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Abstract. The simplest chaotic circuit containing a memristor involves
a capacitor C, an inductor L, and two parameters, α and β, charac-
terizing the memristor. Chaos was observed experimentally for three
combinations of these parameters. Here, we report high resolution sta-
bility diagrams displaying an abundance of tunable ranges of periodic
and chaotic self-oscillations for this circuit, in all six possible control
planes. We predict dynamically rich and intricate sequences of oscilla-
tions that are experimentally accessible in the system.

1 Introduction

The goal of this paper is to report a detailed investigation of the tunable ranges that
support periodic and complex oscillations in the “simplest chaotic circuit”, intro-
duced by Muthuswamy and Chua [1], an autonomous circuit containing two passive
linear elements, an inductor and a capacitor, connected in series with a memristor, a
nonlinear active element (see Fig. 1). The class of memory circuit elements is interest-
ing because such elements display complex phenomena and are potentially applicable
in many fields, ranging from complex circuitry to neurobiology [2–4]. For instance,
niobium dioxide Mott memristors were incorporated recently into a relaxation oscil-
lator and found to display a tunable range of periodic and chaotic self-oscillations
and to be potentially useful in certain types of neural-inspired computation by intro-
ducing a pseudo-random signal that prevents global synchronization and could also
assist in finding a global minimum during constrained searches [5,6]. A number of
other exciting applications exist, e.g. references [7–11] and references therein.

Muthuswamy and Chua [1] stated that their simple memristor circuit is related
to Rössler’s circuit, a statement reiterated in subsequent work [12]. A profusion of
elusive and complex global phenomena were recently observed in Rössler-like circuits,
namely periodicity hubs and infinite nestings of complex stability spirals [13–15].
The importance of periodicity hubs lies in the fact that they are focal points where
occurs an accumulation of an infinite quantity of spirals characterized by periodic
oscillations of distinct waveforms and periods. Separating each pair of periodicity
spirals one finds a spiral of chaos, making the whole set a doubly infinite nested
set of spirals forming a kind of “sandwich” of spirals. In other words, periodicity
hubs imply a doubly infinite alternation between spirals of periodicity and spirals
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Fig. 1. Schematic circuit considered here, governed by equation (1). Details of the nonlinear
memristive element M , controlled by parameters α and β in equation (1), are discussed by
Muthuswamy and Chua [1].

of chaos. Thus, it is possible to move towards the focal hub along any such spirals
(chaotic or not), while always remaining confined inside the same spiral (chaotic or
not). At the focal hub, it becomes possible to move on to any one of the doubly
infinite set of spirals and, from there, to spiral out. During the last decade, such
periodicity hubs were found to exist abundantly in the control parameter space of
nonlinear dynamical systems [13–15]. For a survey see, e.g., reference [16]. Thus, we
were motivated to check whether or not the memristive oscillator would also display
elusive characteristics in its control parameter space, characteristics which are known
to exist in the standard diode of Chua, either in a cubic or in the piecewise-linear
configuration [17]. A secondary reason is that, originally, chaotic oscillations were
reported for just three experimental configurations. Normally, for this type of system,
chaotic oscillations appear over extended parameter intervals. Therefore, considering
the scarcity of the chaotic oscillations, we were also motivated to look for the presence
of chaos in the system. In this paper we report our findings.

The dynamics of the memristive oscillator in Figure 1 is governed by three
autonomous equations and four parameters [1]:

dx

dt
=

y

C
,

dy

dt
= − 1

L

[
x+ β(z2 − 1)y

]
,

dz

dt
= −y − αz + yz. (1)

As described in detail by Muthuswamy and Chua [1], x and y are proportional to
VC and iL, respectively, while z describes the internal state of the memristive device.
Muthuswamy and Chua [1] fixed

C = 1, L = 3, and α = 0.6. (2)

By varying β, they reported observing chaotic attractors for β = 1.5 and 1.7, while
period-one and period-two oscillations were observed for β = 1.2 and β = 1.3,
respectively.

Numerically, subsequent work found chaos in a circuit closely related to the sys-
tem above [12]. Chaos and some analytical results were reported for specific choices of
α [12,18,19]. A number of experimental and numerical results were reported recently
for circuits containing mem-components, e.g. [20–24]. However, a systematic investi-
gation of the control parameter space of such systems seems to be still lacking.

