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Abstract

The CO2 laser is a complex dynamical system that has been investigated extensively
both experimentally and through numerical simulations. As a result, a number of
models exist for this laser, famed for providing satisfactory agreement between numer-
ical and experimental observations. But the laser involves a large number of freely
tunable control parameters whose impact on its performance and stability is not known
in detail. The spontaneous emergence and organization of laser stability phases are also
poorly understood. Here, we review recent progress in the classification of laser spiking,
periodic or nonperiodic self-pulsations, predicted for CO2 lasers with modulated param-
eters and with feedback, instantaneous or delayed. The unfolding of spiking is classified
with the help of numerically obtained high-resolution stability charts for experimentally
accessible control parameters. Such stability charts display novel regular and irregular
features, suggesting that the laser control parameter planes harbor remarkable symme-
tries not yet accounted for theoretically but which are experimentally within reach.
High-resolution stability charts put stringent tests on the reliability and accuracy of
current models in forecasting laser dynamics.
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1. INTRODUCTION

After establishing a laser model, the chief outstanding problem is the

determination of its stability domains as a function of the control parameters.

This problem is equivalent to the construction of phase diagrams for com-

binations of tunable parameters contained in the model. Traditionally, phase

diagrams are constructed analytically following century-old recipes. They

discriminate two basic types of solutions (Erneux and Glorieux, 2010): fixed

points, ie, continuous-wave (CW) laser modes, and tame oscillations,

namely time-varying solutions found after the so-called Hopf bifurca-

tion boundaries, critical parameter boundaries beyond which fixed

points are destabilized. Thus, analytically constructed phase diagrams

normally consist of relatively simple curves discriminating parameters

leading to nonoscillatory and oscillatory behaviors. Since models can

be rather intricate, the fact that the curves are simple does not mean

that their determination is simple. An additional complication of analyt-

ical works is that they frequently require introducing a number of

approximations whose effect is not completely trivial to determine on

the final expressions obtained. Recent advances in the theory of dynam-

ical systems have shown that oscillatory modes can display an infinite

number of distinct periodic wave patterns as well as a continuum of

chaotic solutions, namely solutions where laser modes can display spikes

and bursts without ever repeating. This calls for a classification of all sort

of oscillatory laser modes.

Our goal is to provide an overview of current advances in the determi-

nation of laser stability charts. During recent years, interest in the structural

organization of the control parameter plane of all sorts of lasers and other

dynamical systems has been steadily increasing. Of primary interest are

stability charts detailing how stable solutions self-organize themselves, or

are organized by external forces, in parameter regions of interest of their

normally high-dimensional control space. There is already extensive litera-

ture about laser phase diagrams, particularly for semiconductor lasers.

For references see, eg, the surveys by Sciamanna and Shore (2015),

Picozzi et al. (2014), Donati and Hwang (2012), and Wieczorek et al.

(2005). Note, however, that in practical applications such diagrams are

not as easy to use as one might have wished. The reason is that laser models

are also playground for applied mathematicians looking for dynamically
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intricate behaviors. Using continuation techniques, they normally obtain

valuable diagrams which, however, combine phases corresponding to stable

and unstable oscillations without a clear distinction between them. In con-

trast, here we focus on diagrams displaying only stable phases, which can be

compared directly with experimentally obtained diagrams.

Broadly, this work reviews a number of recent findings concerning the

distribution of self-pulsing in CO2 lasers as a function of control parameters.

The dynamics of the CO2 laser (Patel, 1964; Zinth et al., 2011) was the sub-

ject of several investigations in recent years (Doedel and Pando, 2014;

Doedel et al., 2014; Uchida et al., 2005). Of particular interest is to learn

how to optimize the use of this powerful laser in applications and how

to extract new theoretical insight from the knowledge of its dynamical

characteristics. The reasons for the interest comes from applications such

as, eg, coupling several lasers together to bypass the power limitations of

individual lasers. Coupling lasers involves a plethora of new and unantici-

pated phenomena, for instance, the abundant emergence of random spiking

and bursting, the synchronization of strongly pulsating lasers, and several

other phenomena (Doedel et al., 2014; Larson et al., 2006; Susa et al.,

2002; Uchida et al., 2005).

Specifically, the problem addressed here is the classification of laser oscil-

lations and phases, sharing common characteristics of interest. As men-

tioned, the simplest possible stability phase is defined by the set of control

parameters which produce stationary (CW) solutions. Next, there is an

infinite number of phases corresponding to periodic oscillations with an

arbitrarily high number of spikes per period. Finally, all nonperiodic oscil-

lations form a third phase, the phase of chaos. Thus, the aforementioned

classification problem amounts to determining the size and the boundaries

for all phases, periodic or not.

Laser stability has been continuously a research subject ever since the

laser invention. So, one may ask: what can be new about it? Briefly, fruitful

and unanticipated novelties arise from the possibility of using computer clus-

ters working at several petaflops, ie, with processing speeds of 1015 floating

point operations per second, combined with terabytes of memory to per-

form systematic numerical investigation of arbitrary laser oscillations. Direct

numerical simulations do not suffer from the aforementioned problems, due

to approximations. As for discrete-time dynamical systems, numerical

methods are nowadays reliable and can produce robust results for flows

(continuous-time systems). For reliable models, numerical results agree with
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experiments and serve to gauge analytical approximations. The laser oper-

ation is normally described by rate equations and, accordingly, we consider

state-of-the-art models currently used for CO2 lasers.

