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We present a study of ocean convection parameterization based on a novel approach which
includes both eddy diffusion and advection and consists of a two-dimensional lattice of bistable
maps. This approach retains important features of usual grid models and allows to assess the
relative roles of diffusion and advection in the spreading of convective cells. For large diffusion our
model exhibits a phase transition from convective patterns to a homogeneous state over the entire
lattice. In hysteresis experiments we find staircase behavior depending on stability thresholds
of local convection patterns. This nonphysical behavior is suspected to induce spurious abrupt
changes in the spreading of convection in ocean models. The final steady state of convective cells
depends not only on the magnitude of the advective velocity but also on its direction, implying
a possible bias in the development of convective patterns. Such bias points to the need for an
appropriate choice of grid geometry in ocean modeling.

Keywords : Oceanic convection; ocean modeling; model grid; coupled map lattice; bistable maps.

999



March 31, 2004 10:31 00964

1000 P. G. Lind et al.

1. Introduction

An important and difficult problem in geophysical
fluid dynamics is to develop efficient and reliable
computer codes for modeling numerically complex
spatiotemporal phenomena. For example, the nu-
merical modeling of ocean dynamics is based on a
discretization of the partial differential equations
which describe how the fields of velocity, temper-
ature, pressure and salt content evolve [Peixoto &
Oort, 1992; Heidvogel & Beckmann, 1998]. Depend-
ing on the space and time scales used, this dis-
cretization yields a hierarchy of models. They go
from the relatively simple “box models” [Rahm-
storf, 2001], based on a small number of subsys-
tems, up to large grid models, when a rigid time-
step and mostly a rectangular grid are used and
subgrid processes are parameterized [Heidvogel &
Beckmann, 1998; Haltiner & Williams, 1992]. The
latter models lead to reasonable results but a few
physical processes are not very well represented,
especially when they involve a subgrid scale and
are highly nonlinear. One such nonlinear process
is convection. Despite being a small scale pro-
cess, convection competes with the large scale pro-
cess of eddy diffusion and advection in determin-
ing ocean circulation. Since convection is a subgrid-
scale and a nonhydrostatic process, it needs to be
parameterized.

The common parameterization of convection
(as applied to 3D ocean models) is called convec-
tive adjustment (CA) and works as follows: when-
ever the water density at a grid point in any layer
becomes larger than the water density in the un-
derlying grid point, the water volumes of the two
grid boxes are instantaneously mixed, i.e. the two
grid points are set to the same averaged tempera-
ture and salinity. Now, this convective adjustment
scheme induces an extremely strong nonlinearity
into the system which can be studied with simple
box models [Welander, 1982; Lenderink & Haarsma,
1994]. In convection box models, the CA scheme is
applied to two vertically adjacent grid boxes in con-
tact with the environment [Lenderink & Haarsma,
1994]. Using convection box models it can be shown
that, for certain conditions, the local convection dy-
namics is bistable: both permanent convection and
permanent density stratification (no convection) are
then coexisting stable stationary states of the sys-
tem. This local bistability in a discretized model
grid suggests the introduction of an approach based
on coupled map lattices [Kaneko, 1993; Kaneko &
Tsuda, 2000].

The aim of the present paper is to introduce
a novel approach, based on coupled map lattices,
to study convection parameterization. Coupled map
lattices (CMLs) consist of a coupled grid of dis-
crete sites in which every site has its (local) dynam-
ics governed by a given map (function). Both time
and space are discretized in CMLs. For a suitable
bistable cubic map [Cabral et al., 1993; Brunnet
& Gallas, 1998; Kapral & Oppo, 1986], this paper
shows how CMLs can be used as an idealization of
the convection parameterization in ocean circula-
tion models. While purely diffusive CMLs work well,
a much more realistic modeling is obtained when
advection is also incorporated [Lind et al., 2002a,
2002b].

CMLs are currently widely used as models
for studying pattern formation and spatiotempo-
ral chaos, having many applications in several fields
such as optics, quantum field theory [Beck, 1995;
Hilgers & Beck, 2001], KPZ equations [Pikovsky &
Kurths, 1994], biophysics, fluid dynamics, chemi-
cal reactions, plasma physics, etc. [Kaneko, 1993;
Kaneko & Tsuda, 2000]. Pattern formation oc-
curs in ocean models as well. Some authors found
multiple equilibria of convection patterns in ocean
models with CA [Lenderink & Haarsma, 1994;
Rahmstorf, 1995; Vellinga, 1998]. The existence of
different equilibria has been shown to be a conse-
quence of local convective bistability. It is still a
matter of debate whether these multiple equilibria
are physical or rather artifacts of the CA scheme. In
a study with a high-resolution 3D-model it was re-
cently shown [Molemaker & Dijkstra, 2000] that the
commonly used CA scheme can introduce erroneous
grid scale variability. A similar behavior was found
in [Cessi, 1996] where a simplified model for CA ex-
hibits grid-scale instability. The interaction of CA
with horizontal diffusion was studied with a one-
dimensional CML in [Cessi & Young, 1996] where
sensitivity to small changes in the initial conditions
was detected.

