s1. Since.s, is known to be zero to start with, the carry to binary place 2
can go directly into it,

(52, 51) = fulladd(sy, 1, ).

No more carry bit are eet now. We are ready to add b7 and bs
(cl, sg) — fulladd(sg, bz, bs)

This sets the carry ¢;. We can agam add bs and by,
(¢, 5o} — fulladd(sg, bg, big) -

‘We now have two carries in position 1. So we use the full adder to generate a carry -
in position 2 (s, was generated earher) _ o -

(cz, s1) « fulladd(sy, ¢1, c}.

We have no more bits to add but we still have a carry set in position 2. To
complete the addition we must use a half adder on this carry ¢z and s,

s3 +— 832 A c¢g,

82<—32®62

Thls completes the update of the lattice. Using the full adder nstead of a half
adder reduces the number of logical operations from 49 to 37." As the dimefrsion
of the.problem is increased the net gain in usmg the full adder over the half adder
increases as well.

‘We now have computed the bmary representation of the number of hvmg nearest—
neighbors for each site. We must decide if this number is in the window of allowed
~ values, i.e., we must now apply the automaton rule. Qur example con51ders rule
R: g, for whlch the only surviving “animals” are those for which the number of
neighbors is either 5, 6, 7, 8 or 9. The binary representation of these numbers is

53  S2 81 8o

© oo =1 Ot
HH.OOO
D e e e
.;:acp-—-r—n.o
o I N

This set of numbers can be expressed as the logical expression (“filter”): -

(55 A (m52) A (=s1)) V ((=3) A (2) A (51V50)) -

Extension to different rules presents. no difficulty.
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To compute the magnetiza,t'ion-,' one must count the number of bits set in field
a. The low-level CM-2 function CM_u_logcount 221 performs this sum in each
processor. The sum accumulated in each processor is then globally summed over
all processors using the Fortran 90 intrinsic function sum(}. B
As stated earlier, the neighbors are accessed using shift operations. For 4 of the
dimensions this is done very simply by using the fortran intrinsic function cshift
which circularly shifts an array along a given dimension. However we mentioned
that the fifth dimension is multi-spin coded along the length of a 32-bit field. These
32 bits are kept inside each processor. There exist one fortran intrinsic function that

will execute this “internal” circular shift of bits, namely ishiftc(}. The program
is the following;: '

’ infeger, parameter :: L=16
" integer, array(L,L,L,L) :: a,s0,s1,s2,s3,c0,cl,c2,c3,c
integer mag, t, tmax '
- tmax=1000 ! do 1000 iterations
do t=0,tmax-1 '
¢ add the number of living neighbors.
! geﬁerating the bit pattern for the result im
! s3-52-51-50
s0=a ! first add self
tcircular shift along the multi-spin- coded axis
cO=ishfic{a, 1;32)
¢ =ishftc(a,-1,32)
call fulladd(so;co,c,sl,SS) 1/%* max sum is 3 = Q0lls/
! now do all the other axis’
c0 = cshift(a,1,1) ‘
c = cshift(a,1,-1)
call fulladd(s0,c0,c,cl,s3) '/+* max sum is 5 = 0101%/
0 = cshift(a,2,1)
¢ = ¢shift(a,2,-1)
call fulladd(s0,c0,c,c3,s3) _
call fulladd{sl,cl,c3,52,s3) !/#* max sum is 7 = 011i%/
<0 = cshift(a,3,1) '
¢ = cshift(a,3,-1)
call fulladd(s0,c0,c,cl,s3) !/*-max sum is 9 = 1001%/
c0 = cshift(a,4,1) .
¢ = cshift(a,4,-1)
¢all fulladd(s0,c0,e¢,c3,s3)
call fulladd(sl,ci-,c3,c¢2,s3) !/% max sum is 11 = 1011 */