Laser pulsations were already investigated for many situations of interest

and are already summarized in books (Kane and Shore, 2005; Ohtsubo,

2013). A positive outcome of these investigations is that a satisfactory agree-

ment was consistently reported between experiments and simulations. On

the down side, such agreement usually holds for restricted set of parameters,

covering no more than specific ad hoc values or intervals, motivated by

specific applications. Thus, there is still a general lack of more encompassing

and systematic analysis of the laser control parameters, classifying the nature

and the relative abundance of stable pulsations. Why has this situation

persisted thus far?

From an experimental point of view, the optimization of laser devices is a

long-sought goal in quantum optics. In practice it is hard to achieve due to

difficulties associated with continuously tuning parameters over extended

ranges. Instead of efforts to better tune the performance of the lasers already

known, the main emphasis has been to develop lasers to cover the full

electromagnetic spectrum consistently with energy-efficient light sources

like, eg, the energy-saving blue light-emitting diode whose discovery

won the Nobel prize in 2014. Fortunately, detailed computer simulations

can contribute now in several fronts to help optimize laser development

and to design novel applications.

About 30 years ago, CO2 lasers were used in pioneering experiments to

verify phenomena and scenarios predicted in the then emergent field of

nonlinear dynamics. The reason for using CO2 lasers was its versatility

and the relative handiness of its custom realization in well-equipped labora-

tories. Thus, the observation of deterministic chaos in CO2 lasers with cavity

modulation near the relaxation frequency was of primary importance

(Arecchi et al., 1982a; Bonatto et al., 2005; Dangoisse et al., 1986, 1987;

Lefranc and Glorieux, 1993; Zehnl�e et al., 1992). From this experiment,

other observations followed, confirming that chaos is also present in an

autonomous configuration such as the CO2 laser with optoelectronic feed-

back (Arecchi et al., 1986). Nowadays, applications involving optoelec-

tronic and optical feedbacks in semiconductor lasers are widespread,

specially in the field of secure communications, which rest on the phenom-

enon of chaotic synchronization between a master and a slave laser (Larson

et al., 2006; Uchida et al., 2005).
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To better understand the aforementioned phenomena in coupled

lasers, an active field of research, one first needs a thorough understand-

ing of a single CO2 laser. The solitary laser involves a large number of

freely tunable control parameters whose impact on its stability and

performance, despite the large literature, has not yet been investigated.

We review recent results that bridge this gap through a systematic

numerical classification of complex dynamical phenomena observed

in the CO2. We also consider stability diagrams for easily accessible

control parameters, and for parameters that are not so easily accessible,

that imply more subtle changes of the physical characteristics of the

laser medium.

2. COMPUTATION OF STABILITY CHARTS

The phase diagrams presented in several figures below were com-

puted as follows. Any given two-parameter window of interest was

divided into a discrete grid of equidistant points, usually 1200 � 1200 ¼
1.44 � 106 points. Then, for each point, the equations of motion were inte-

grated numerically using the standard fourth-order Runge–Kutta algorithm
with fixed time step.

Laser stability is described here by three complementary types of stabil-

ity diagrams: (i) the familiar stability diagram based on Lyapunov exponents

(Argyris et al., 2015; Strogatz, 2015), (ii) stability diagrams displaying how

the period of the oscillations evolves, and (iii) the so-called isospike diagrams

(Freire and Gallas, 2011a,b; Gallas et al., 2014), based on counting the

number of spikes contained in one period of the periodic oscillations.

These three types of stability charts are illustrated in Fig. 1. As it is clear

by comparing the panels in the three columns, all three types of diagrams

provide the same basic information: they correctly discriminate chaos from

periodicity. Note, however, that the isospike diagrams presented on the

rightmost column are much more informative than the diagrams based

on Lyapunov exponents and on the period of the oscillations: isospike

diagrams not only discriminate periodicity from chaos but also indicate

simultaneously where the number of spikes per period changes when

parameters are tuned. They expose a lot of intricate structures in regions

where the other domains show little or no variation at all. Below, we will

use them frequently.
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Fig. 1 Phase diagrams on the space of the frequency–amplitude variables describing laser self-pulsing for the CO2 laser with modulated
losses governed by Eqs. (1)–(3). The vertical columns show three distinct ways of representing the distribution of periodic and chaotic laser
oscillations . The lower row are magnifications of the white box seen on two panels in the upper row. (a) Standard representation in terms of
Lyapunov exponents. Positive exponents (indicated in colors (different gray shades in the print version)) represent chaotic oscillations.
(b) Distribution of the period of the periodic oscillations. Lack of periodicity is shown in black. (c) Isospike diagram, showing the number
of spikes per period. Aperiodicity shown in black. All three representations discriminate regularity from chaos, but isospikes are simpler
to use because they do not require tuning scales in the control plane.
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The diagrams in the center column represent the period of the pulses.

They need to have the range of colors to be chosen manually by trial and

error. This is so because the presence of high periods makes it difficult to

find a good compromise for the range of colors that reveals the distribution

of the smaller periods. In fact, the isospike diagrams on the rightmost column

are valuable in helping to find suitable intervals to display the periods. In

short, it is hard to automatize the selection of color ranges to better display

variations of period.

When generating stability charts like Fig. 1, integrations of the laser

governing equations are normally done horizontally, moving from left to

right, starting from an arbitrarily chosen initial condition and proceeding

to the right by “following the attractor,” namely by using the values

present in the computer buffer, at the end of a calculation for a given para-

meter, to start a new calculation after incrementing the parameter slightly

horizontally. For details see, for example, Freire et al. (2009). In other words,

instead of always reinitializing from the same initial conditions when

changing parameters, we simply reused the conditions that were already

stored in the computer buffer from a previous computation. This proce-

dure was repeated for every parameter in the vertical axis. Normally, the

first 2 � 105 integration steps were discarded as a transient time needed

to approach the attractor. The subsequent 40 � 105 steps were then

used to compute the Lyapunov spectrum, the period, and the number

of spikes.