Whereas the latter two studies were performed
with local oscillating dynamics in a one-dimensional
CML, the present work uses a two-dimensional
CML with local bistable dynamics. The reason
for that lies on the assumption that, as is known
[Lenderink & Haarsma, 1994; Kuhlbrodt et al.,
2001], different areas of the North Atlantic may
operate in three different regimes: (i) monostable
and nonconvective, (ii) monostable and convec-
tive or (iii) bistable. Thus, the existence of these
three regimes indicates that a reasonable way of
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mimicking this dynamics could be to use a CML
ruled by a local map supporting two stable attrac-
tors capable of coexisting over some domain. Fur-
thermore, in a study of tracer advection schemes
it was shown [Hecht et al., 2000] that some advec-
tion schemes behave in a very different way after
tilting the horizontal grid by 45◦. From these stud-
ies of the CA algorithm and of advection schemes
it can be concluded that modeling convection with
CA exhibits complex behavior that is not yet fully
understood, and this motivates the present study.

In this paper we investigate the development
of convective patterns in ocean models with CA
scheme both with and without advection, using a
two-dimensional CML model. As will be seen, with
the CML model it is not difficult to isolate the main
physical processes, such as diffusion and advection,
in order to detect and investigate those effects and
artifacts of the CA scheme that may be hidden or
hard to identify when the full physics is modeled.
The present study extends a previous investigation
of the effects of advection on a one-dimensional ring
of maps [Lind et al., 2002a, 2002b] by investigat-
ing the role of advection in a horizontally extended
(two-dimensional) CML.

The heart of the two-dimensional CML that we
introduce to model ocean convection consists of a
local cubic map f(xt) ≡ f(xt(i, j)) defined at each
site (i, j) of the lattice by

xt+1 = f(xt) = −x3
t + axt + b , (1)

where a and b are local control parameters [Cabral
et al., 1993; Brunnet & Gallas, 1998; Kapral &
Oppo, 1986]. In this map, b controls the bistabil-
ity and plays the same role as surface fluxes of heat
and freshwater in a convection box model. The am-
plitudes xt represent the stratification of the ocean.
If xt is positive, there is no or weak stratification,
whereas negative xt indicates strong stratification.
The maps are coupled by eddy diffusion and advec-
tion. Thus, we have a two-dimensional CML repre-
senting three fundamental processes, each one con-
trolled by a physical quantity: convective bistability
by parameter b, eddy diffusion by the diffusion con-
stant, and advection by the velocity vector. With
this tool, we investigate the relative roles of diffu-
sion and advection in the spreading and transport
of convective patterns.

The paper is organized as follows: Section 2 de-
scribes the diffusive CML model for ocean convec-
tion, presenting general results concerning bound-
ary conditions, initial conditions, and bistable local

dynamics. Then we present results obtained using
purely diffusive models. First, in Sec. 3, we con-
sider the general behavior of convective and non-
convective states for two sets of initial conditions
of great interest. After that, in Sec. 4, we present
the distributions of the convective and nonconvec-
tive states which characterize the bistable regime in
ocean circulation. Furthermore, since some param-
eters depend on the latitude in the climate system,
we consider both homogeneous and heterogeneous
parameter distributions in the local cubic map. In
addition, Sec. 4 reports some hysteresis experiments
showing that local patterns can sensitively deter-
mine the global behavior when certain thresholds
of the bistability parameter b are overcome. Next,
in Sec. 5, in addition to diffusion, we investigate
the effect of advection as recently introduced in
CML models [Lind et al., 2002a]. When includ-
ing advection we find that the final steady states
attained by convective patterns depend strongly
not only on the magnitude of the velocity vector
but also on its direction. Finally, Sec. 6 presents
our conclusions and discusses the relevance of these
results for 3D ocean models.

2. The Diffusive CML Model of

Ocean Convection

As is well known [Kaneko, 1993; Kaneko & Tsuda,
2000; Lind et al., 2001a], the time evolution on a
purely diffusive lattice of coupled maps is governed
by

xt+1(i, j) = f(xt(i, j)) + εDi,j(t) , (2)

where f(xt(i, j)) represents the local map (defined
by Eq. (1) in the present paper), and Di,j(t) repre-
sents a two-dimensional discretization of the diffu-
sion operator,

Di,j(t) =
1

4
[f(xt(i + 1, j)) + f(xt(i − 1, j))

+ f(xt(i, j + 1)) + f(xt(i, j − 1))

− 4f(xt(i, j))] , (3)

where ε (0 ≤ ε ≤ 1) is the coupling strength, re-
garded here as the eddy diffusion constant in the
ocean, i and j label individual sites and take inte-
ger values between 1 and L, inclusive. As already
mentioned, the function f(x) represents the nonlin-
ear map which rules the local dynamics in each site
(i, j) of the lattice.