! terminate the addition
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c3=iand(s2,c2)!/+ hald-adder : for a max of 11 the last */
s2=ieor(s2,c2)!/* 2 bits cammot be both 1 */ l
1% whose living; whose dead $<=sum<=g */
FES
tthis test bit pat{:erri it has to be adapted to the
11iving window. (could it be better domne?. o)
tthis uses cl as temp storage.
ithere exist omne pai:is call for each line.
1/
a=iorlsl,s0)
a.=ia.nd(a,s.2)
a=iand{a,not (53) ) . ‘
ci=iand(s3,not(s2))
c1=iand(c1,ﬁot(sl))
a=sior(a,cl)
. grite (6,*) "x index ", (1.0*mag(a,s_ﬂ))/(n*n*n*n*SZ.0), » put
end do
) write configuration ...
end .
subroutine fulladd( bo,bl ,b2,r15t) ‘
C Do a full add of bits b0 bi b2 putting them in r1 (most significant bit
c (ms'-b)) and b0 (least significant bit (1sb)). In other words,
¢ take (rl bO) = bO+b1+b2;
C b0 and r1 are the results; t is used temporary; .
¢ bl and b2 are not changed : Co : s
integer, parameter :: L=16 .
integer, array @,L,L,L) :: bO,b1,b2,¥1,t
ri = iand{b0;b1) ) .
b0 = ieor(bo,bl) ' : -
t = 1and(b0,b2)
r1 = ior{rl,t) 'msd
B0 = ieor(b0,b2) !1sb
end
integer functiom magfa,s0)
C Compute the _glbbal magnetis_a-tion
C This just counts the total number of bit set in field a.

C This subroutine uses temporary storage s0

integer, array{:,:,:,:) ::7a,80
integer m
m=0' )

call CM_u_logcount_2_21(s0,a,32 ,32)
! counts bits in ‘a’, storing the result in s0 \

m = sum{s0) ! sums no¥ over all processors
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mag=m

end

. . Program 2. Program to investigate large lattices.

4. Small Lattice Behgviour

Tn this section we use the first program given in the previous section to investigate
a number of questions related with the behavior of all three rules for small lattice
sizes. We start by studying the automata in 5 dimensions (rule R o) and consider
first symmetrical lattices, namely lattices having an equal number L of sites along
each dimension. We followed during 15,000 time steps the evolution of lattices
having 3%, 4, ... , 16° sites and plotted their m(t) x m(t 4 1) evolution-spaces. For '
35 and 45 one obtains after a quite long transient, attractors involving just a few

points. For example, m(t) was found to oscillate between five values for L = 3

and between two values for L = 4. Figure 2 shows the evolution-space for a few L.
values. From it one sees the genesis of the hole inside the triangular-like attractor. |
The figure shows the magnetizations between times 100 and 15,000. If in this figure
only m(t) values for, say, 9,000 < £ < 15,000 were plotted, with exception of L = 4
(where the attractor is just given by two dots symmetrically located with respect
to the diagonal), all other evolution-space plots would have essentially the same
shape,jcontaining of course less points in them. For comparison purposes we also
included L = 16 1n this figure. -

Would it be possible to have a kind of resonance inside the lattice, responsible
for periodic and guasiperiodic behaviors? To get some insight, we considered the
time evolution of asymmetrically shaped lattices with 4* x 5, 43 x 52, 4% x 5% and
4 % 5% sites. For the first three lattices, after a reasonable transient of about 1000
time steps, the systems.landed into a periodic attractor having, for example, 2,
12 and 4 points respectively. The exact number of points on the final attractor
depends on the initial configuration. The 4 x 5% lattice converged after a little -
longer transient. This could-be a sign for the existence of a bigger transient of
the 55 lattice in Fig. 2. We investigated this possibility by further evolving both
lattices for additional 200,000 time steps. The conclusion is that indeed, for the
five different initial configurations for which we followed such long evolution of the
magnetization, the system with 4 x 5% sites always landed on a periodic orbit, with
period varying from two to twelve dots. Tn contrast, for 5% sites the system did not
reach periodic attractors. The “final” attractor was apparently reached for much
less than 100,000 time steps in all cases.

To better check the possibility of a tran51ent we further investigated the 75
lattice for longer times, searching for an eventual transition to a smaller and penodlc
attractor. The result found by considering a few different initial configurations and

following the dynamics for 200,000 time steps is that it always stays on quasiperiodic
orbits.
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Program 1 above was used to investigate lattices containing no more than 32%=
1,048,576 sites. Program 2 was used for lattices containing between 32¢

1,0242
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and 325-= 33,554,432 sites. Our regular runs were iterated for 10,000-15,000 time
steps. But some selected runs were extended up to 200,000 time steps. -

5

5. Transients and Dependence on the Initial Concentration

All plots given in Ref. 3 as well as those in our Fig. 1, were obtained by starting
from configurations having an equal number of “1” and “0” randornly distributed
on the lattice at ¢ = 0. What happens if one starts from an initial magnetization
m(0) #0.57 The answer for rule R g is given in Fig. 3, for m(0) = 0.3: although the
final attractor does not seem to change, the way in which the attractor is approached
varies substantially. Note that in this figure we did not remove the initial transient.
From 0.3 the magnetization increases continuously along the diagonal, converging
first to the inner part of the “triangular” attractor. From there it spirals to the
final attr_&ictor! given by the thicker line, defining the triangle.