To obtain isospike diagrams, namely to find the number of spikes per

period of the oscillations, subsequent to the computation of the Lyapunov

exponents, we continued integrations for an additional 40 � 105 time steps

recording up to 800 extrema (maxima andminima) of the variable of interest

and checking whether pulses repeated or not. In the isospike diagrams we

used a palette of 17 colors to represent the number of spikes contained in

one period of the oscillations, as indicated by the colorbars in the figures.

Patterns with more than 17 spikes are plotted by recycling the 17 basic colors

modulo 17. Black represents “chaos” (ie, lack of numerically detectable

periodicity), and white and orange colors mark nonoscillatory solutions, if

any, having, respectively, nonzero or zero amplitudes of the variable under

consideration. Isospike diagrams can be also efficiently implemented to deal

with experimental data (Sack et al., 2013). The integration of differential

equations for large sets of parameters and initial conditions is numerically

a quite demanding task and can be performed only using computer clusters

and suitable ad hoc programming.
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3. SPIKING IN SELECTED CO2 LASER MODELS

In this section, we discuss stability diagrams for a some representative

CO2 laser models. The selected models involve low-dimensional models

with or without modulated parameters, higher-dimensional models, and

an infinite-dimensional model involving delayed feedback. The recurrent

message is that these models display a rich variety of oscillatory modes

and specific parameter combinations leading to unexpected behaviors.

3.1 First Experimental Observation of Laser Chaos
A technique used quite early to produce chaotic laser oscillations is by mod-

ulating control parameters of the so-called class B lasers (Arecchi et al.,

1984). For instance, modulation of parameters was used in the influential

work by Arecchi et al. (1982b), reporting measurements of subharmonic

bifurcations, multistability, and chaotic behavior in a Q-switched CO2

laser, a work that spurred a wide range of studies of parameter modulated

lasers. Since then, modulated CO2 lasers have been fruitfully exploited in

many situations. Applications include studies of stochastic bifurcations in

modulated CO2 laser (Billings et al., 2004), multistability induced by

periodic modulations (Chizhevsky, 2001), the rich response of CO2 lasers

with current modulation and cavity detuning (Pisarchik and Kuntsevich,

2001), and self-focusing effects in nematic liquid crystals (Brugioni and

Meucci, 2004).

During the last 20 years, the CO2 laser was extensively studied theoret-

ically, numerically, and experimentally but focusing mainly on the charac-

terization of dynamical behaviors in phase space (Hilborn, 2000; Ott, 2002;

Strogatz, 2015) for specific parameters. Thus, while a detailed description of

phase-space dynamics is available (Dangoisse et al., 1987; Gilmore, 1998;

Gilmore and Lefranc, 2002; Tredicce et al., 1986), no comparable descrip-

tion exists for the parameter space. An exception is a work by Goswami

(1994) who investigated analytically the first few period-doubling bifurca-

tions for certain approximations of the Toda model of the CO2 laser first

described by Oppo and Politi (1985). Now, we describe features predicted

by numerical simulations of the frequency–amplitude control space of a

CO2 laser with modulated losses. This serves to introduce a number of

features of the control space that will appear again later, when discussing

other laser models. For more details, see Bonatto et al. (2005) and references

therein.
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The simplest model of the single-mode dynamics of the loss-modulated

CO2 laser involves two coupled degrees of freedom governed by the

equations for the dimensionless variables u and z (Arecchi et al., 1982b;

Bonatto et al., 2005; Chizhevsky, 2001):

du

dt
¼ 1

τ
ðz�kÞu, (1)

dz

dt
¼ðz0�zÞγ�uz: (2)

Here, u is proportional to the radiation density, z and z0 are the gain and

unsaturated gain in the medium, respectively, τ denotes the transit time

of the light in the laser cavity, γ is the gain decay rate, and k� k(t) represents

the total cavity losses. The losses are modulated periodically and provide

the third degree of freedom necessary for the system to support chaotic

spiking:

kðtÞ¼ k0ð1+ acos2πftÞ: (3)

In this expression, k0 represents the constant part of the losses, while a

and f, the amplitude and frequency of the modulation, are the main bifur-

cation parameters of interest here. As frequently done (Bonatto et al.,

2005; Chizhevsky, 2001), the remaining parameters are fixed at the

realistic values τ ¼ 3.5 � 10�9 s, γ ¼ 1.978 � 105 s�1, z0 ¼ 0.175, and

k0 ¼ 0.1731.

Stability charts for this model are illustrated Figs. 1 and 2. A conspicuous

feature in these figures are the so-called shrimps (Façanha et al., 2013;

Gallas, 1993; Lorenz, 2008), seen at the center of the three panels on the

bottom row of Fig. 1. As it may be recognized from the isospike diagrams

on the rightmost column in Fig. 1, shrimps are complex structures com-

posed by a doubly infinite succession of peak-doubling cascades of periodic

oscillations plus a chaotic phase that follows them. As the number of spikes

grows, they get more and more distorted as one sees in Fig. 2. A conspicuous

feature observed as periodic laser pulses get more and more spikes is the reg-

ular self-organization of phases into a very regular network of self-similar

shrimps. Such parameter space organization was previously known to exist

in discrete-time dynamical systems (Gallas, 1993, 1995; Gallas and Nusse,

1996; Hunt et al., 1999). For flows, it was first observed by Bonatto et al.

