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We use the equations of motion for a particle moving in one dimension under the action of
forces which vary cubically with displacement to discuss differential equations associated with
double-periodic Jacobian elliptic functions. We show that analytic solutions for this dynamical
system can be given in terms of Jacobian elliptic functions. These periodic functions are natural

extensions of the well-known trigonometric functions.

1. Introduction

In this Letter we present analytic solutions of the
differential equation

E+a+fr+yr+er®=0, (1)
where a, 3, v and ¢ are constant parameters. The
solutions are given in terms of Jacobian elliptic func-
tions. The problem as defined by Eq. 1 originates
from a lecture given in 1860 by Weierstrass and
was recently reconsidered in a very interesting pa-
per by Reynolds {1989]. The existence of analytical
solutions for nonlinear differential equations such
as Bq. 1 is of interest today because, when pro-
perly driven or modified to include dissipation, they
are used to model a number of physical situations
which present limit-cycle behavior and for which
chaotic dynamics is known to occur; for example,
see the book by Thompson & Stewart [1986] or any
recent book on nonlinear dynamics. In particular,
Eq. 1 above contains the cubic nonlinearity charac-
teristic of the Duffing oscillator. As mentioned by
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Reynolds [1989], even though analytic solutions for
Eq. 1 must have been known for a long time, their
derivations are not trivial and not easily found in
the literature. Moreover, the final forms of the
solutions can be quite complicated in some cases
[Reynolds, 1989]. Reynolds presented a derivation
of a solution of the above equation in terms of the
Weierstrassian elliptic function [Byrd & Friedman,
1971] P(t) = P(t, g1, g2). We believe solutions in
terms of Jacobian elliptic functions are easier to
obtain and “more transparent” than the equivalent
ones in terms of Weierstrassian functions. Solutions
of Eq. 1 also appear in the semiclassical Jaynes—
Cummings model without the standard rotating-
wave approximation, describing the interaction of
N two-level atoms with a single mode electromag-
netic field inside a resonant cavity [Kujawski, 1987;
Kujawski & Munz, 1989; Jelenska-Kuklinska & Kus,
1990], as well as in the description of some com-
plicated codimension-2 phenomena present in some
laser plasmas [Braun et al., 1992; Gallas, 1993].

As is known, elliptic functions defined by
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Weierstrass and Jacobi are related to each other by
the formula

_ g
0= e

Pty — €1
en(yt) = 4/ %_—63 ) (2)
dn{yt) = \/%:—Z,

where in these three equations ¥2 = e; — e3 (not
the arbitrary v of Eq. 1) and all further symbols
are defined by Byrd & Friedman [1971]. However,
unlike the Jacobian function sn ¢, which has
a simple pole, Weierstrass’ elliptic function P(t)
has a pole of order 2 in any primitive period-
parallelogram. Qur motivation in looking for so-
lutions of Eq. 1 in terms of Jacobian rather than
Weierstrass elliptic functions, is that the former can
be regarded as natural “extensions” of the familiar
trigonometric functions. By properly investigating
the behavior of the periodic solutions of Eq. 1, one
may hope to gain insight into the general behavior
of the solutions of other commonly used nonlinear
differential equations. Recall that analytical solu-
tions for nonlinear differential equations are rare.

Altogether there are twelve Jacobian elliptic
functions which can be conveniently defined on a
canonical lattice. They depend on a parameter m
varying continuously between m = 0 (trigonomet-
ric limit) and m = 1 (hyperbolic limit). They
are doubly periodic meromorphic functions with a
real period given by 4K(m), K(m) being the
complete elliptic integral of the first kind. For more
on the properties of Jacobian elliptic functions,
sece for example Byrd & Friedman [1971],
Abramowitz & Stegun [1972] or Neville [1951]. To
simplify the notation, we will sometimes abbreviate
sn t = sn(t, m), ete.