- r—T— T T T T I

m(t+1}

o

N OO N N N
02 . : mft) 0.9

Fig. 3. The first 5,000 points for Rf 4, L = 32 and m(0) = 0.30028.

Figure 4 displays the transients for rule R, for two different initial values of
the magnetization, namely 0.520 and 0.579 in Figs. 4a and 4b, respectively. One
sees that a relatively modest change on the initial density of “1” in the lattice is
enough to induce a transition from periodic to a fixed point behavior.

- For very small systems one might also find fixed points or periodic behavior be-
tween very closely lying points. In this latter case the transients can show remnants
of the characteristic triangular shape of the attractor for the larger lattices.

For rule Rg,Q the observed behavior is essentially analogous to that found for
rule Rj’g_ ' :
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6. Finite Time and Size Effects

In order to monitor whether the attractors are also stable after a long time evolution.
or for infinite system sizes one should define a quantitative measure for the fluctu-
 ations occurring around the attractor (see Fig. 1). One way of doing this; based on
the 843 = g(6') map introduced by Chaté and Manneville,? is the following: one
chooses a point P = (m,, m,), located on the diagonal and roughly in the “center”
of the attractor. Then, for each point (m(t), m(t+1)) one finds the angle 6(t) that
corresponds to the point on a polar coordinate system centered at P and with 8 =0
corresponding to the direction of the positive m(¢)-axis. From the several angular
variables so obtained one draws a 6(t). X o(t + 3) graph as shown in our Fig. 5 (see
also Fig. 1c of Ref. 3). One finds a wiggly line along the diagonal. The diagonal is
then divided into Ny equal intervals (bins). For each bin one evaluates the mean
square devialion of the orthogonal distances from the diagonal of each data point'
within the interval with respect to its mean value. The quantity A we want to use
to characterize angular fluctuations is then the average over all these mean square
distances over the Ny, intervals. In other words, we introduce

1 Nbsa 1N;‘_ | , _ _
RN D S ERIat @
. i=1 =1

where the first sum goes over all bins 7, the second sum goes over the N; points
inside each bin and z; = ||8(j) —0(j + 3)||//v/2 is the distance of the point j from
the diagonal. The mean value, as usual, is taken to be {z:) = (1/Ni} ;2. In
order not to have a strong dependénce of A on Ny, 1t is important to drop the

gwarm of points on the upper left corner of Fig. 5. Our calculations were done using
Npin = 100. |
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" Fig. 5. Polar representation of 8(t) X 8(¢ + 3) used to obtain A (see Eq. (3) and the text). Here
~ given for R‘g,},, L = 16 and 100 < ¢ < 5000. '

To see how A varies with time we define A(7) as the A obtained by considering

only -those points after the “transient” 7 and the maximum time for which we
~ followed the dynamics. Such A(r) always reached almost instantaneously a constant

value, which we call A. Its values remained const. So, we see that for a finite size

the attractor is not perfectly periodic but that it consists of three small clouds as '

shown in Fig. 1, even after waiting an infinite time. ,
Comparing the several plots in Fig. 1 one notices that the cloud becomes smaller
with increasing system size. To investigate this size effect one can get in a similar
way the’valies of Ag, for other system sizes L. In Fig. 6 we see n a log-log plot
how A, depends on L. Since the data fall reasonably well on a straight line it

seems that the width A, goes to zero with a power-law Ae L—35. A fit of the
* data to an exponential decay is less good. '

-850

1350 i ! L L. 1 L 1
L2 280 2% 300 30 3m 330 340 350

InL .

Fig. 6. Log-log plot of A(c0) as a function of L for rule Rg,s: here for L= 16, 20, 24, 28 and 32.
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This numerical analysis leads us to conclude that in the thermodynamic limit,
the attractor for rule R3 s will become perfectly periodic since the cloud found for
finite systems even after very long times collapses to three points. Similarly one
finds for rules R} ; and R{ o that the attractor converges more and more towards a
single line, i.e., limit cycle, when the system size increases. So we confirm that the
reported effect survives when the system size goes to infinity; even more: only in

the thermodynamic limit one can really speak of a period three or of a limit cycle
behavior.

