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GRANULAR MEDIA ON A VIBRATING PLATE:
A MOLECULAR DYNAMICS SIMULATION

JASON A.C. GALLAS, HANS J. HEREMANN and STEFAN SOKOLOWSKI
Héchstleistungsrechenzentrum, KFA, D-5170 Jilich, Germany.

When sand or other granular materials are shaken, poured or sheared many intriguing
phenomena can be observed. We will model the granular medium by a packing of elastic
spheres and simulate it via Molecular Dynamics. Dissipation of energy and shear friction
at collisions are included. The onset of Auidization can be determined and is in good
agreement with experiments. On a vibrating plate we observe the formation of convection
cells due to walls or amplitude modulations. Density and velocity profiles on conveyor
belts are measured and the influence of an cbstacle discussed. We mention various types
of rheology for flow down an inclined chute or through a pipe and outfowing containers.

1. Introduction

We consider in this paper some of the many astonishing phenomena that can be
observed when granular materials like sand or powder movel=2. Standaerd examples
are the so-called “Brazil nut” segregation~%, heap formation under vibration®-¥,
density waves emitted from outlets® and 1/f noise in the power spectra local forces'®.
All these effects eventually originate from the fact that granular materials form a
hybrid state between a fluid and a solid: When the density exceeds a certain value,
the critical dilatancy*!2, it is resistant to shear, like zolids, while below this density
it will “Auidify”. In contrast to usual fluids, granular materials might also display
stable density waves. Their presence in fact complicates the characterization and
study of “finidized states”.

There have been so far many attempts to formalize and quantify the compli-
cated rheology of granular media. Continuum equations of motion!®, a cellular
automaton®® and a random walk approach®® have been proposed. But most of the
aforementioned effects have not been so far satisfactorily explained by these tech-
nigues. Molecular Dynamics simulations seem to be a good tool to study these
phenomena in more detail. It is important to observe that molecular dynamics has
already been used to investigate several aspects of granular media. For an extensive
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bibliography see please ref. 2.
Particularly suited to study fluidization is an experiment where sand is put on

a loudspeaker or on a vibrating table®~%16-18 TUnder gravity the sand jumps up
and down and although kinetic energy is strongly dissipated, collisions among the
grains reduce its density thereby allowing it to flow (“fluidization”}). Under certain
circumstances flow between top and bottom can occur in form of convection cells as
has been observed experimentally in the case of inhomogeneities in the amplitude
of the vibration 1°. Also within the heaps®~® convection occurs and might even
be the motor for the heap formation. When the vibration of the plate also has a
horizontal component the material will flow in one direction, a technique often used
in powder transport.

In this paper we discuss Molecular Dynamics (MD) simulations of inelastic
particles with an additional shear friction performed for two-dimensional systems.
We discuss data, for the onset of fluidization!® and give evidence for the occurence of
convection cells due to inhomogeneities in the vibration amplitude or due to walls,
an effect that has also been observed recently?%21, We also report on measurements
of the velocity and density profiles of powder transported on a vibrating belt??. In
fact, MD simulations?® 2% have already been applied to granular media to model
segregation®, outflow from a hopper®®?%, shear flow?” and flow down an inclined

chute?®.

2. Model

We consider a system of IV spherical particles of equal density and with diameters d
chosen randomly from a homogeneocus distribution of width w around dy = 1 mm.
These particles are placed into a container of widih L that is open on the top and
has either periodic boundary conditions or fixed walls in the horizontal direction.
When two particles ¢ and j overlap {i.e. when their distance is smaller than the
sum of their radia} three forces act on particle £: 1.) an elastic restoration force

. . 1 s
£ =Ymil 7 | =5+ i) 2 (la)
2 | 7% |
where Y is the Young modulus (normalized by the mass), m; e d? the mass of
particle i and 7; points from particle ¢ to §; 2.) a dissipation due to the inelasticity
of the collision .
. -