We consider the differential equations obeyed
by Jacobian elliptic functions. Differential equa-
tions frequently quoted in standard texts for Jaco-
bian elliptic functions are not the most convenient
ones for applications. For example, the standard
textbook differential equations are

{%1}2 = (1 —sn®t)(1 — msn?t), (3a)
[~ (et +mety), (6D

}2 = (1—dn*t)(dn’t—1+m). (30)

The appealing point is that they are all of first
order. However, they involve multivalued square-
root functions. For m = 0 it is not even possi-
ble to correctly recover from them the trivial set
of formulas

d(sint) d(cost) .
7 =cos t, o = —sin ¢. (4)

This example shows that, rather than properly
being “differential equations,” Eqs. 3(a—c) refer to
something closer to “differentiation rules.” For
application in physical problems, these equations
are rather limited if not at all useless. Other dif-
ferential equations are therefore required. Table 1
shows the first and second derivatives of the twelve
Jacobian elliptic functions. It is interesting to point
out that even modern surveys of elliptic functions
such as the recent book by Lawden [1989) still lists
the “standard” differential equations mentioned
above. The present author holds the opinion that
the differential equations as defined in Table 1 are
more useful for applications. Below we show how
to use Table 1 to -solve Eqg. 1.

The first derivatives can be found in almost any
book on elliptic functions although not always in the
most simplified form (see Byrd & Friedman [1971],
for example). First derivatives are always propor-
tional to the product of the corresponding copolar
trio. From the second derivatives one sees that Ja-
cobian elliptic functions obey very simple second
order nonlinear differential equations. These equa-
tions may also be obtained by working with radi-
cals. However, we believe the direct calculation of
second derivatives to be a convenient way of ob-
taining the essence of what is needed to solve Eq. 1.
Second derivatives also stress the fact the Jacobian
functions are periodic solutions of a harmonic oscil-
lator perturbed by a cubic term. We have not seen
expressions for such derivatives in the literature be-
fore. From Table 1, one clearly sees that rather
than first-order, it is best to work with second-order
differential equations for Jacobian functions. Note
that the coefficients of the equations for sn ¢ and cd
t as well as those of dc ¢ and ns ¢ are the same.

By changing variable in Eq. 1, according to y =
pz + ¢, one obtains (with p, ¢ constants)

i+ pey® + (3ge + P
+(3¢2e+2qv+8)p*y+p(Pe+a*v+gB+a) =0,
(5)
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Table 1. The first two derivatives of the twelve Jacobian elliptic functions.

Function First Derivative Second Derivative

sn(t, m) cn(t, mydn{, m) 2m sn®(t, m) — (1 + m)sn(t, m)
cn(, m) —sn(t, m)dn(t, m) —2m en®(t, m) — (1 — 2m)en(t, m)
dn(t, m) —m sn(t, m)cn(t, m) —2 dn®(t, m) + (2 — m)dn(t, m)
sd(t, m) cd(t, m)nd(t, m}  —~2m(1 — m)sd®{#, m) — (1 — 2m)sd(t, m)
cd{t, m) —(1 — m)sd(t, m)nd(t, m) 2m cd®(t, m} — (L + m)cd(t, m)
nd(t, m) m sd(t, m)cd(t, m) —2(1 — m)nd®(t, m) + (2 — m)nd(t, m)
sc(t, m) nc{t, m)de(t, m) 2(1 — m)sc®(2, m) + (2 — m)sc(t, m)
nc(t, m) sc(t, m)de(t, m) 2(1 — m)nc®(t, m) — (1 - 2m)nc(t, m)
de(t, m) (1 — m)sc(t, mne(t, m) 2 dc*(t, m) — (1 + m)de(t, m)
ns(¢, m) —ds(t, m)es(t, m) 2 ns*(t, m) — (1 + m)ns(t, m)
cs(t, m) -ns(t, m)ds(t, m) 2 cs*(t, m) + (2 — m)es(d, m)
ds(t, m) —cs(t, m)ns(t, m) 2 ds®(t, m) — (1 — 2m)ds(t, m)

which for ¢ = ~v/(3¢) reduces to

i+ pey® +p*(8 — v/ (3€))y

+pla—v6/(3e) + 24 /(27e¥)] = 0. (6)

These expressions show that, by properly chosing
¢, one might get rid of the quadratic or of the con-
stant term but not of both simultaneously for
arbitrary values of o, 3, v and e, although this
might happen for particular choices of them. There-
fore “bare” Jacobian functions cannot be expected
to be solutions of Eq. 1 for arbitrary values of
the parameters. Solutions however can now be
easily found by adding a constant term to any of
the twelve functions in Table 1. This procedure is
in sharp contrast with the solution of linear differen-
tial equations where the simple addition of constant
terms only affects solutions in a trivial way.