(2005) in a loss-modulated CO2 laser.

Fig. 2a displays a global view of the parameter space. The most promi-

nent features, the broad parabolic curved arcs in Fig. 2a, show that the
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control space of Eqs. (1) and (2) agrees well with the description found by

Goswami (1994) for the Toda model of the CO2 laser. For the parameters

chosen, the relaxation frequency of the laser model is 50 kHz. In Fig. 2a one

sees that there is a minimum amplitude threshold a beyond which

subharmonic bifurcations start to occur, corresponding to a frequency about

100 kHz, the harmonic of the relaxation frequency (Bonatto et al., 2005). In

addition, for certain parameter values new stability domains are created by

saddle-node bifurcations, each of them undergoing then its own doubling

cascades. In certain parameter ranges, more than one stable mode coexist

(generalized multistability). This feature may be recognized in Fig. 2 from

the sudden discontinuities in the coloring, which arise from the impossibility

of plotting two distinct colors for the same parameter point.

A quite interesting feature in Fig. 2a is the remarkably regular structure

inside the white box, magnified in Fig. 2b. This magnification shows that,

embedded in the wide domain of parameters which lead to chaotic laser

pulsations, there is a regular structure of self-similar parameter windows,

shrimps, each one including infinite cascades of stable periodic oscillations.

The period of the central region, “head,” of some of the larger shrimps is

indicated by the number near to them, which denotes the period of the laser

intensity in multiples of 2π.
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In qualitative agreementwith the organization ofwindows in Figs. 1 and 2,

Pando et al. (1995) discovered that a four-level model of the laser behaves

qualitatively similar to the prototypic H�enon map

xt+1¼ a�x2t + b yt, yt+1¼ xt: (4)

In this discrete-time model, the parameter a (forcing) is taken as the bifur-

cation or control parameter. The damping parameter b varies between� 1�
b � 1, the b ¼ 1 representing the conservative limit and b ¼ 0 the limit of

strong damping. While for b ¼ 0 (the logistic limit) there exists just a single

attractor (distinct from�1) over a wide interval of a, when b 6¼ 0 one finds

that several periodic and chaotic attractors may coexist. As for any class

B laser, the CO2 laser dynamics is characterized by a time delay between

the intensity and the population inversion, a fact that nicely matches the

delayed character of the H�enon map when written as a one-dimensional

recurrence relation. Since it is easier to iterate maps than to integrate differ-

ential equations, it is interesting to compare what happens in the strongly

dissipative limit of the map, focusing on slightly negative values of b.

Fig. 3 shows the regular self-organization of periodic pulsations along

certain specific directions in the control space of the H�enon map obtained

when starting on the left from the initial condition (x0,y0) ¼ (0.01,0.01)

and “following the attractor horizontally,” namely using the initial condi-

tions stored in the computer buffer when updating parameters horizon-

tally (Gallas, 2010). The ordering along the main diagonal of Fig. 3a is

the same found for the laser, in Fig. 2a, along the direction containing the

periods indicated inside circles. Similarly, the secondary diagonal in Fig. 3a

displays the same ordering that the parabolic arc in the middle of Fig. 2c.

There is an excellent agreement between the laser and the H�enon map

in phase space. This is corroborated by Fig. 4 which compares return maps

between the laser (left column) and the H�enon map (right column). The

laser return maps were constructed using the sequence u‘(t), ‘¼ 1,2,3,…

of normalized relative maxima of u(t). Another map displaying a

similar organization and particularly suited to investigate analytically the

inner structure of stability islands is the prototypical canonical quartic map

xt+1¼ðx2t � aÞ2� b, introduced by Gallas (1993) and further discussed by

Gallas (1994, 1995) and Hunt et al. (1999).

How easy is to detect experimentally the above regularities? Figure 5

illustrates a representative laser signal using two distinct vertical scales, linear

and logarithmic. Although waveforms and underlying number of spikes
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are easy to recognize in logarithmic scale, their experimental detection may

become strenuous, particularly as the number of spikes increases. For ins-

tance, contemplating the six period-16 stability islands in Fig. 2b, one

may ask what sort of differences distinguishes them and should be expec-

ted in their measurement. The answer is depicted in Fig. 6. In a real-

world experiment, the difficulties to surmount are mainly to access narrow

high-period windows and to have a detection range wide enough. Modu-

lated losses are usually obtained with an intracavity polarizer and an electro-

optical modulator. To detect large and small peaks simultaneously one can
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use a logarithmic preamplifier (Lefranc et al., 1992). Thus, experimental

detection and discrimination of the laser signals in Fig. 6 are within reach

with existing technology. Experimentally measured stability charts with

high resolution have already appeared in the recent literature, but for

electronic circuits (Sack et al., 2013), not lasers.
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Fig. 4 Comparison of return maps for the CO2 laser (left column) and the H�enon map
(right column) illustrating the similarity of spiking, when (a) (a, f ) ¼ (0.06984, 89.8),
period-8; (b) (0.07138, 90.47), period-16; (c) (0.06902, 87.43), period-16. Frequencies are
in kHz. H�enon return maps for period-8 and its doublings seen at the center of Fig. 3a,
when (d) (a,b) ¼ (1.80287, �0.02514), period-8, (e) (1.80395, �0.0257), period-16, (f)
(1.80642, �0.02356), period-16.
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To uncover isomorphisms between the control space of flows

(continuous-time systems) and maps (discrete-time) is important both from

an applied and from a fundamental point of view. In this context, we men-

tion results of Hunt et al. (1999) showing that for two-parameter systems

there is a canonical family of quartic maps such that, typically, the bifurca-

tions within a periodic window of a given scalar map are well approximated

by linear transformations of the bifurcation diagram of the canonical quartic

map. For practical applications, an important question is to investigate if

parameter isomorphisms should be expected also for more refined laser

models such as those discussed by, for example, Ciofini et al. (1993),

Pando et al. (1993), andMeucci et al. (2004), which had not yet their control

parameter space mapped systematically.

