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RESUMO

Nos usamos o método de Galerkin juntamente com um conjunto de
fungoes ainda nao apontadas para resolver a equagac de Orr~Sommerfeld
e tracar o diagrama de estabilidade do fluxe de Poiseuille bi -dimen-
sfonal com respeito a perturbagdes hi-dimensionaismo plano dos parame-
tros nimero de onda @ e numero de Reynolds . Os valores obtidos para

a, e m01 estac de acordo com agueles existentes na literatura.
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Abstract A method of solving the radial mn:ﬂmQﬂ:umx equation for bound
states is discussed. The method is based on a new piecewise represen-
tation of the second derivative operator on a set of functions that
obey the boundary conditions. This representation is trivially diago-

nalised and leads toclosed form expressions of the type E_ =
=Flab + b+ a/n + ...) for the eigenvalues. Exampies are given for the
power~law and logarithmic potentials.

1. INTRODUCTION

This paper discusses a method of calculating the eigenvalues

of the radial mnrﬂtmd:mmﬂ eguation (in atomic units)

2L ~ ~
-y T Favmi-ri ()

dr®

subject to the boundary conditions ¥(0) = ¥(x) = 0, where v{r) may in-
clude the usual centrifugal term. A brief version of this work appea-

red recentlyl.

The proposed approach is based on a new piecewise represen-

tation of the differential operator d%/dr? from eq. (1} on the set
QQ = {exp(~ar}, r.exp(~wr), rf.exp{-ar)} (2}

Using this piecewise representation for d’/dr® in the pro-

posed approach Is eguivalent to considering a continousty and infini-
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tely piecewise approximation ¥(r) = m ewﬁwv to the eigenfunction ¥{»)
of eq. (1), where in each k-piece the ﬂxA%u is a linear combination an
the set U_ with X6 N :

%

= 2 - .
ewﬁav = ENA + B o+ Qx% Jexp ( Qxi } 1y, €Ty,
Fer any ¥{r) that is a linear combination on the set Uy, the

unique two-point representation of the operator d?/dr? is given by

——¥i(r) = 20 ¥i(r - /o) - a® ¥{»r) (3}
dn? exp(1)

as shown in section 2. The ideal representation of the operator
d*/dr®, 1.e. the exact representation, would be given by its  expan-
sion on the complete set of solutions of eq. (1), This set isof cour-
se infinite and, a priori, unknown. We note that the basis set QQ is
clearly a good piecewise approximation to the ideal set if the para-
meter o is larger than zero. This is due to the fact that the QQ ba-

sis satisfies the boundary condition of eq. (1) at infinity.

The representation of the second derivative operator in U
given by eq.(3) has several unique properties. The main property s
that this representation can be trivially diagonalized. Another cha-

racteristic aspect is that ¢ (and hence Y¥(r)) depends on the free

o
parameter a. This variational parameter will be determined by the me-
thod itself, through the stationary <¢ondition for @3 . This proceduy-
re will enable uys to abtain analytical expressions for the eigenva-

lves of eq. (1), of the form B, = Elan + b+ efn + ...).

This paper is organized as follows. Section 2 presents the
method for a general potential V(r). Section 3 deals with the appli-~
cation of the method to power law and logarithmic potentials, toge-
ther with a comparison of known results for seme potentials now being
studied as possible models of quark confinement (/2/ and references
therein), The eigenvalues are given as a function of two parameters, g
and b , in each case, The determination of these parameters in gene-

ral is the subject of section L, In section 5 the numerical accuracy
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of the eigenvalues, for the same examples as in section 3, is discus-
sed and compared with known results., The last section contains a sum-

mary of the important features of the method.
2. THE METHOD

The method proposed here is based on the two-point piecewise
representation of the second derivative operator on the set QQ =

= {exp(-ar), r.exp(-or), r?.exp(-ar)}, with a>0. The main reasons

for using this particular set are:

{i) Any element of Uy satisfies the boundary condition in eq. (1) at
infinity.