F, = iy ) ety (18)
| 7 | :
where 7 is a phenomenological dissipation coefficient and #3; = #; — ¥; the relative
velocity; 3.) a shear friction force that mimics to some degree the effect of solid

friction -
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Fifear = — e - 8 (1e)
i;:75) I8 the vector 7 ro-

tated by 90°. As compared to other modelizations of the forces acting between

where +, is the shear friction coefficient and ﬁ.g.. = (—rf
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grains® 25272930 oy eqs, 1 are simpler since we neglect Coulomb friction and the
rotation of particles. In fact, solid friction should be proportional to the normal force
but the term of eq. (1c) is always needed to halt the tangential relative motion?®.
We did these simplifications on purpose in order to have less, in our opinion unim-
portant, fit parameters. In fact, under realistic deviations from the spherical shape
of the particles rotations are strongly suppressed.

When a particle collides with a wall the same forces act as if it would have
encountered another particle of diameter dy at the collision point. Two forces act
on the system, on one hand gravitation g = —10m/s® puils each particle down,
on the other hand the bottom of the container is subjected to a vibrating motion
described by:

z(2) = A{z)sin(@nft) | (2)

f being the frequency and amplitude A. In some aplications we will consider an
explicit spatial modulation of A of the form

A(z) = Ao(1 — Bcos(2nz/L)) . (3)

For vibrating conveyor belts the bottom “plate” undergoes harmonic oscillations in
both horizontal (x) and vertical (#) directions according to

2(t) = Agsin(2nft)- and =z({) = A, sin(27 f1) (4)

where f is the frequency and A, and A, are x and z amplitudes, respectively. The
corresponding angle of the composed oscillation is o = arctan(A4,/A4,).

Two initial positions of the particles are considered: they are either placed
regularly on the bottom of the container or put at random positions inside a space
several times as high as the dense packing. The initial velocities are either zero or
randomly chosen. After that the particles are allowed to fall freely under gravity
and relax for a time that corresponds to ten or twenty cycles of the vibration. The
displacements, velacities and energies are then measured by averaging over up to

200 cycles. We use a fifth order predictor-corrector MD with 2 — 6 x 104 iteration

steps per cycle which vectorizes on the Cray Y-MP running at about 16 usec per
particle-update on one processor and simulating up to 2000 particles. The program
was also implemented on eight processors of the Intel hypercube with a speed of
about 3 x 10* updates per second by cutting the system into slices. Each slice
was then treated by one i860 processor interchanging particle positions via message
passing3!.

3. Results

A recent paper!” reported experimental observations of a “fuidized” state in a
2D vertical packing of steel spheres submitted to vertical vibrations. They shake
periodically (at f = 20H z) 300 steel beads inside a irapezoidal cell. Positions and
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Fig. 1. Instant positions (center of circles) and velocities (represented by line segments
emerging form the beads) for the phase @ equal to (a) 7/2; (b) 7; {c) 3%/2; and (d)} 0. In (e)
the center of the circles are the positions at ¢ = (0 while the end of the line segments show the
positions at 15 ms later, A few beads undergoing ballistic flights are not shown. -

velocities of the particles were obtained. We did simulations!® of precisely the same
geometry and number of particles as in the experiment”.

Figures 1a-d show snapshots taken at four different phase-values of the oscilla-
tion, namely, ¢ = 7/2, 7, 37/2 and 0, where = 2xft. The solid lines represent
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the actual position of the cell while dotted boxes stand for their starting position at
@ = 0. The dots inside represent head positions while the line segments emerging
from them represent instant velocities. By comparing Figs. la~d among each other it
is possible to reconstruct the motion of the beads during a full cycle of the shaking.
Starting at ¢ = 0, the bottom of the cell goes up, thereby transfering momentum to
the spheres. One can see that there is a delay in the transmission of the momentum
to the top layers as one might intuitively expect. In Fig. la the cell is at the highest
possible position and starting to reverse its movement. Note that the particles a$
the top still have enough velocity to keep going up. Figure le is intended to be our
equivalent of Fig. 1 of Clement and Rajchenbach'”. Dots still represent positions of
the spheres at ¢ = 0 but now the end of the line segments indicate positions of the
particles at a tirme { = 15 ms later. From such snapshots it is easy to realize that
while movement of “computer” spheres is rather symmaetric with respect to a reflec-
tion about a vertical line passing through the center of the cell, the corresponding
experimental picture obtained by Clement and Rajchembach is not so. We attzibute
such differences to small uncontrolable non-uniformities in the experimental setup.