3.2 CO2 with Feedback, Three-Dimensional Model
Next, we describe stability diagrams for a slightly more complicated system

than before: a class B laser with optical feedback governed by a set of three

rate equations (Arecchi et al., 1986; Junges and Gallas, 2012a; Vandermeiren

et al., 2012; Wang et al., 1990; Yang et al., 1997). Feedback loops are

standard ways of stabilizing and controlling the output frequency, wave-

length and power of a laser, and the loop may involve optical, electronic,

or electro-optical feedback (Fox et al., 2001). The efficient design of suitable

feedback loops requires an understanding of the impact of parameter

changes, informations which help optimize laser operation and further

develop applications.
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Fig. 5 Time evolution of the laser intensity u(t) for the large period-8 structure in Fig. 2b,
plotted in (a) logarithmic scale and (b) linear scale. Here T¼ 1/(89.8 kHz) is the period of
the modulation.
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The model considered involves three variables and seven control

parameters. Calling x(t) the laser intensity normalized to the saturation

value, y(t) the population inversion normalized to the threshold value,

and z(t) the feedback voltage normalized to 1/π times the voltage of the

electro-optic modulator, the governing equations can be written as
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Fig. 6 Predicted time dependence of the laser intensity signals for the six period-16
stability islands labeled A, B, …, F, in Fig. 2b. Signals (a) and (b), at points A and B,
are period-8 doublings. All other signals are from islands which begin with period-
16. Note that signals look very similar, despite the fact that they originate from very
distinct regions of the parameter space. Parameters (a, f ) are: (a) A ¼ (0.06902,
87.43), (b) B ¼ (0.07138, 90.47), (c) C ¼ (0.063725, 92.15), (d) D ¼ (0.062255, 75.735),
(e) E ¼ (0.0749617, 67.3281), (f) F ¼ (0.073666, 83.359). The period T ¼ 1/f is different
for each signal.
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(Arecchi et al., 1986; Junges and Gallas, 2012a; Vandermeiren et al., 2012;

Wang et al., 1990; Yang et al., 1997)

_x ¼ kxðy�1�α sin2zÞ, (5)

_y ¼ γðA�y�xyÞ, (6)

_z ¼ βðB� rx�zÞ: (7)

In these equations, k stands for the unmodulated cavity loss, γ is the popu-
lation decay rate, β is the damping rate of the feedback loop, r is the feedback

gain, A is a normalized pump parameter, B is the bias voltage applied to an

electro-optic modulator, and α is the amplitude of the modulation. As usual,

B is normalized to 1/π times the half wavelength voltage of the modulator.

Several of the earlier works either do not contain enough information

that allow reproducing their results or contain inconsistencies preventing

one from reproducing what they describe. An exception is the careful

analysis of Yang et al. (1997), who focused on the r � B control plane

for A ¼ 1.66, α ¼ 5.8, k ¼ 9.6 � 10�6 s�1, γ ¼ 0.03 � 10�6 s�1, and

β ¼ 0.5 � 10�6 s�1. Their realistic values are the same used here.

Yang et al. (1997) performed the standard linear stability analysis and

identified stability boundaries between stable and unstable fixed-point

(ie, nonoscillatory) solutions of the laser. They also computed numerically

the period and the number of peaks per period of the laser intensity as a

function of the parameters r (feedback gain) and B (bias voltage), defined

in Eqs. (5)–(7). They observed that an increase in the feedback gain, r,

results in an increase in the number of peaks of the laser intensity and found

that an increase of the bias voltage, B, induces an increase in the period of

the signal. They observed a divergence of the self-pulsing period T when

increasing B after fixing r at a particular value, viz., r ¼ 0.21593.

Fig. 7a and b presents r � B stability diagrams obtained by solving

Eqs. (5)–(7) using a fixed-step h ¼ 0.002 and starting integrations from

(x(0), y(0), z(0)) ¼ (1,1,1). Using random initial conditions distributed uni-

formly in the interval [0,1] produces virtually identical diagrams. In these

figures, fixed points (ie, nonoscillatory laser intensity) were plotted using

two additional colors: the color of the large domain marked “constant non-

zero laser intensity” in Fig. 1a, and white, to represent no-lasing solutions

(x ¼ 0). The no-lasing solutions appear as a very narrow white horizontal

stripe at the top of Fig. 7a.

Fig. 7a and b illustrates how self-pulsations are distributed and orga-

nized in control parameter space. Fig. 7a displays a sequence of adjacent
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regions containing numbers denoting the number of peaks of the laser

intensity. This organization agrees well with figure 3 of Yang et al.