(ii) The set mAQQV of all the linear combinations of the elements of
U is closed to the operation d*/dr?. This means that the second

Q -

derivative of any linear combination of the elements of QQ is

itself a linear combination of the elements of Uy

For a function ¥ in NHQQU the two-point  representation  of
d°/dr® can be found as the unique solution of the desired identity
given by

2
4 y(r) = p ¥(r-gq) + ¥ (r) (4)
dr?
where p, g and ¢ are constants. These constants are uniguely calcula-

ted by requiring that eq. () be valid for each of the three functions

of QQ. The constantsare

p=2c’e (5)
q = /o (6)
t=-a’ (7)

Equation (6) means that the distance between the two points

must be

br = Vo (8)
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This representation of d%/dr’fon QQ is the cornerstone of this

paper and is given by

2 2
2
L w(r) = 2% y(r-i/a) - a? ¥(r) (9)
dr? e
In this case, eq. (9) means that the second derivative of
Y E mAcQV is given exactly at any point r by a linear combination of
the values of ¥ itself at the two points r-1/0a and », corresponding to

property (ii) above. For a further discussion about the representa-

tion of 4%/dr® on U, the reader is referred to the Appendix.

tntroducing a grid », on the space coordinate 0 g rg» we may

3
write Ppay ST T _\Qw_ where s is given by

JAuiSu k=0,1,2,... : {10)

with £(0} 2 0 and with > ﬂOw any k. Note that y is an order

r
k-1
preserving function, i.e. k > 7 implies that £lk) > r(4). This grid

will be determined by the method itself.

The width of each k-piece given by Ary, = |Fflk)-y{k-1)| satis-

fles eq. (8), i.e, by =1, and may change zdn: ¥ since eq. {9) s

a two-point formula,

From eqs. (8) and (10) it follows that
Fik)
ko ii,%cﬁ_@ %

Since flk} > F(k-1) one can readily show that (see Appendix)

(1)

|!:Huww|||| =ak + b+ ofk +
Fly-F-1)

ce (12)

where the several g, b, ¢, etc. are constants and k = _ym. e .

Equation (12) shows that for any function f(k) the following

is true:

(i) The higher ¥k-order appearing in eq. (12) Is one.
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(i) As point number k increases, eq. (12) is approximately  linear

in k.

For these reasons we may neglect the 0(1/%) conmtribution ineq.

{(12) and write

{13)

i
X
1
[ %]
w

p, =
k oy

This expression will play an important role in the  following
discussion. One should note that, in what follows, higher-order terms

could have been used in eq. (13).

Armed with egs. (9} and (13) we now turn to the problem of cal-
culating the n-th eigenvalue of a given potential V(r} in eg. (1). To
this end we use the two-point representation of d/dr®? given by eq.

(9) in eg. (1) to consider the piecewise approximation
éﬁsvawv = I éﬁSVﬁﬁv of @ﬁsv where £ﬁ3VA%V € bAQQ )
[3 k

and o is yet a variational parameter, obtaining

2
W iz: )y o+ 2 Qm + EJAM_ y (1) (r,) = & f?: ry) (1)

fe=3 2
_ - ; - (n) _ . ()
for k& = 1,2,... where if ry=0 then ¥/ (r;} = 0 or if r#0 ¥ (»;)
is connected to the origin by eq. (A.5) {see Appendix}. Equation {14)
may also be written in matrix form: MY = EY with ¥ = (¥(r), V¥(r;),
...Vhdm:a M a bidiagonal matrix given by
1 2
7 o+ H\?‘.L 0 0
4 1 2
o /e 5 oy + Vir,) 0 (15)
- 1 2
0 Qm\m 5 05 + Ewwv




with no 1Timit imposed on its order. This matrix is the representation
of the Hamilton cperator of eq.{1) and depends on the varlational pa-

rameters o,, O,, ... with constraints.

We now note that, owing tc the bidiagonal form of M, the w#n-

-eigenvector of ¥ has the following form® :

and that all the eigenvatues of the eq. (14) are given trivially by

the main diagonal of M, with no 1imit impcsed on its order.

Using the eigenfunction form eH3VAﬁ ) of eq. (16) for k=n in

k
eq. (14} and recalling eq. (13) we get

_ 1
E, =3¢

+ cﬁa:+wv

2 pon=1,2, ... (17}
n 8.4

n
where »n is the radial gquantum number.
Since ¥

(m)

variational principle for mx is wmm\mn = 0 and can be directly ap-

plied to eq. (17) giving

a4+ pEHhy g (18)
() n

The above equation also determines the parameters o of the ba~-
sis U, in any k-piece by means of eq. (A.8) from the Appendix and
therefore corresponds to the variational principle 3E/30 = 0 applied

to the whole ﬁnxvﬁﬂv.