In ocean models, the diffusion is computed
from xt(i, j) in spite of f(xt(i, j)). It was checked,
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Fig. 1. Sketch of a 5 × 5 CML model of ocean convection,
composed by the actual “lattice” (enclosed by the dashed
box) and its boundary conditions. Similar symbols are used
to denote sites having the same number of coupled neigh-
bors: ◦, • and ⊗ denote coupling to 4, 3 and 2 neighbors,
respectively.

whether this makes a difference, and it turned
out that the results are qualitatively very similar.
Therefore, we kept the diffusion type which is more
common in CML studies.

Our CML model of ocean convection consists of
a two-dimensional lattice with L×L sites coupled to
its neighbors, as indicated schematically in Fig. 1.
In this paper we work with a 16×16 lattice, forming
a mesh corresponding to a grid resolution of 250 km
over an area of 4000 km × 4000 km in the ocean,
which is approximately the order of magnitude of
the North Atlantic.

As indicated schematically in Fig. 1, the lattice
is surrounded by a no-flux boundary where

xcorner
t+1 =f(xcorner

t )

+
ε

4

[

2
∑

1

f(xneighbor
t )−2f(xcorner

t )

]

xside
t+1 =f(xside

t )+
ε

4

[

3
∑

1

f(xneighbor
t )−3f(xside

t )

]

.

These equations reduce to Eq. (2) when we con-
sider a forward scheme discretization [Haltiner &
Williams, 1980] for boundary sites perpendicular to
the lattice sides.

After a suitable transient, the local value xt of
the cubic map at each site (i, j) will have converged
to a state near to either the positive or the nega-
tive fixed point of the cubic map, namely to either
x+

s or x−
s . As mentioned above, this dichotomy of

final states is at the heart of our model: it is used to
represent the existence or not of convection at ev-
ery grid point of the mesh covering the ocean region
of interest. Accordingly, we introduce the following
convention: positive fixed points x+

s correspond to
“convective” states while negative fixed points, x−

s ,
correspond to “nonconvective” states. In this way
we have effectively codified into our CML model,
Eq. (2), the three different local regimes found in
the ocean [Lenderink & Haarsma, 1994; Kuhlbrodt
et al., 2001].

From the three rectangular boxes in Fig. 2
it is clear that, depending on the value of b, the
CML may be found in any one of the three pos-
sible ocean regimes mentioned in the introduction:
(i) monostable and nonconvective, (ii) monostable
and convective or (iii) bistable. The amplitudes
xt(i, j) represent the stratification of the ocean
at (i, j). If this amplitude does not change (fixed
point), then xt(i, j) > 0 corresponds to a lack of
stratification (permanent convection — complete
vertical mixing) while xt(i, j) < 0 corresponds to
intense stratification (no convection).

As mentioned above, we mimic the convec-
tive and nonconvective states of ocean circulation
through a cubic local map f(xt(i, j)) defined in
Eq. (1). The parameter b in Eq. (1) controls the
bistability of the map and may be regarded as
a sort of buoyancy forcing or, equivalently, as an
atmospheric surface temperature.

Ocean stratification has a time-evolution with-
out intrinsic oscillations in the short time scale. Ac-
cordingly, we fix a = 1.5 so that the interval of bista-
bility contains only fixed points, as might be seen in
the bifurcation diagram shown in Fig. 2. For a = 1.5
one finds bistability to be present in the interval la-
beled BIS in Fig. 2, delimited by −β ≤ b ≤ β, where
β ≡

√
6/18 ' 0.136, and −1.12 ≤ x0 ≤ 1.12. In-

side the BIS box, solid lines indicate the two stable
fixed points, the red shading represents the basin
of attraction of the positive fixed point, x+

s , while
the yellow shading indicates the basin of the neg-
ative point x−

s . The two adjacent boxes NC and
C in Fig. 2 indicate the intervals of b where one
finds only a single fixed point, corresponding no-
convection (x−

s ) or convection (x+
s ), respectively.
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Fig. 2. Bifurcation diagram and corresponding basins of attraction for Eq. (1) with a = 1.5: the yellow region represents the
basin of attraction of attractor L (“L”ower) and purple indicates the basin of the other attractor U (“U”pper). The basins
are symmetric with respect to the point x = 0 and b = 0. Inside the box −β ≤ b ≤ β, where β =

√
6/18 ' 0.136, one finds

bistability, where each fixed point (solid lines) has a complementary basin of attraction. The basins of |±∞| are also indicated
(green region). NC, BIS and C refer to the nonconvective, bistable and convective intervals of b, respectively.

From Fig. 2, one sees that for b > 0 the larger
region inside the BIS box is covered by the basin of
attraction of x+

s , while for b < 0 the larger basin is
that of x−

s . This difference in basin sizes is impor-
tant for the interpretation of results that follow.