(1997) and extends it considerably, indicating that chaos is more abundant

than originally found and that it recurs regularly in control parameter

space. Fig. 7b presents details of the inner structure of one of the chaotic

windows, the one inside the white box in Fig. 7a, showing that laser phases

have a quite complex organization, riddled by shrimp sequences (Façanha

et al., 2013; Gallas, 1993; Lorenz, 2008; Oliveira and Leonel, 2011),
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Fig. 7 (a) Stability diagram in the r � B plane classifying self-pulsating oscillations
according to the number of peaks of the laser intensity, x(t) in Eq. (5), as indicated by
the numbers. Black denotes regions of chaotic oscillations. Black is also used in the hor-
izontal stripe seen in the upper part of the figure to represent periods T > 400 (arbitrary
units), ie, the divergence of the period. The narrow white stripe on the top marks zero
intensity solutions (laser off). The points and pair of lines are discussed in subsequent
figures (see text). (b) Magnification of the white box in (a) showing the same mosaic
pattern reported recently for delay-differential equations ( Junges and Gallas, 2012b)
and standard accumulations of shrimps (see text). The box is shown magnified in
Fig. 11b. (c) Bifurcation diagram showing the peak-adding cascade in x(t) along the black
line in (a), Eq. (8), as indicated by the numbers on the top of the figure. As described in the
text, the laser intensity undergoes peak-adding cascades mediated by pulse deforma-
tions, not by windows of chaos, as usual. B and r are in the same units of Arecchi et al.
(1986), Wang et al. (1990), Yang et al. (1997), and Junges and Gallas (2012a).
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namely by sequences of islands where we find periodic self-pulsations

which unfold in a complex and specific way, via the pulse deformations

described in Fig. 8. As may be seen from Fig. 7b, the control parameter

space has specific boundaries where the shrimp sequences accumulate

(Bonatto and Gallas, 2007).
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Fig. 8 (a–d) Laser self-pulsing x(t) showing the increase in the number of peaks and inten-
sity as r increases from r¼ 0.105 (top) to r¼ 0.290 (bottom), as indicated by the four white
points along the black line in Fig. 7a. Vertical arrows mark the “precursor” of a new spike.
(e–h) Intersections of undulated (y, z)red (gray in the print version) tracewith the parabolic
arcs f(y, z) ¼ 0 (see text). Black segments of the undulated red (gray in the print version)
trace denote laser off (x < 0.005). On all these plots, the arrows indicate the location of
the intersections originating them. The green (gray in the print version) boxes mark the
intersections of the laser-off segment of the trajectory with the curve f(y, z) ¼ 0. It has
no influence in dx/dt (see Eq. 5). Intersections seen between the blue (dark gray in the
print version) dots mark local minima of the laser intensity. Note the fast increase of
the self-pulsation period T. Time and periods are measured in μs.

144 J.A.C. Gallas

Author's personal copy



The peculiar adjacent arrangement of isospike regions in Fig. 7a shows

a subtle behavior, namely a peak-adding cascade where the number of

peaks grows arithmetically, not geometrically as for the more frequently

observed period-doubling cascade. More importantly, the several isospike

windows are not separated by windows of chaos as it is more common

for adding cascades (see Fig. 5) but, instead, here the number of peaks

increases abruptly from window to window, without any trace of chaos

between them.

Fig. 7a contains a black line, defined by the equation

B¼ 0:184756+ 0:304878 r, 0:05< r < 0:48: (8)

Along this line we computed the bifurcation diagram shown in Fig. 7c,

which illustrates in more detail how the number of peaks varies when

two parameters are tuned simultaneously. Since the x(t) varies continuously,

to avoid plotting a solid black bar, the bifurcation diagram displays the local

maxima of the laser intensity, each local maxima resulting in one branch of

the bifurcation diagram. This bifurcation diagram is representative of the

diagrams obtained along most lines of constant B, which display nothing else

than more restricted views of the bifurcation cascade.

The bifurcation diagram in Fig. 7c is rather different from the more

familiar ones, presenting a succession of isolated branches, namely single

branches that start quite abruptly for specific values of r and evolve to form

an atypical peak-adding cascade. This unfolding resembles what is known as

mixed-mode oscillations (Freire and Gallas, 2011a), although here the

unfolding is rather different, not mediated by chaos (Hauser and Gallas,

2014; Junges and Gallas, 2012a). Such isolated branches arise from pulse

deformations when parameters evolve. Eq. (10) allows one to determine

the emergence of new peaks in self-pulsations.

Fig. 8a–d displays examples of self-pulsations for r¼ 0.105, 0.180, 0.237,

0.290 and B as defined by Eq. (8). These four points are indicated by white

dots on the black line in Fig. 7a. They are located immediately before the

boundaries marking a change in the number of peaks of the laser intensity.

Fig. 8a–d also contains a vertical arrow to indicate the location of a

“precursor” of a peak, ie, the position where a new peak will arise when

r is increased slightly. The explanation of the successive peak creation can

be given referring to Fig. 8e–h, on the right column.

Fig. 8e–h shows two curves in the y� z plane. The first one, represented

as a light parabolic arc, marks the solution of f(y, z) ¼ 0, where

f ðy,zÞ¼ y�1�α sin2z: (9)
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This function is an isocline defined by one of the two factors which appear

in dx/dt (see Eq. 5). The other curve records the locus (y, z) obtained by

integration of Eqs. (5)–(7).
The characteristic signature of the birth of a new isolated branch in

the bifurcation diagram is the occurrence of intersection points between

these two curves as parameters are tuned. The arrows in Fig. 8e–h show

where new intersections will occur when r is increased slightly. Such

intersections produce the several isolated branches at the bottom of the

bifurcation diagram in Fig. 7c. Thus, the condition for the genesis of

new peaks in self-pulsations or, equivalently, for new isolated branches

in the bifurcation diagram is:

dx

dt
¼ d2x

dt2
¼ 0: (10)

According to Eq. (5), this implies having

d2x

dt2
¼ k

dx

dt
f ðy,zÞ+ x

df ðy,zÞ
dt

� �
¼ 0, (11)

where f(y, z) is given by Eq. (9). That this relation is indeed true can be

verified numerically without difficulty. Clearly, the explicit conditions in

Eq. (10) allows one to locate discontinuities in laser self-pulsations.