The general procedure being proposed here to obtain the bound
states of eq. (1) begins by mo_<43m eq. (I8) in order to determine
the best @, as defined above. By substituting this @, in eq. {17) one
obtains the eigenvalues as a knowm funciion of the constants a and b,

namely
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r) is a function of the variational parameter  the

m:u mﬁax+vv ﬁ_mu
The determination of g and & is discussed In section b. We
shall now compare eq. (19) for the power law and logarithmic  poten-

tials with known results,
3, APPLICATION TO THE POWER-LOW AND LOGARITHMIC POTENTIALS

To further clarify the proposed method we now apply it to some
well-known eigenproblems, The results obtained are compared with the
exact ones, whenever possible, or to approximations. For simplicity

we only analyse gs-states.

For the general power law patential Vi(r} = ¥ %wh with p > -2

and p # 0, eg. (17} gives {dropping the subscript n of o )

B - W o + Klan+b) 21l (20)

From the stationary condition, mmx\mgx =0, it follows (com-

pare with eq. (18)) that

1/{p+2)
a = |kplan + b)F (21)

Substituting hack in eq. (28), one obtains

vm:_.?s

E = {kp (1/2 + _\wVAnx+wum%\An+mv (22)

)

as the bound state eigenvalues of the power law potentizl, or

£, = of(1/2 + 1/p} (23)

in terms of o of eq. (21).

Using the same procedure for the logarithmic potential V{r) =

= K In(r}, one obtains the eigenvatues

B, = mu _Wim\mm_ + K (an + B) (24)
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In Table 1 we given as functions of a and b, the solutions for
some potentials which are nowadays of interest for a quark-quark con-
fining model together with the general power law. The parameter a and
b appearing in this table are calculated in section 4. However, as an
example, the reader may recall that for @ = 1 and b = 0 the Coulomb
eigenvalues in Table | represent the correct bound-state spectrum for

any order #,

In Table | two important functional relationships for the ei-
genvalues can be seen: with the scaling parameter X and with (an+b).
The remaining part of this section is devoted to a comparison of these
two aspects of the function mm = FElantb)} with the known results. As a

source of known results we use the work of Quigg and Rosner®.

The K dependences of Mx given in Table 1| are all correct, as

can very easily be verified by rescaling the mnrﬂMam:mmﬂ equation (2).

The functional dependence 0w the eigenvalues with the quantum
number as given in Table 1 is exact for the Coulomb, linear and har-
monic potentials. For the other cases no exact salutions are known. Ho-
wever, as can be seen from eqgs. (54.33) and (4.59) from 2, our results
indeed show the same quantum number dependence as the WKB ones. From
the above comparison one sees that the proposed method reproduces the
known functional dependences for the power law and _ommﬁmhramn poten-

tials with X and n.

For other potentials, the constants g and b could depend on
the scaling constant K. However, and here we emphazise this point, the
functional dependence mx = E{an + b) is always the same if the func~
tion ¥{r) does not change. This can easily be verified from egqs. {17)
and {18). This means that for any given potential ¥(r) a scaling of
the potential may only change @ and b but not the function wxﬁmﬁgx+wv

In the next section we discuss the calculation of a and b.
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Table 1: Summary of the results obtained by the proposed method for scme potentials ¥{r).

1,2,...

are the bound-state eigenvalues for »n
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4, CALCULATIONS OF A AND 8 the study of just two eigenfunctions or alternatively two eigenvalues

the whole bound-state spectrum is obtained.

The procedure described in the previous sections leads to

For the power law potential we show in Fig. 1 a plot of the
closed-form expressions of the type £ = El(antb) for the eigenvalues. - po P g P
" parameters @ and b as a functions of the power p. This graph is illus-
To determine @ and b, we study the behaviour of the first trative of the general range of values of a and b.

two eigenfunctions after the outer turning-point. In order to genera-

ALUES
te accurate eigenfunctions one usually needs Ar << 1. In general, ho- 5. NUMERICAL COMPARISON OﬂAijm_mmz<

wever, this condition would conflict with the requirement Ar = 1/ in
: To i h , f th igenvalues calculated b

eg. (8). !nstead of eq. (9} we therefore use the Full three-point for- o illustrate the acéuracy o e eig y

the proposed method, this section presents a short numerical compari-

mula in U, given by eg. (A.1}. The eq. (1} can be written in matrix

o , . .
, . . s f the bound states 7 for the same potentials alread discussed
form as T = EY , where now T is tridiagonal. Since we already know on of t 1 P L4

i i . t d 1 d using th three-
the functional dependence of o = alan+b) and m: = plantb), the ma- ! in section 3. The constants g and b were calculated using e ree