Here, high-resolution stability phase diagrams are reported for the six possible
control parameter planes of the simplest memristor circuit. The above specific param-
eter choices were not discussed in the original work. Thus, we decided to investigate
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Fig. 2. Temporal evolution of the voltage x and attractor projections for β = 1.2, 1.3,
1.5, 1.7. The ratio of the periods T of the non-chaotic signals is 90.25/24.76 ' 3.64. The
corresponding ratio of the number of peaks (local maxima) per period is 4. Notice differences
in scales: amplitudes increase with β.

what sort of behaviors exist when parameters are changed, not necessarily by small
amounts. The stability diagrams presented below are centered on the parameters
originally considered by Muthuswamy and Chua. Remarkably, our stability diagrams
predict the existence of very extended tunable ranges of periodic and chaotic self-
oscillations for the memristive circuit.

2 Phase space analysis

We start by considering standard diagrams involving explicitly the dynamical vari-
ables. This is done both to get a preliminary idea of the circuit dynamics, and to
compare our numerical computations with earlier findings.

Figure 2 illustrates for β = 1.2, 1.3, 1.5 and 1.7, the temporal evolution of the
voltage VC , proportional to x variable, and y×x projections of the system attractor.
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Following the original work [1], we use the initial conditions x(0) = 0.1, y(0) = 0,
and z(0) = 0.1. Attractors were obtained using a standard fourth-order Runge-Kutta
integrator with fixed step h = 0.05. Using h = 0.005 produces no visual changes in
the graphs. Muthuswamy and Chua found that the attractors for β = 1.2 and 1.3
correspond to their experimentally measured period-one and period-two oscillations,
without elaborating on it. In contrast, Figure 2 shows distinct motions for this pair
of parameters. While for β = 1.5 we obtain a plot similar to the one in their Figure 2,
the panels for β = 1.2 and 1.3 are markedly different.

The x× y projections in Figure 2 seem to show only periodic, not chaotic attrac-
tors. However, the temporal evolution of the voltage x, together with the correspond-
ing Lyapunov spectrum (not shown here), unambiguously show that the oscillations
are chaotic. Individual panels also record the period T for the periodic oscillations,
as well as their number of peaks (local maxima) per period. In Figure 2, “chaos”
means a positive Lyapunov exponent. From Figure 2 it is possible to recognize that
the peaks of chaotic oscillations tend to repeat with roughly the same amplitude. In
other words, local maxima of the oscillations are restricted to very narrow intervals,
explaining why projections in Figure 2 give the (incorrect) impression of representing
periodic oscillations. Projections of larger portions of the attractor (not shown here)
are seen to significantly change general appearance of the projections which, how-
ever, continue to give the impression of representing periodic attractors. Although
positive, the Lyapunov exponents for β = 1.5 and 1.7 are rather small.

Are there period-one and period-two oscillations located near β = 1.2 and 1.3?
To check this possibility, we computed the bifurcation diagrams shown in Figure 3,
covering the extended interval 0.9 ≤ β ≤ 2, discretized into a mesh of 800 equidistant
points. These bifurcation diagrams were computed in two independent ways: (i) by
starting computations always from the same initial condition x(0) = 0.1, y(0) = 0,
z(0) = 0.1 for all points of the mesh; (ii) using the standard technique of “follow-
ing the attractor”, namely starting on the left boundary of the mesh at the initial
condition above and, when increasing β, not re-starting the initial conditions but,
instead, using those values of x, y, z that were stored in the computer buffer, from
the previous computation. Visually, both sets of diagrams look identical, implying
that it is unlikely to find multistability in the parameter regions surveyed. To further
check for multistability, we also tried using a few initial conditions taken randomly
from the interval [−1, 1], with identical outcome. Thus, no period-one and period-two
oscillations seem to exist near to β = 1.2 and 1.3. Notice that the narrow intervals
of chaotic oscillations at β = 1.7 are clearly corroborated by Figure 3c.

3 Stability phase diagrams

As mentioned, the memristor circuit governed by Equation (1) depends on four
parameters. Accordingly, we explore all six possible two-dimensional stability dia-
grams, sections of the control parameter space, centered around the reference point
(C,L, α, β) = (1, 3, 0.6, 1.5).