Summarizing from the peak-adding cascade in Fig. 8 one realizes the

reason behind the emergence of extra peaks: they arise from continuous

pulse deformations of the oscillations as the parameter varies. The isolated

extra branches described here, arising from pulse deformations, should

not be confused with discontinuous branches due to multistability. The

latter involve discontinuous changes resulting from moving between distinct

basins of attraction, while in the former self-pulsations evolve continuously

staying always inside the same basin of attraction.

Discontinuities appear not only in the number of peaks (Fig. 7a) but also

in the period (frequency) of the pulses and can be of two kinds. Fig. 9a

presents a phase diagram showing how the period T varies as a function

of the feedback gain r and bias voltage B. In this figure one easily recognizes

two dark-green (black in the print version) regions, one horizontal, in the

upper part of the diagram, and another one roughly parallel to the black line

of Eq. (8). Two distinct kinds of discontinuities are observed when varying

parameters along the pair of lines depicted in the figure.
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Fig. 9 (a) Stability diagram illustrating how the period T of x(t) varies as a function of the r and B parameters. B and r are in the same units of
Arecchi et al. (1986), Wang et al. (1990), Yang et al. (1997), and Junges and Gallas (2012a). There are several boundaries of discontinuous
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The first type of discontinuity is shown in Fig. 9b which illustrates how

the period evolves along the black line. The inset of this figure shows

that a period discontinuity happens inside a very narrow interval, between

r ¼ 0.1416 and r ¼ 0.1426. These values are plotted as red (dark gray in the

print version) dots on the black line in Fig. 9a which, however, in the scale of

the figure, are too close to each other to be distinguished as two distinct

points. Between these dots one sees a curved vertical discontinuity boundary

in the color coding, indicating a discontinuity in T. This boundary is

characterized by jumps similar to the one shown in Fig. 9b. As this figure

shows, additional discontinuities exist which, however, are much less

pronounced and whose amplitudes decrease very rapidly.

A second type of discontinuity is shown in Fig. 9c and occurs along

vertical lines, here r ¼ 0.21593. This particular line was studied by Yang

et al. (1997) who noted a divergence of T as B grows. Although the period

can be calculated up to very high values, in Fig. 9a we introduced a cutoff

at T ¼ 400, considering all higher periods as divergences, ie, as lack of peri-

odicity. This was done to magnify the visibility of the horizontal domain on

the top of the figure. Actual divergences occur near the upper boundary of

this domain. We stress, however, that the pair of dark-green (black in the

print version) regions in Fig. 9a represent aperiodic pulses of a rather distinct

nature.While the horizontal dark-green (black in the print version) stripe on

the top of the figure marks divergence of the pulse period, the other region with a

more complex shape, roughly parallel to the black line, marks nonperiodic

oscillations, ie, chaotic laser pulses.

Comparing Fig. 9b and c one sees that the nature of the discontinuities

along the black line display is much more complex than along the vertical

line. Furthermore, comparison of Figs. 7a and 9a shows that discontinuities

in the number of peaks do not coincide necessarily with discontinuities of

the period, a fact clearly borne out in the two-peak window in the bifurca-

tion diagram in Fig. 7c.

Using the same type of representation as in Fig. 8, Fig. 10 shows the

cause of the discontinuous period jumps in Fig. 9b when passing between

r ¼ 0.1416 and r ¼ 0.1426. Despite the fact that the red (gray in the print

version) part of the trajectory (representing intervals where x> 0) in Fig. 10c

to be larger than in Fig. 10d, they both correspond to an essentially identical

lapse of time, as can be seen comparing the red (gray in the print version)

segments in Fig. 10a and b. From these figures one may also recognize that

in Fig. 10a the laser stays considerably longer with x ¼ 0 than in Fig. 10b,

what results in a sharp increase of the period. On the other hand, by
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comparing the black segments in Fig. 10c and d we see an increase in the

inversion y of the laser such that, when it decays, there is also an increase

in the observed laser amplitude.

Fig. 11 shows details of the laser stability diagram for a parameter region

dominated by chaotic self-pulsations. Fig. 11a uses Lyapunov exponents

used discriminate chaos (ie, positive exponents, shown in colors) from peri-

odic pulses (negative exponents). As before, Lyapunov exponent stability

agrees well with the phase diagram based on the number of peaks per

period in Fig. 11b where colors emphasize periodic pulsations. Fig. 11b

contains three white line segments along which bifurcation diagrams were

computed, as shown on the left column. In the bifurcation diagram of

Fig. 11c one sees a discontinuity in the number of peaks along the left-

most line in Fig. 11b, similar to the discontinuities described earlier. How-

ever, the sequence of bifurcations along the two remaining line segments

display peak-adding cascades of the more common type, namely cascades

mediated by windows of chaotic pulses, observed previously in other sys-

tems (Bonatto and Gallas, 2008b; Bonatto et al., 2005). Note that the pair

of peak-adding cascades converge toward a wide accumulation horizon

(Bonatto and Gallas, 2007) characterized by pulses with three peaks, the
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Fig. 10 Sudden increase in the period T of the time evolution of x(t) (left column) and in
the projections on the y � z plane (right column), induced by a very mild change of r,
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same number of pulses by which the cascades increase from shrimp to

shrimp. This regular organization was observed before in several situations,

eg, for an optically injected semiconductor laser (Bonatto and Gallas, 2007).