3. General Behavior of Convective

and Nonconvective States

To probe the dynamical behavior of the model in
a general way we perform two independent simula-
tions, each one for a different set of initial conditions
(ICs): (i) Gaussian ICs, xg

0, given by

xg
0(i, j)=x−

s +(x+
s −x−

s )

× exp

[

−
(

i−ic
2(∆i)2

)2

−
(

j−jc

2(∆j)2

)2
]

, (4)

and (ii) “front-like” ICs, xf
0 , given by

xf
0(i, j) = x−

s + (x+
s − x−

s )

× 1

N
i

∑

k=1

exp

[

−
(

k − ic
2(∆i)2

)2
]

, (5)

N =

L
∑

k=1

exp

[

−
(

k − ic
2(∆i)2

)2
]

, (6)

where (ic, jc) is the location of the center of the
Gaussian function in (i) and ic denotes the location
of the front in (ii), |x+

s − x−
s | is the “amplitude” of

the distribution and N normalizes the sum in (5).
As will become clear in Secs. 4 and 5, these ICs are
the most interesting for our purposes. Notice that
the numerical values of ∆i, ∆j as well as the center
of the Gaussian need not be integers, i.e. we may
use fronts centered off-lattice, if convenient.

Figure 3 shows the time evolution imposed by
Eq. (2) (i.e. in the absence of advection) when
started from each set of ICs (4) and (5). As may be
seen from these equations, each initial condition as-
sumes a value in [x−

s , x+
s ] and belongs to one of the

two possible basins of attraction (see Fig. 2). As is
clear from Fig. 3, both sets of ICs lead to asymptotic
states composed essentially by two nearly constant
values, “plateaus”: one localized in the neighbor-
hood of x−

s and the other one near x+
s .

For Gaussian ICs the upper plateau is delim-
ited by (ic ± ∆i, jc ± ∆j) while for front-like ICs
it is delimited by (ic, i) and (L, i), 1 ≤ i ≤ L.
When interchanging x−

s ↔ x+
s in Eq. (4), i.e. when

starting with an inverted Gaussian, we obtain an in-
verted pattern, “reciprocal” to that seen in Fig. 3.
The same is true for front-like ICs. In fact, similar
results are also obtained when we replace x−

s and
x+

s by any other fixed values lying in their basins
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t = 0 t = 25 t = 50

Fig. 3. Time evolution of the lattice for two sets of initial conditions: Gaussian (top row) and front-like (bottom row), both
for a diffusion ε = 0.075. Similar results are obtained for other parameter values. Final states are attained quite fast: the
distributions seen for t ' 50 are essentially the final states. Here b = 0 and ∆i = ∆j = 1.

Fig. 4. Plateau configuration reached when starting with a combination of three Gaussian functions. After t ' 50 the con-
figuration remains static. As in Fig. 3, here also ε = 0.075, b = 0 and ∆i = ∆j = 1. The scales shown are valid for all
figures.
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of attraction. In particular, when these values are
taken to lie in the same basin of any one of the fixed
points, the lattice evolves to just a single plateau.

Figure 4 illustrates the time-evolution when
starting with a combination of three Gaussian func-
tions. As the figure shows, the diffusion leads to
a spreading of the Gaussians over the whole lat-
tice, eventually reaching a state (for t = 50) in
which two plateaus appear, remaining stationary
thereafter. This same scenario appears when start-
ing with an arbitrary number of Gaussians. The
transient needed to reach the stationary plateaus
is quite small (less than about 100 time-steps).

An interesting fact is that the spread induced
by the diffusion may temporarily shift the max-
ima of the Gaussians outside their original basins
of attraction. This effect is clearly recognizable by
comparing the situations at t = 0 and t = 3 when
the two Gaussians with negative maxima move to
the basin of the positive fixed point, displaying
temporarily positive maxima. Similar behavior is
observed when starting with more Gaussians and
fronts.

4. Distributions of Convective Cells

for the Purely Diffusive Model

In this section we investigate the distribution of con-
vective cells assuming the presence of diffusion only,
i.e. assuming the dynamical evolution to be ruled by
Eq. (2). First, we study how the number of convec-
tive states N depends on the diffusion ε and bista-
bility b. Second, how N varies when one allows the
bistability to vary along the lattice, i.e. when a gra-
dient of the buoyancy forcing is introduced. Third,
how N varies when bistability varies in hysteresis
experiments.

4.1. Diffusion versus bistability

Figure 5 shows the fraction R of convective states
in the lattice,

R =
N

L × L
=

number of convective states

total number of states
, (7)

as a function of b and ε for two sets of ICs, namely,
front-like and Gaussian with ∆i = ∆j = 1.25.
For Gaussian ICs we impose ∆i = ∆j in order
to guarantee the same (radial) symmetry. Both fig-
ures show a 100 × 100 discretization of the param-
eter space and were obtained using transients of

104 time-steps, although stationarity is frequently
obtained after considerably shorter transients. For
this reason, the same transient of 104 time steps was
used to obtain all results to be present below.

As is clear from Fig. 5, for both sets of initial
conditions there is a marked increase in the num-
ber N of convective states as b increases, due to the
size of the basin of attraction. Furthermore, while
for weak diffusion (ε . 0.1) there is a relatively
small increase in R (smaller for Gaussian than for
front-like ICs), when ε & 0.1 it is always possible
to define a characteristic value bc marking a phase
transition so that for b > bc there are only convec-
tive states on the lattice. Moreover, for b < bc and
strong diffusion there are only nonconvective states.
The value of bc depends weakly on ε and decreases
when one increases the number of initial convective
states.