Figure 4 shows Lyapunov stability diagrams for the β × C and β × L control
planes. All diagrams reported in this paper were computed using standard proce-
dures, as described in detail in, e.g. references [14,16,25]. In Figure 4, colors repre-
sent chaotic oscillations (positive Lyapunov exponents) while dark shadings denote
parameters leading to periodic oscillations (negative exponents), as indicated by the
colorbars. Dots mark the points β = 1.2, 1.3, 1.5, 1.7. Horizontal lines mark either
C = 1 or L = 3. In Figure 4 and in all Lyapunov diagrams below, the color cod-
ing was always renormalized according to the minimum and maximum values of the
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Fig. 3. Bifurcation diagrams showing maxima of x along the line C = 1. (a) The four vertical
lines mark β = 1.2, 1.3, 1.5 and 1.7. (b) Magnification around β = 1.5. (c) Magnification
around β = 1.7, illustrating the very limited variation intervals of the chaotic attractor.

exponents contained by the windows. That is the reason why, for instance, Figure 4b
displays a different pattern of colors than the region inside the white box in Figure 4a.

From Figure 4 one recognizes that the Lyapunov diagrams predict the existence of
extended tunable ranges of periodic and chaotic self-oscillations. The larger parame-
ter regions in Figures 4a and 4c clearly show that regions of periodic motions are far
larger than regions of chaos. Furthermore, from Figures 4b and 4d, one recognizes
that it is remarkable that Muthuswamy and Chua found two instances of periodic
oscillations in a region where the probability of finding chaos is relatively high.

Figure 5 presents Lyapunov stability diagrams illustrating details in successive
magnifications of the control region inside the white box in Figure 4d. This figure
shows chaos to be dominant in this region. Figure 5 also shows a profusion of shrimps
[26–28] which, however, appear stretched in several distinct shapes and configurations
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Fig. 4. Lyapunov stability diagrams displaying extended tunable ranges of periodic and
chaotic self-oscillations in the β × C and β × L control planes. The white box in the left
panels are shown magnified on the right; the white box in d is magnified in Figure 6. Colors
represent chaotic oscillations while dark shadings denote periodic oscillations, as indicated
by the scale. Dots mark the points β = 1.2, 1.3, 1.5, 1.7. Horizontal lines mark C = 1 or
L = 3. Individual panels display 1400×1400 exponents. In c, the pink region at the bottom
refers to parameters leading to unbounded attractors (divergence).

but, apparently, do not display signs of periodicity hubs [13] and never coiling up to
form infinite spirals [14] or other intricate shrimp networks [29–31]. Of course, since
the diagrams presented here reflect the parameter space configuration around the ref-
erence point (C,L, α, β) = (1, 3, 0.6, 1.5), it is still possible that the aforementioned
complex structural self-organizations show up in other parameter regions. The inves-
tigation of this interesting problem requires considerable investment of computer-time
and is not pursued here.

The leftmost column in Figure 6 presents Lyapunov diagrams showing successive
magnifications of the predicted distribution of periodic and chaotic oscillations in
the memristor β × α control plane. The stability phases recorded in these diagrams
display characteristics similar to the ones already described above. In fact, it is quite
remarkable that stability diagrams seem to show quite similar dependences on the
linear (C and L) and nonlinear (α and β) control parameters.
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Fig. 5. Successive magnifications illustrating details of the organization of windows of
periodic and chaotic self-oscillations in the β × L control plane. Shrimps bend and get
stretched, but do not seem to form spirals (see text). Each individual panel displays 1400×
1400 exponents.

The three rightmost columns in Figure 6 display a complementary type of stability
diagrams that we call isospike diagrams [25,32], namely diagrams obtained by count-
ing the number of spikes per period for all periodic oscillations. Isospike diagrams are
more informative than Lyapunov diagrams because they not only discriminate peri-
odicity from chaos but, simultaneously, indicate precisely where the number of spikes
per period changes when tuning parameters. In particular, the isospike diagrams
obtained by counting spikes per period of the x and z variables show considerable
similarity when compared to the corresponding ones obtained by counting spikes of
y. Moreover, as seen from the figures, they expose a lot of intricate substructure in
regions where Lyapunov diagrams display no variation.