trix equation T¥ = F¥ has only two unknowns: g and b. This equation

-point formulation from eq.(A,1} and applying to it the continued

fraction approach from". The absofute error in @ and b was chosen to

be less than 107,

may be solved by any standard matrix technique or by using the conti-

nued fFraction approach of Gerck und d'Oliveira . The later can be

conveniently run in a programmsble pocket calculator. Table 2 presents the calculated values of a and » for some

potentials. The eigenvalues ms are readily cobtained from Tables ]
and 2,

An alternative approach is self-evident: for any two eigen-
values mw and mu calculated by some numerical method we may set up a

system of two equations, for (ai+h) and (aj+b), to obtain g and b. The calculated eigenvaiues of the Coulomb and harmonic  po-

- tentials coincide with the well-known exact results for any state #.
In any one of the two suggested ways of determining g4 and b Y

given above another advantage of the proposed method is clear: from
Table 2: Values of the constants ¢ and b in

E, = Flan+b) from Table 1,

Potential a b

ﬂo \\\\\\o ] Coulomb 1.000000 .00000

0.5 L Square-root 1.67120 -.36853
-1 0 1 2
0 : t + t »- Linear 1.80523 - 42915
05| O b P
Harmenic 2.00000 ~-.50000
Logari thm 1.50198 ~.28330
Fig.l - Behaviour of the constants g and p in ﬁ: = E{an+p) for the power - -

-law potential V(r) = ¥ ¥’ as a Function of p.
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For the potentials n{r) and '/’ no exact solution is known. We the-
refore compare in Tabie 3 the first five calculated eigenvalues with
those obtained from the WKB approximation and, when available, numeri-

cal results. It should be noted that the WKB result {s not accurate

for low n, as is well-known.

To show the effect of the constant ¢ from eq. (i2) in E, =
= Elantb+e/n), we calculated this expression for the linear potential,

The result is
£, = {3/2) ¥ (1.81425% - 0.45619 + o.o_mow\:vn\m (25)

For comparison the result for Z(an+d) is

E = (3/2) %3
n

{(1.80523n - o.:mm_mv»\w (26)

The first column of Table 4 gives the eigenvalues as calcu-
lated from eq. (26), the second coiumn those from eq.(25), and the
last two columns the exact and WKB results respectively. The exact re-
sults correspond to the zeros of the Airy functions2. As one can see
the inclusion of e/n  improves the eigenvalues, The contribution to
mz frem higher order terms, i.e. d/mn® + ..., can be inferred From the
relative difference between E(antb) and E(antb+e/r). This is a gene-
ral Cauchy-type criterion to estimate the intrinsic accuracy of the

eigenvalues without referring to another resuit.

To close this section, we remark that although this paper is
just intended to introduce the proposed method the eigenvalue expres-
sions obtained in the cases of the square root and _ommmdnjaqo poten-
tials could be of interest on their own since there are no exact ex-
pressions availfable®,
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Table 3: Comparison between the first five eigenvalues

For the sguare-root and logarithmic potentials,

. )
Present Numerical ()
7 ir) " results results WKB
1 0.69777 0.69773 0.63123
2 1.5009 1.5008 1.4785
onp) 3 1.9405 1.943) 1.9305
4 2.2448 2.249 2.2h07
5 2.4778 2.4833 2.4771
1 1.5961 - 1.5772
2 2.,2204 - 2.2135
vy 3 2.6540 - 2.,6521
4 3.0012 - 3.,0024
5 3.2967 ~ 3.3002

A_Vw«oz Ref./2/, in atomic units.

Table 4: Comparlison of the eigenvalues calculated by the pro-
posed method, In two different approximations, with the exact

and WKB results for the linear potential V{r) = r.

M

n | Elaned) planbre/m) D Eact® wae )
1 1.8557 1.8558 1.8558 P.8414
2 | 3.24h6 3.2446 3.2446 3.2385
3 | 4.3781 h.3817 4.3817 i.3781
b | 5.3795 5.3867 5.3866 5.3843
5 | 6.2949 6.3055 6.3052 6.3037

(3)

ﬁ:_.._,03 eq. (26). Amvmﬂoa eq.(25). From Ref.2, in atomic

units,
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6. SUMMARY

We have presented a method to calculate the bound-states
of the mn:1Mam:mmﬂ radial equation for a potential ¥(r). The me thod
is' easy to apply and leads to an equation of the form mx = Flan+ b +
+e/n ...} which may be approximated by mx = Elan+h). The  constants

a and b are calculated by means of the known functions

quaﬁax+@vm:a mx.