Figure 5(a) was obtained starting with ini-
tial conditions given by a positive Gaussian. When
starting with a negative Gaussian, one obtains the
distribution, shown in Fig. 6, which clearly displays
the symmetry

R′(ε, b) = 1 − R(ε, −b) , (8)

where R′ refers to the distribution obtained with
the negative Gaussian (in Fig. 6) and R refers to
the distribution obtained from a positive Gaussian
[Fig. 5(a)].

4.2. Inhomogeneous bistability:

Gradient of the buoyancy

forcing

In order to mimic the North–South gradient of the
buoyancy forcing in the ocean, we now consider the
effect of introducing inhomogeneities in the bista-
bility coefficient b. This is done by starting at j = 1
with b = 0 and increasing it linearly until some
value bmax, at j = 16, i.e. we introduce a bistabil-
ity gradient along the j-axis. Inhomogeneity in the
“local” parameters has been shown to be a quite
effective mechanism to induce pattern formation in
more realistic models [Lind et al., 2001b]. After se-
lecting the bistability, the next task is the choice of
suitable initial conditions.

To investigate how a patch of convection devel-
ops within a nonconvective environment, we work
with the so-called “island” ICs: an island of 12 el-
ements located at the center of our 16 × 16 grid
is assumed to be convective while everything else
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(a) (b)

Fig. 5. Fraction R of convective states as a function of the diffusion and of the bistability for two sets of initial conditions:
(a) Gaussian and (b) front-like. Here ∆i = ∆j = 1.25.

Fig. 6. Distribution of convective states (right) obtained when starting with negative Gaussian ICs (left). This distribution
highlights the symmetry defined in Eq. (8) [compare with Fig. 5(a)]. Here ∆i = ∆j = 1.25.

is taken to be nonconvective (see Fig. 7). In other
words, the numerical values of x0(i, j) for the 12
elements at the center of the lattice are set equal
to the positive fixed point of the cubic map while

the remaining values equal the negative fixed point.
This starting configuration resembles Gaussian ICs
[Eq. (4)] centered off-lattice at ic = jc = 8.5 and
having ∆i = ∆j = 1.25.
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Fig. 7. Sketch of a 6×6 sublattice containing an “island” of
initial conditions composed by 12 convective states, indicated
by black circles, while the remaining symbols denote noncon-
vective states. Symbols refer to the actual state of the site,
not to its coordination number as in Fig. 1. The boundary,
not shown for simplicity, is the same as before (see Fig. 1).

Figure 8 shows the number of convective ele-
ments N as a function of bistability bmax and the
coupling strength ε. When bistability is small, a
plateau of N = 12 convective elements is seen for
weak diffusion, while the whole grid becomes non-
convective for large diffusion. Figure 8 also shows
that for large values of bmax there is a plateau with
160 convective elements: these are 10 rows of ele-

ments, beginning with the lowest j value of the ini-
tial convective island. For large values of bmax there
are convective areas bigger than the ICs, due to the
fact that the local cubic maps at large j values be-
come monostable (b >

√
6/18 ' 0.136)). For b < 0

the homogeneous nonconvective state appears for
smaller values of ε. For ε > 0.5 the distribution re-
sembles that observed in Fig. 5 for ∆i = ∆j = 1.25.

In [Lenderink & Haarsma, 1994] a very similar
behavior is found in a three layer ocean model of the
North Atlantic. The spreading of convection can be
triggered by setting one grid point to be convective
in a nonconvective but bistable region of the model
Atlantic.

Compared to the physical continuous process,
the sharp steps that occur in our results may in-
dicate a biased representation of deep convection
[Cessi & Young, 1996]. In the real ocean, there are
no “rows” of nonconvective elements that suddenly
become convective like in our example, but the tran-
sition is a relatively smooth process.

4.3. Sweeping bistability: Hysteresis

experiments

In this section we investigate the influence of allow-
ing the bistability coefficient to vary in time. For
simplicity, we consider only the time variation of a
homogeneous bistability, i.e. at each time step the
value of b is the same in all lattice sites.

Fig. 8. The number of convective elements as a function of diffusion and bmax, obtained in the presence of a bistability
gradient (see text).
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Fig. 9. Hysteresis curves obtained by sweeping b, after starting from a given initial ratio R0 of convective cells: (a) R0 = 1/3,
(b) R0 = 1/2 and (c) R0 = 2/3. Each curve is an average over 400 random initial configurations. Here the diffusion is ε = 0.2.

Ocean convection events are triggered by rel-
atively short periods of strong buoyancy forc-
ing (e.g. atmospheric advection of cold air). In
our model, the buoyancy forcing is controlled by
the parameter b and, therefore, it is important
to investigate its time variation (increase or de-
crease), namely to check the possible existence of
“hysteresis” when b is changed.