To check whether the present model is at all able to display a transition from a
solid- to a fluid-like state we varied both frequency f and amplitude A of the oscilla-
tions., We recorded the trajectory of a selected “tracer” particle, and monitored its
motion as time evolved. In the solid-like case the tracer particle remains confined
to a very small region while in the flnid-like case the trajectory seems to explore the
entire box. It is important to note that both situations can eceur for the same value
of Af? which means that, contrary to widespread believe, Af? is not a good scaling
variable even close to the onset of fluidization. As more extensively discussed in
ref. 16, our simulations reprodiced quantitatively quite well the experimental data
reported in ref. 17.

Fig. 2. Displacement of the particles after 15 cycles for f = 70Hz using 200 particles
in a box with periedic boundary conditions of size L/dp = 20 with Ag = 1.8dq, B = 0.5,
w=05,Y = 5000/do, v = 20g and 7, = 400/ f.
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Next we considered the case of a spatial modulation in the amplitude of the
vibration, i.e. B # 0 in eq. (3), using periodic boundary conditions.*® In Fig. 2
we see the displacements of the particles after 16 cycles for B = 0.5. Clearly the
particles flow upwards in the center where the amplitude of the vibration is larger
and form two convection cells. If the dissipation coefficient 4 is increased by a
factor of ten the convection is completely suppressed while it is quite insensitive
to 4y, even if 7, = 0. The elastic modulus also has only a very weak influence as
long as it remains larger than 10% (in units of dp). The initial condition plays no
noticeable effect showing that convection is no transient effect. The polydispersity
w of the particles only slightly distorts the shape of the convection cells.

The strength of the convection was measured quantitatively by recording the
average vertical components of the velocities of the particles in the center and at
the edges. These quantities have also been measured experimentally by Ratkai?®,
The strongest convection for the aforementioned parameters is obtained around
60 Hz and it increases dramatically with the amplitude Ay as was also seen in
the experiment’®, This resonance seems to be the driving force of the convective
mofion.

A completely different type of convection can be caused by the existence of fixed
vertical walls without any spatial moedulation of the amplitude®®, ie. for B =0
in eq. (3). One sees in Fig. 3 for 7, = 0 convection cells where the motion of the
particles at the wall is upward. On the other hand, when v, # 0 there is at each
wall a very strong downward drag giving rise to a convection in the opposite sense.
When the celi is made larger the two convection cells remain attached to the walls
showing that the walls are at the origin of these cells. One also recognizes a slight
heap formation close to the wall which might be a first sign of the famous sand
heaps discovered by Faraday®~2.

Fig. 3. Displacements after 20 cycles in a system with fixed vertical walls for B =10,
w=0.57Y =5000/dy, f=20Hz, N = 200, L = 20dg, Ag =2.0 dp, v = 80g, v, = 0.
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Let us next discuss the Behaviour of vibrating conveyor belts?®, i.e. gramular
material under harmonic vibrations having a given angle with respect to the di-
rection of gravity as described in eq. (4). Vibrating conveyor belts as a means of
transportation are very fypical for granular media, since neither solids nor fluids
can be moved on them and are used for instance in the pharmaceutical industry to
transport pills 32,