To compute isospike diagrams, subsequently to the computation of the Lyapunov
exponents, integrations were continued for 40 × 105 additional time-steps when up
to 800 extrema (maxima and minima) of the variable of interest were recorded,
along with the time of their occurrence. A simple search of this series of extrema
allowed verifying whether spikes repeated or not. All computations were done in
double precision (8-byte real numbers meaning about 15 digits of accuracy). A palette
of 19 colors is used to represent the number of spikes per period. Patterns having
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Fig. 6. Tunable stability regions as a function of the memristor parameters α and β, when
fixing C = 1 and L = 3. The leftmost panels are Lyapunov stability diagrams while the
other ones are isospike diagrams [16,25], obtained by counting spikes per period of the x, y,
and z variables, respectively, from left to right. The horizontal lines mark α = 0.6. White
boxes refer to successive magnifications on the leftmost column. Lyapunov diagrams display
1400× 1400 exponents, while other panels display grids of 1000× 1000 parameter points.

more than 19 spikes are plotted by recycling the 19 basic colors modulo 19. Black
represents “chaos”, i.e. lack of numerically detectable periodicity. Isospike diagrams
are also useful to analyze experimental data [33]. The computational cost to obtain
isospike diagrams is significantly smaller than the cost to obtain Lyapunov diagrams.

Panels a and b in Figure 7 are Lyapunov diagrams showing the tunable intervals
for periodic and chaotic motions for a section of the α × L plane. The distribution
of phases is similar to the ones described before. A new type of stability diagram is
shown in Figure 7 where parameters are color-coded according to the period of their
corresponding oscillations. Chaotic oscillations are shown in black. As it is clear,
period diagrams can also reveal details of the substructures which form periodicity
islands. However, to reveal such details in period diagrams it is usually necessary to
define an upper cutoff period, namely a fixed value to which a fixed color is attributed
whenever a computed period is larger than the cutoff. Without a proper cutoff, the
period diagram turns out to be too dark, showing no details. Figures 7d and 7e
display isospike diagrams obtained by counting spikes of the x and y variables. As
before, spikes of z produce a diagram similar to Figure 7d. From panels d and e it
is easy to recognize that, although the x and y variables oscillate independently, the
overall structure of the diagrams is the same, the difference being simply the number
of spikes per period.

Finally, Figure 8 presents period and isospike diagrams similar to the ones in
Figure 7, but for the control planes α×C and C ×L. Once again, although stability
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Fig. 7. (a) Extended view of the stability regions in the α×L control plane. (b) Magnifica-
tion of the white box in (a) showing details of the chaotic phase. (c) Parameter classification
according to the distribution of the oscillation period. Chaos is represented in black. (d)
Isospike diagram [16,25] obtained by counting spikes of x, which essentially coincide with
the spikes of z. (e) Isospike diagram obtained by counting spikes of y. Here C = 1 and
β = 1.5. Each panel shows a grid of 1000× 1000 points.

regions appear stretched and distorted, there is no indication of periodicity hubs and
the associated nesting of spirals. Both control planes display a relatively small region
where chaotic oscillations are to be expected. Furthermore, the inner substructure
generated by the y oscillations is more complex than the corresponding ones recorded
for the x variable.

4 Conclusions and outlook

Detailed stability diagrams predicting the location and relative abundance of tunable
ranges for periodic and chaotic motions for the simplest possible circuit containing a
memristor were computed. This was done for the six possible two-dimensional sections
of the control parameter space. The memristor circuit displays a plethora of chaotic
phases containing intricate self-organized sequences of windows of stable periodic
oscillations. As it is clear from the stability diagrams reported above, changing the
control parameters C and L, of the linear components, produces effects analogous to
changing α and β, which control the memristor. Our initial expectation of finding
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Fig. 8. Stability diagrams showing the relevant control regions for two distinct control
planes. As in Figure 7, panels a and b display the periods, while the other panels were
obtained by counting spikes per period of x and y, respectively, as indicated. Spikes of
z essentially coincide with spikes of x and are not shown. Individual panels display grids
displaying 1000× 1000 parameter points.

periodicity hubs and spirals [33] in the system was not confirmed, despite the fact that
the distribution of oscillations, chaotic or not, shows rather complicated structures
and substructures.

Several additional stability diagrams (not shown here) were also computed for
specific areas of the control parameters, with some of them apparently hinting to
the possible existence of regions with complicated dynamics embedded in the chaotic
phase. A search for such behaviors demands considerable additional investment of
computer time and, therefore, is not further pursued here. It is hoped that the rich
predictions of an organized unfolding of oscillations discovered in the present prospec-
tion may motivate their experimental investigation, along the lines recently done for
a Duffing-like proxy designed to bypass noisy spectra conspicuously present in oscil-
lators [33], in the standard circuit of Chua [34], and in other scenarios [35,36].
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