We start with random initial conditions x0(i, j)
but having a given initial ratio R0 of convective
states. The initial homogeneous value of the bista-
bility is b = 0. Then, a new value of R is mea-
sured after the system is allowed to evolve until it
reaches its attractor. From this value of R we in-
crease (decrease, in a second hysteresis curve) B,
in steps of 0.001, until the value R = 1 (R = 0,
respectively) is reached. After that, b is decreased
(then increased, respectively) in steps of 0.001.
Figure 9 shows the results (hysteresis curves) ob-
tained when starting from three values of R0, as
indicated, and ε = 0.2. Similar curves are obtained
for other parameter values.

As the figure shows, starting from R0 = 1/2 one
finds a plateau around b = 0.03 where the increase
of b does not induce any change in R. There seems
to be a critical value of b where the pattern becomes

again unstable after having reached the plateau.
Finally, the entire grid becomes convective (R = 1).

Starting with R0 = 1/3, one observes that the
dynamical evolution acts so as to reduce R dur-
ing the first transient, because single convective el-
ements do not “survive” in an environment of non-
convective elements. Between b = 0.04 and b = 0.07
there is a large plateau where R does not change at
all. The shape of the curves is rather different from
the corresponding curve obtained for R0 = 1/2.

As seen from Fig. 9, the curves corresponding
to R0 = 2/3 and R0 = 1/3 are in fact duals of each
other due to the symmetry defined by Eq. (8). This
remains valid for any pair R0 and R′

0 that satisfy
R0 + R′

0 = 1, because of the symmetry of the basin
of attraction of the cubic map (see Fig. 2).

The transitions between the plateaus that make
the “staircase” shape seen on the hysteresis curves
are explained as follows. At certain threshold val-
ues of b, small local patterns (e.g. 2 × 2) of non-
convecting grid points undergo a transition to the
convective state. They switch from one stable fixed
point to the other. The threshold values depend on
the state of the neighboring elements. They are fea-
tures of the local neighborhood, and are not finite-
size effects of the model. There are no significant
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Fig. 10. Transitions of small patterns (2 × 2) to the con-
vective state. White background: nonconvective state. Gray
background: convection sets in for b = 0.01; black circles:
convection sets in for b = 0.03. Some patterns switch to the
convective state for larger bistability b. This pattern transi-
tion is responsible for the staircase behavior seen in Fig. 9.

changes in the hysteresis curves when the lattice
size is increased.

The pattern transition is shown in Fig. 10. Lo-
cal patterns, composed by 2× 2 sites in the convec-
tive or nonconvective state, are stable for b = 0.03.
The plateaus in the hysteresis curves appear since
the number of small patterns that become unsta-
ble at a certain threshold value is finite and small.
We expect the size and shape of small patterns to
be different when the coupling of the lattice site is
nonlocal [Titz, 2002].

5. The Advective CML Model of

Ocean Convection

In the ocean, advection is generally stronger than
eddy diffusion, a fact indicating that advection re-
lated phenomena are of interest in this context.

Recently, advection was introduced [Lind et al.,
2002a] and investigated [Lind et al., 2002b] in a
rather general CML model for gradient flows by
discretizing the advection operator. Such discretiza-
tion introduces an extra parameter, an “advective
velocity”, which acts effectively as an asymmetry

in the coupling between sites. This extra parameter
will be explored in this section.

In two dimensions, the advective velocity is a
vector v = (u, v), where u is the advection in the
i direction and v the advection in the j direction.
Accordingly, the magnitude and direction of the ad-
vection are given by

|v| =
√

u2 + v2 and θ = arccos
u

|v| , (9)

respectively. A standard discretization of the two-
dimensional advection operator (centered differ-
ences scheme) yields

v · ∇f ∼ u
f(xt(i + 1, j)) − f(xt(i − 1, j))

2

+ v
f(xt(i, j + 1)) − f(xt(i, j − 1))

2
.

(10)

Now, following the procedure outlined in [Lind
et al., 2002a], we use this expression to extend the
purely diffusive model of Eq. (2), obtaining

xt+1(i, j) = (1 − ε)f(xt(i, j))

+
ε − 2u

4
f(xt(i + 1, j))

+
ε + 2u

4
f(xt(i − 1, j))

+
ε − 2v

4
f(xt(i, j + 1))

+
ε + 2v

4
f(xt(i, j − 1)) . (11)

This more general and realistic model, which now
includes advection through the parameters u and v,
corresponds to the discretization of the local time-
derivative of a tracer variable χ:

∂χ

∂t
= Φfluxes − v · ∇f(χ) . (12)

The main effect of advection is to induce the
transport of states, xt(i, j), in the direction of v.
Notice that to guarantee no-flux boundary condi-
tions in the presence of advection one needs to use
a forward discretization perpendicularly to the sides
of the lattice. For instance, the corner (0, 0) needs
to evolve according to

xt+1 =f(xt(0, 0))

+
ε

4
[f(xt(0, 1))+f(xt(1, 0))−2f(xt(0, 0))]

+
u

2
[f(xt(1, 0))−f(xt(0, 0))]

+
v

2
[f(xt(0, 1))−f(xt(0, 0))] . (13)
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Fig. 11. Deformation and shift induced by the advection on a convective Gaussian island of initial conditions. Here
∆i = ∆j ∼ 1.77, b = −0.5, ε = 0.2 and v = (u, v) = (−0.1, 0).