The method is based on & new piecewise expansion of the se-
cond derivative operator in the set of functions {exp (~or) ,r.exp (-ar),
wm.man-Qﬁvw, with o>0. This set satisfies the boundary conditicn at
infinity and has the property that any function generated by |inear
combinations in it can have the second derivative exactly  expressed
a4t any point » as a linsar combinaticn of the values of the function
itself at the points r - Ar, and r + Ar, Furthermore, for Ar=1/a only
two values of the function are needed to express exactly Its second
derivative at one point. This last case leads to a bidiagonal matrix
that is trivially diagonalized and produced a closed-form mxvﬂmmwmo:
for the eigenvalues. By applying the stationary condition this expres -
sion gives also the optimum value for the a-parameter that makes the
set used the best possibie piecewise approximation, within the given
exponentials, to the eigenfunctions.

Another feature of the method is the sampling grid fF{k). The
sampling grid has a non-uniform sampling distance Dﬁw and is determi-

ned through the constants ¢ and b already mentioned.

The error of the method is determined instrinsicaliy by the
relative difference between & (un+b) and E(an+b+a/n), for example, for
a particular state n. This corresponds to a Cauchy-type convergence
criterion to judge when to stop the antb+e/n+... sequence. As shown ,
although the full result of this method is given mxumﬁaa+m~+n\x +...)
very good results are obtained by considering just m:umﬁna+@v.

%.G. acknowledges support from CNEN-Brazil, and J.A.C.G. from
DAAD-Germany .
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APPENDIX

Here we collect the fallowing results required:

2
() representation of the operator d°/dr’ on U,
(rn) expansion of F(k)/F{k)-Flk=1)) in powers of k and

(i) relationships for o and o

| - Representation of g2/dr? on u,

The set of all possible linear combination in Qm_wm defined
by 1 (y ). Because J%/dp® is a iinear operator, the second derivative
of m3<ch30nm03 of 7(y )} can be expressed as & linear combination of

o)

the second derivatives of the three elements of QQ.

The eigenfunctions considered in this paper are all piecewise
linear combinations on the set cm and they all belong to HAQQV. The
representation of the operator §2/dn® will therefore exactly repre-

sent the second derivative of the eigenfunctions if it is exact in Uy
Since p, contains three functions, it is natural to ook for a diffe-
o . o
iati may be expressed as a linear combina
rentiation formula on U, that may p .
tion of three values of the function itself. Let the three values be
symmetrically calculated, around the point p:

W) o emhe) ot (p) + ¥ (b (A.1)
2

dr
where Ap has the usual meaning and y, v and » are constants yet to be,

determined.

To calculate the three constants y, v and  one needs three
equations. These equations are simply obtained by requiring that eq.
(A.1) be satisfied for each of the three functions of U, - The resul-

ting system of equations has a unique solution given by

(i + ase)/[(ar)? explaar)] {n.2)

=
Il

v=a’ - 2/(ar)? (A.3)
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w = (-adr)/ [{ar)? exp(-aAr)] (A.4)

For adr = 1, eq. (A.4) gives w = 0 and eq. (A.1) coincides

therefore with the two-point representation given by eq. (9},

Note that @ may be a complex constant, and that therefore the
most general set of functicns for which (A.1) is valid includes the

trigonometric sine or cosine,

For later use we now calculate the representation of d%/dw®

on the set v, = {exp(-ar), r.exp(-ar)} by the same procedure as above.

The result is

&.N& _ 20 —lm 20,
e = ¥ir-ar) + - =] ¥ir) .5
dr?  (Ar)exp {ahr) e ﬁw Ar . "5

Since this equation is a two-point formula even for oAr # 1,
it can be used to connect eﬁxv (r,) to %ﬁxonv = 0 when »r_ # 0 as ex-
plained 1n the last item of this Appendix. For agAr = | eg. (A.5) coin-
cides with eq. (A1),

Y1, Expansion of FIk)/{F(x)-r(k-1))

Let f(k}, k = 0,1,2,.,, be a discrete sequence of numbers
representing a grid on the space coordinate 0 ¢ » < « as considered in

section 2. The sequence (k) is then given by

0 < FO0) < FQ1) < F2) < ... <o

The guetient

o) = — L& a5, (A.6)
%vauwﬁw|_v

plays an importsnt role in the proposed approach. First is should be

noted that 8{k) is well-defined, i.e. it has no singularities, Now,
for an arbitrary integer M consider the minimal N-degree polynominal,
N<M-1, such that %A»v = WEA»V for &k = 1,2,...,M. This polynominal
198