7. Phase Transitions in the Presence of Noise

An interesting question to be asked is how stable these atiractors are with respect
to noise. We therefore introduce some noise into the model by flipping after each
update of the system a fraction f of sites, i.e., to turn zeros into ones and vice.
versa. Interestingly the attractor is unchanged for a small amount of noise as seen |
in Fig. 7a for rule R§ . When a critical noise f* = 0.0225 £0. 0045 is reached the
period suddenly disappears as shown in Fig. 7Tb and one finds a smgle fixed point
_ which is also-what one expects in the limit of infinite noise where m(o0) = 1/2. So
we find a first order transition in “temperature” between a periodic behavior at low
temperatures and a disordered phase at high temperatures.

-
LO— | 1o I I I |
| - _
o ‘.? --
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04 | | | l 04 | 1 | Ll
0.4 m(t) 10 0.4 m{I) 1.0

Fig. 7. Phase-spacé for R%,S’ L = 4, when a fraction f of sites is randomly flipped at each time-step -
for (a) f = 0.005 and (b) f = 0.05.

8. Discussion

We have shown how. to efficiently program on the CM-2 the totalistic automata, :
_introduced by Chaté and Manneville. Our numerical results have confirmed the
" existence of periods and limit cycles for certain rules in the limit of infinite times and
sizes. This behavior is stable with respect to small noise or variations in the initial. -
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jon. When either of these perturbation increases first order transitions
are found to single fixed points.
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Fig. 8. Two consecutive views of the plahe a(1,1,1i,j) for ¢, j=1,--32, aft_er a transient of
9,000 time steps, for rule R%,B with L = 32. The numbers represent the sum of nearest-neighbors
of each site. The average magnetization of the full lattice in each view is also indicated. .

The question remains what the nature is of these unusual periodic and quasi-
periodic phases. Even considering the simpler case of the periodic rule R‘é,s it is -
difficult to see how the system can synchronize the local magnetizations such that
the global magnetization can have the observed oscillations. One could for instance
imagine having a regular spatial pattern, i.e., some order which propagates the
necessary information. ‘To investigate this issue we show in Fig. 8 for rule R4 a
two-dimensional slice through a 32* lattice at three consecutive time steps after the
attractor has been reached. On each site we have a number between 0 and 9 which
is the h; defined in Eq. (1). It is striking not to notice any regularity whatsoever.
The same applies when analyzing sequences three time-steps apart, i.e., having the
same global magnetization.

The three values of the global magnetization at consecutive times is given on
top of each configuration in Fig. 9. They are close to 8/9, 7/9 and 5/9 but the
_ deviations from these values are significant even after extrapolating to infinite time
and size. There is therefore no evident symmetry or regularity to be observed in
the system. : '

Another possibility is to see if our results could be explained by a mean-field
approximation. Let us consider only the densities pn (t) of sites having a given value
of h; = n at time t. Then for rule R%)S the magnetization at the next time step
is given by m(t +1) = 1 — po(t) — p1(t) — p2(t) — po(t). The pn can thermselves
be expressed in terms of m(t) by counting all possible local configurations having
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h; = n. So one has for instance pp(t) = 36m2(¢)(1 — m(?))”. Inserting this into
the expression for m(¢ 4+ 1) one finds the mean-field recursion relation for the global
magnetization: -

Cm(t+1) = 1= (1= m(t)® — Im(t)(1 — m(0))® - 36m2(A) (1 = m(®))" = m°(1). (4)

This equation can be iterated and the corresponding plot of m(t+ 1) as function of
m(t), starting from m(0) = 0.8766, is shown in Fig. 9. We see no resemblance to
the attractors we have observed in finite dimensions and in particular no periodic
attractor. Similar plots were obtained starting from 0.2 < m(0} < 0.9. Outside
this range, unphysical results were obtained. Therefore we conclude that the above
mean-field approximation is not very useful in the present case. '
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Fig. 9. The attractor m(t) % m(t + 1) as predicted by the mean-field equation (4), starting from
'm(0) = 0.8766, one of the values in Fig. 8. ' : :

We showed that periodic and quasiperiodic behavior in the global magnetization
is stable for large sizes and times and under small noise and perturbations in the
initial configuration (up to a first order transition). But a deeper understanding of
the phenomenon is still missing. Certainly the scenario is not simple because no
spatial structures cQuld be found and mean-field did not help. More investigations
are needed in order to understand the order-propagating mechanism in these phases.
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