Fig. 12. Distribution of convective states as a function of advection and bistability, when starting with Gaussian initial
conditions (∆i = ∆j = 1.25 and ic = jc = 8.5). The direction of advection is along the i axis. The ratio R was determined for
100 values of u and 100 values of b, after discarding 104 time-steps.

Figure 11 illustrates the advection transport
for Gaussian ICs, showing that the convective is-
land does not only suffer an obvious net shift, but
also a deformation. As a consequence, one expects
a change in the distributions of convective states.
In the following sections, we investigate this change
for homogeneous and inhomogeneous bistability.

5.1. Homogeneous bistability

Figure 12 shows the dependence of convective-state
distribution with u and b, for three representa-
tive values of the diffusion ε = 0.2, 0.4 and 1,
when starting with Gaussian initial conditions with
∆i = ∆j = 1.25 and ic = jc = 8.5. In all cases,
the direction θ of advection is fixed. As seen from
the figure, there is a net change of the critical val-
ues beyond which the convective states dominate.

As expected, these distributions are symmetric with

respect to u.

The complicated structure seen for ε = 0.2 de-

generates into a trapezoidal plateau for strong cou-

pling (ε ∼ 1). In all situations, higher values of b

tend to favor convective elements.

So far, all results presented were obtained for

advections acting along θ = 0. For different values

of θ, there is a corresponding alignment as shown

in Fig. 13.

In general, to have advection means always to

have state propagation. Nevertheless, depending on

the symmetry of the initial conditions, there is a

family of cases for which |v| = −2ε, i.e. the ad-

vection cancels the diffusion. The net effect of this

cancellation manifests itself in the system as a sort

of “instantaneous stationarity” in which the initial



March 31, 2004 10:31 00964

Ocean Convection Modeling with CMLs 1011

Fig. 13. Asymmetry introduced by an advection acting in a nonperpendicular direction with respect to the initial front. Here
∆i = 1.77, ic = 8.5, ε = 0.2, b = 0.05, |v| = 0.0447 and θ = 45◦.

Fig. 14. Distribution of convective states as a function of
the bistability b and θ for ε = 0.2 and |v| = 0.1. Note the
symmetry with respect to the plane θ = π/2.

condition already corresponds to the final station-
ary state. This situation happens mainly for front-
like ICs. Such a phenomenon is usually called “pin-
ning fronts” [Kubstrup et al., 1996].

Figure 14 illustrates typical distributions of
convective states when the direction θ of advection
and the bistability b are varied. The distribution
is symmetric with respect to θ = π/2, when the
advection has a direction perpendicular to the i

direction. As seen from the figure, the appearance
of convective states is favored for θ = kπ/2, where
k = 0, 1, 2, . . . .

Random ICs are useful to assess the gen-
eral behavior of convection states in the ocean
where many different initial conditions can occur.
Figure 15 shows distributions of convective states
obtained using random IC configurations, where the
IC of the local element is either the convective or
the nonconvective fixed point of the uncoupled map.
The distributions shown are averages of the R val-
ues obtained by sampling 100 initial configurations.
The bistability is set as b = 0.1 to favor local con-
vective states. As seen in Fig. 15(a), the pattern for-
mation depends in a very complicated way on the
direction of advection. For different diffusion levels
one finds completely different angles characterizing
the maximal number of convective elements. The
same characterization holds for the dependence on
θ and |v| [see Fig. 15(b)].

These results seem to indicate that, depending
on the advective direction θ, the spreading behav-
ior of convection might be systematically biased in
the square-grid representation of ocean models. One
could argue that the boundary of the lattice will
introduce anisotropic effects. This can be checked
with lattices having a more or less circular bound-
ary. In this way, we observed that there are no sig-
nificant differences between square or circular lat-
tices. Accordingly, we conclude that the square-grid
bias found here only depends on the grid geometry
and not on the shape of the boundary.
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(a) (b)

Fig. 15. Distribution of convective states for homogeneous bistability, b = 0.1, as a function of (a) θ and ε with |v| = 0.05;
(b) θ and |v| with ε = 0.024. Random initial conditions were used in both cases.

Fig. 16. The number of convective states as a function of diffusion and advection for inhomogeneous bistability. Here
bmax = 0.1, θ = π/2 and island ICs. Weak advection induces convection while strong advection destroys it.

5.2. Inhomogeneous bistability

We now investigate the effect of more realistic situa-
tions in which there is an inhomogeneous bistability
b, attempting to mimic an oceanographic scenario
for deep ocean convection. To this end we use island
ICs subjected to an advection acting along the j di-
rection. As before, the bistability increases linearly
along the j direction.

Figure 16 shows that the role of advection is
two-fold: weak advection induces the creation of
convective areas while strong advection destroys it.