-1 .
exists and is unique. Note that f(k) - flk-t) = @E k), i.e. a poly~

nominal of degree y-1. It then follows that
ok) = wumwv =gk + b+ alk + ... (A.7)
g (k)
for & = 1,2,...,M and where qa, b, o, etc. are constants. The above
procedure may be repeated for ¥' = & + 1 and so on. This means that
there is no imposed limit for M, and eq. (12) of section 2 for k =
=1,2,,.. i5 obtained.

LIl, Relationships for o and T

From eqs, (8) and {13} it follows for a, that

0, = falk+]) +b- ] o ko= 1,2, (A.8)
k+ | ak + b n <
and for
P " alktl) + b mos k= 1,2, (A.9)
o la(k+1) + b - 1]
with
ath p 3 with p# 0, for a = b# |
jat bl 0
ro= ) {A.10)
r, ; with vy =0, for g = b =1
As a general condition for g+h, from eqs. (A.9) and (A10)
one has

a+ bzl (ALl

Note also the following property: for known q and b, all the o lor
wwv are determined as soon as only one o, say o (or %xv_ is determi-

ned. This means that the best o in the n-th piece, as given by the

stationary condition wm:\mas = 0 of eq. (18), Fixes through a » =an+b

the best » and theréfore all the others
w
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r, =0 ¢ g < .8 . =
P 0 ¥ 1) r, . and Qr 0D < o, €0, £ ... m Qs <.
This is a remarkable feature of the piecewise representation used in

this work,

As a final remark, from egs. {A.10} and (J4) it should be no-
ted that if g+/=1 then r,=0 implies that EAxVﬁ%ov = 0, i.,e. the boun-
dary condition at the origin of eq. (1), However, if q+b#1 the r #0 and
faxvﬁﬁcv # 0. This means that one needs a connection formula vwnsmm:
fﬁva%cv and éAvaav = 0. Since Ar a, is free {although a, br, = 1 for
k#0) one needs a two-point representatior for 42/dr? on wwm Mxﬂﬂm 0-
~th piece, with 0 ¢ » ¢ r,, that is also valid for Qabxc # 1. This is

accomplished with eg, {A.5).
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RESUMO

casmnoQo mmﬂmm mo_cmmoam mncmmm01mamm_am mn:ﬂmamzmmﬂ cml
ra mwﬂmQOm ligadas & discutido. Baseia-se em uma nova representagao
seccional ("piecewise'') do operador derivada segunda sobre um cenjunto
de fungoes que satisfazem as condi¢des de contorno. Essa representacac
e diagenalizada trivialmente e conduz a expressoes fechadas do tipo
Ey =Flan + b + o/n + ...) para os autovalores. Potenciais que sao po-
téncias e logaritmos s30 usados como exemplos.
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Abstract The field generated by torsion 1n a four-dimensional Weitzen-
bock space s considered. We interpret this field as a dynamical sys-
tem with a quadratic Lagrangian density of the Yang-Mills form. The in-
teraction with a spin 1/2 Dirac field is treated. The linear approxi-
mation for the free field generated by torsion is studied.

1. INTRGDUCTION

The geometry of a four-dimensional manifold with a parallel
field of local reference frames was considered in the literature as a
possible model for an unitary field theory'. The geometric properties
of this space, which is called as the Weintzenbbck space®, was later

re-considered as the basic framework of a theory of gravitation?’.

In this space, the basic geometrical object is the torsion,
and is the existence of this tensor field, which prevents the space of
being globakly flat, in the sense that exists a certain curvature ten-
sor, build up from the knowledge of the torsion, at all peints of the
manifold. The geometry of this space is associated with an internal
structure defined by the vierbeins, in such way that all internat Lo-
rentz rotations {transformations of the group 50(3,1}} are carried out
with conhstant matrices (globa! Lorentz transformations). This proper-
ty, which resembles ar anologue feature of the Minkowski space, has
some interesting consequences since 1t brings out the presence of the
six parameter Lorentz group. However, from the point of view of the
interaction with fermicons, it produces the result that no minimal cou~
pling occurs in the sense of a gauge theory, since no connection naybe

defined. This means that the only correction to be made in the free

Dirac equation for this case is the transition v+ «zAav where y  are
22
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