We measured density and velocity profiles as a function of height z in the steady
state. Close to the belt the local density is very small, then it has a maximum and
at large heights it falls off, Only at low frequency the local density shows a plateau
extending up to larger z values. When the frequency increases, the maximum of the
local density decreases and the density profile smears out. The tail at large heights
indicates the existence of particles in a gas-like state above the free surface of the
packing. The density profile is rather independent on the angle of vibrations which
means that the vertical component of the vibration determines almost completely
the vertical density of the beads, When the friction coefficients decrease, the system
becomes more gas-like. Only very close to the belt the profiles seem independent
on the friction. The velocity profiles exhibit a well-developed plateau, showing that
almost all particles move at the same speed. Ohviously, the velocity increases with
increasing frequency and decreasing angle of vibrations and for 7, = 0 the velocity
is zero. For 7, > 50g the velocity profile depends only very weakly on the shear
fricticr: coefficient.

Let us consider the trajectories of the particles during one cycle of shaking.
When the frequency is low enough all the beads move syachronously along elliptic
trajectories. The tilting angle of these ellipses increases with the angle of vibrations.
For smmaller shear friction coefficients 7, the tilting angle tends to /2, provided the
vibration frequency is low enough. When the beads start to flow, the character of
their trajectories changes: at not too high frequencies they move along sinusoidal
curves. With increasing frequency, the trajectories become flatter and at the highest
frequencies we observe a mearly horizontal flow (see Fig. 4a). A decrease of the
vibration angle makes the horizontal motion more pronounced. A similar effect
occurs when the friction coefficients are increased. For vanishing shear friction 7.
the beads move essentially vertically.

Next we checked how a circular obstacle inserted into the system influences the
flow. To this end, a fixed circular body was inserted at z: = L/2, z; = A.. The
diameter of this obstacle was varied from dy == 0.1dg to di = 2.5d,. The parameters
characterizing the interactions of the obstacle with the particles were the same for
particle-particle interactions. Note that due to the periodic boundary condifions,
the obstacle is repeated along the belt. Even the presence of a rather small obstacle
rapidly slows down the flow. In Fig. 4b we see the trajectories of the particles
for an obstacle of d; = 1.5dy with the same parameters as in Fig. 4a. Clearly the
presence of the cbstacle changes the trajectories of all the particles considerably.
So, we cannot treat the obstacle as only lccally influencing the flow, because the
stiff repulsion between particles generates long-range correlations.
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Fig. 4. Trajectories of the particles in steady state during a single cycle. The position of
each particle is plotted after every 50 iteratiom steps. The plots were obtained for A, = dp,
a = 7/d, v =, = 50g and f = 80 Hz. (a) without and (b) with an obstacle of diameter
n?\@.o = 1.5 given by the full circle.

Using similar techniques but including the Coulomb (dynamic) friction and
rotations of particles as in® new simulations were made recently for the flow out
of & hopper®®, flow down an inclined chute®® and flow through a pipe®™. Because
of the lack of static friction the simulations of the hopper have not reproduced
the observed density waves® but nevertheless they find the existence of a minimal
outlet diameter due to some kind of arching which is larger for equal sized particles
than for randomly distributed radia. The simulations down an inclined plane very
accurately reproduce the various types of flow and the dependence of the velocity
profile on the smoothness of the plane as they were observed in recent experiments®.
Flow through a vertical pipe with rough walls®® was found to generate density waves.
Their appearance and speed strongly depends on small details of the initial positions
of the grains. The similarity to the experimental situation was illustrated in a movie
shown at this conference. Including also the static friction into the simulation as
in ref. 28, heaps and avalanches were obtained and various characteristic angles

(repose, minimal stability, tilting) were measured®®.

4. Conclusion

Using a rather simple twe-dimensional model of an ensemble of inelastic spheri-
cal particles with shear friction we have shown that many Interesting rheological
properties of granular materials can be reproduced. Not only relative magnitudes
of friction forces play a decisive role but constraints and boundary conditions have
also a great impact on the possible dynamical behavior observed. Various types
of convection can occur on a vibrating plate and density waves appear during the
flow through a pipe. We illustrated these sirnnlations in a movie. Three dimensional
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simulations should also be performed but it is difficult tc treat systems large enough
to ensure the reliability of the results.
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