The role of diffusion is nontrivial: increasing diffu-
sion yields increasing convection but at higher levels
diffusion can also destroy convective areas.

At low diffusion and advection levels, the is-
land ICs give in fact the final configuration of the
lattice. Increasing diffusion yields a jump towards
the same plateau as in Fig. 8, containing 160 con-
vective elements. On the other hand, increasing ad-
vection, stair steps of 16 elements occur. The ad-
vection pushes the border of the convective area
towards larger j levels. This behavior is illustrated
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Fig. 17. An increase in the advection v shifts the convective area to higher j levels. In all three cases the fronts shown do
not vary in time. Here ε = 0.4, bmax = 0.1.

in Fig. 17 for three values of v. For large advec-
tion and very weak diffusion, the convective patch
spreads towards maximal j levels but does not
broaden in the direction of j.

6. Conclusions and Outlook

The purpose of this paper is to introduce a novel
CML approach for investigating discretization ef-
fects in ocean models due to the presence of con-
vection. The interaction of local nonlinear dynamics
with global parameters in ocean models is studied in
order to clarify the effects of convection parameteri-
zation. This parameterization is commonly done by
convective adjustment and can exhibit local bista-
bility and cause problems arising from discretiza-
tion. We have demonstrated that coupled map
lattices are convenient tools to model the interplay
between global effects, like diffusion and advection,
and local nonlinear dynamics. In the present CML,
each of these effects is controlled by a single pa-
rameter: the diffusion constant, the velocity and a
parameter that controls bistability and corresponds
to buoyancy forcing.

First, we neglect advection to isolate the effects
of diffusive coupling alone. For given initial con-
ditions and large values of the diffusion constant
the final steady state is characterized by a phase
transition to a homogeneous state. Buoyancy forc-
ing determines whether the entire lattice becomes
convective or nonconvective. For small values of the
diffusion constant the final state remains close to
the chosen initial conditions.

The most important effect appears in hystere-
sis experiments with randomly distributed initial
conditions in which buoyancy forcing is temporar-
ily increased. We observe that the total number of

convective elements in the lattice increases with the
buoyancy forcing — but in steps rather than con-
tinuously. This effect persists even when we average
over a large ensemble of simulations. Such staircase
behavior is caused by local patterns that become
unstable for certain thresholds of buoyancy forcing.
We suspect that similar behavior can be found in 3D
ocean models, introducing spurious abrupt changes
in spreading of convection.

Second, since advection plays a crucial role in
ocean dynamics, we also consider the interplay be-
tween advection and diffusion. For small values of
the advective velocity and strong buoyancy forcing,
the area of convective activity expands only if the
diffusion constant is sufficiently large. Otherwise, it
will shrink and disappear. This result is physically
intuitive and lends credibility to the CML ansatz.

For large values of the advective velocity the
final state depends in a complicated way on the
direction of the velocity vector. The main differ-
ence is observed between a velocity vector along
lattice axes and one at an angle of 45◦. Whether
the direction of the velocity vector favors or op-
poses the spreading of convection depends both on
the diffusion constant and on the magnitude of the
velocity. Again, these results remain valid for the
average over an ensemble of simulations with ini-
tial conditions randomly distributed in space. This
dependence on the direction of the velocity might
as well appear in 3D ocean models and thus bias
the spreading behavior of convection. As a matter
of fact, preliminary numerical experiments indicate
that with a hexagonal grid the results are much
more isotropic than those found with a rectangu-
lar grid. Hexagonal grids are already being used in
a weather forecast model [Workshop, 2000].

In addition to the influence of the velocity di-
rection, our results point also at the importance
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of its magnitude. Intermediate velocity levels favor
spreading of convection while very small or large
magnitudes tend to suppress it.

Finally, we would like to mention that we
have also employed a more realistic two-layer ocean
model in which the temperature and the salt con-
tent are the model variables. The convection pro-
cess depends then on the density difference between
the two layers. The results obtained with this more
elaborate model are very similar to those reported
here. In particular, we found again artificial hys-
teresis steps and sensitivity to the direction of ad-
vection, which do not depend on the lattice size.
This corroborates our suspicion that these effects
occur in 3D ocean models as well. A detailed work
with this more realistic model, emphasizing oceano-
graphic purposes, is under way and will be pub-
lished elsewhere.

All in all, our results stress the need for im-
proving deep convection parameterization, with the
aim of suppressing local discretization effects. This
conclusion is in line with an earlier study of Cessi
and Young [1996], which used a different modeling
approach. They already suggested to include the
strong lateral mixing caused by convection events
as a remedy to the spurious discretization effects.
In addition to that, our results clearly stress the
relevance of an appropriate choice of grid geometry
for ocean models. We suspect that a grid geometry
with hexagonal cells leads to a better representa-
tion of convective processes than a geometry with
rectangular cells. A detailed comparison concerning
the influence of larger neighborhoods in the CML
needs now to be done. It would also be of interest to
investigate the impact of basin asymmetries on the
local bistability, using, for instance, a quartic map
[Jánosi & Gallas, 1999].
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