Writing one of the solutions of Eq. 1 in the form
(with a, b constants)

z(t) = a + bsnlw(t — tp), m], (7)

where £y is an arbitrary initial value, it is easy to
obtain from Table 1 that Eq. 8 is valid.

UJ2

b2

2

i+ 1 +m)(z—a)—2m (z — a)

-2
W
+ b—z[b2(1 +m) — 6ma?)z +

w2
=I— ﬁa[bQ(l +m) — 2ma?|

By equating the coefficients of z* between Egs. 1
and 8 one obtains a system of nonlinear equations
that allows one to express (a, 3, 7, €) as functions
of (a, b, w, m) and vice-versa. Although there is a
large family of possible solutions, since m is
restricted to the interval {0, 1] we do not expect to
find solutions for every arbitrary set (o, 8, 7, £).
The precise delimitation of all allowed parameter
intervals is not a trivial task and will not be
attempted here. Table 2 summarizes the twelve
nonlinear systems of equations that are obtained
by considering every one of the functions in Table 1
in the Ansatz of Eq. 7. From this table one sees
that solutions always require v = —3ae.

In conclusion, we have shown that the nonlinear
differential equation (1) has periodic and analytical
solutions that can be conveniently written in terms
of Jacobian elliptic functions. We showed that ex-
plicit solutions for a set of parameters (a, 3, v, €)
involve the solution of some nonlinear systems of
equations. These systems of equations are sum-
marized in Table 2. Jacobian elliptic functions are
natural but nontrivial extensions of the familiar
trigonometric and hyperbolic functions. In a broad
sense, the oscillator defined by Eq. 1 is more fun-
damental then the familiar harmonic oscillator and
contains it as a particular case. Some applications
of elliptic functions as models of dynamical systerns

6mwla 5  2mw? 3
z PR =0.
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(8)
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Table 2. Nonlinear systems of equations defining the parameters of the solutions of Eq. 1,

Function ab? fw? Bb? fw? ¥b? Ju® S e
sn —a[p?(1 + m) — 2ma’] b (1 -+ m) — 6ma’ frma —2m
cn —a[b*(1 —2m) + 2ma? b*(1 — 2m) + bma® —6ma 2m
dn alb?(2 — m) — 247 —5%(2 — m) + 6a® —6a 2
sd —afb?(1 — 2m) + 2m(1 — m)a?] b3(1— 2m) +6m(l —m)a®> —6m(l-m)a 2m(l - ™m)
cd —alt*(1 + m) — 2ma’] b*(1 + m) — 6ma® 6ma —2m
nd a[b?(2 — m) — 2(1 — m)a’] —6*(2 — m) + 6(1 — m)a? —6(1 —m)a 2(1 —m)
sc a[b2(2 —m) +2(1 —m)a®] —63(2 —m) — 6(1 — m)a? 6(1—m)e —2(1-m)
ne —ajp?*(1 — 2m) — 2(1 — m)a?] ¥*(1 — 2m) — 6(1 — m)a® 6(1-m)e —2(1-m)
de —a[b?* (14 m) — 2a7| b*(1 4+ m) — 6a* 6a -2
ns —a[t?(1 +m) — 247 b2(1 + m) — 6a” 6a -2
cs alb?(2 — m) + 2a%] —b%(2 — m) — 6a® 6a -2
ds —alp?(1 — 2m) — 247 b2(1 — 2m) — 6a® Ba -2

will be published elsewhere.
Gallas [1992).

One example is in
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