Thus, while in some regions of the control space one observes novel discon-

tinuous phenomena associated with pulse deformations, it is also possible to

find wide regions where the organization is of the more common kind. The

abrupt disruption of stability cascades by the new peaks arising from pulse

deformations shows that, while stability phases may display identical shapes

in control parameter space, the inner distribution of their pulses may be

rather distinct displaying strong variations.

3.3 State of the Art: Six-Dimensional Model
In this section, we describe features observed in the control space of a

six-dimensional model that is presently reputed as the best available to

describe CO2 lasers with feedback. It is defined by the equations for six

dimensionless variables (Arecchi and Meucci, 2009; Ciofini et al., 1999;

Freire et al., 2015; Pisarchik et al., 2001):

_x1 ¼ k0x1 x2�1�k1 sin
2ðx6Þ

� �
, (12)

_x2 ¼�Γ1x2�2k0x1x2 + γx3 + x4 +P0, (13)

_x3 ¼�Γ1x3 + x5 + γx2 +P0, (14)

_x4 ¼�Γ2x4 + γx5 + zx2 + zP0, (15)

_x5 ¼�Γ2x5 + zx3 + γx4 + zP0, (16)

_x6 ¼ β B0�x6� Rx1

1 + αx1

� �
: (17)

Here, x1 represents the laser output intensity, x2 the population inversion

between the two resonant levels, and x6 the feedback voltage signal which

controls the cavity losses. These three coupled variables, equivalent to the

(x, y, z) variables of Eqs. (5)–(7), are sufficient to generate chaos. However,

due to the interplay of the different energy levels of the CO2 molecule, one

must introduce three additional variables acting as linear filters, increasing

the overall dimension of the phase space from three to six. The variables

x3, x4, and x5 account for exchanges between the two molecular levels

resonant with the radiation field and the other rotational levels of the

same vibrational band of the molecule. The parameter k0 controls the

unperturbed cavity loss, k1 determines the modulation strength, γ is a con-
stant controlling the coupling between the subsystems (x1, x2, x6) and (x3,

x4, x5), Γ1 and Γ2 are population relaxation rates, P0 the pump parameter
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(related to the population inversion), and z represents the effective num-

ber of rotational levels. β,B0, R, α are, respectively, the bandwidth, the

bias voltage, the amplification, and the saturation factors of the feedback

loop. Following Pisarchik et al. (2001) and Freire et al. (2015), we fix

Γ1 ¼ 10.0643, Γ2 ¼ 1.0643, α ¼ 32.8767, β ¼ 0.4286, k0 ¼ 28.5714,

k1 ¼ 4.5556, z ¼ 10, γ ¼ 0.05, R ¼ 160, B0 ¼ 0.1026, and P0 ¼ 0.016,

all of them in dimensionless units. In all phase diagrams below, integrations

were performed horizontally from left to right starting from an arbitrarily

chosen initial condition, (x1, x2, x3, x4, x5, x6) ¼ (0.0011,1.01,1.05,

10.05,10.3,0), and proceeding by “following the attractor” (Freire et al.,

2015). The first 2 � 105 integration steps were disregarded as a transient

time needed to approach the attractor, with the subsequent 40 � 105 steps

used to compute the Lyapunov spectrum, the period, and the number of

spikes per period. A Lyapunov phase diagram for a reduced region of the

R � B0 control space of this model was already given in figure 5c of

Bonatto and Gallas (2008a). Larger and more detailed views of the R � B0

control plane are presented in Figs. 12 and 13. Before presenting results

for this and for other control planes, we first review significant steps that

led to the model earlier.

3.3.1 Genesis of the Six-Dimensional Model
As already mentioned, the simplest approach to model the dynamics of a

single-mode homogeneously broadened CO2 laser is by using two rate

equations, one for the laser intensity and the other for the population

inversion between the two resonant levels. This description is appropriate

for a class B laser, in the classification introduced by Arecchi et al. (1984).

The two-level model was used to interpret the chaotic dynamics emerging

in this kind of laser when an electro-optic feedback is introduced. When

complemented by a third equation describing the optoelectronic feedback,

the two-level laser equations provide the basic three-dimensional model

necessary to foresee local bifurcations leading to chaos after the destabiliza-

tion of a limit cycle (Arecchi et al., 1986) and global bifurcations related to

the presence of a homoclinic connection in the phase space (Arecchi et al.,

1987). This work argued to be possible to observe competing instabilities by

operating a CO2 laser with feedback in a parameter range with coexisting

unstable fixed points. From local chaos originated around a stationary solu-

tion with nonzero laser output intensity (named solution “1”) it is possible to

observe a transition to homoclinic chaos of the Shilnikov type around an

apparent saddle focus (named solution “2”). In this regime, the trajectories
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Fig. 12 The two panels on the top row two alternative representations of the laser stability as a function of the feedback gain R and bias voltage B0. Top left:
standard Lyapunov stability diagram (Bonatto et al., 2005), where gray shadings mark periodic oscillations (negative value exponents), and colors (different gray
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also visit the unstable solution with zero laser output intensity (named solu-

tion “0”). The situation is described in detail by Arecchi et al. (1987). Sub-

sequent investigations revealed that it is not possible to find a stationary

solution associated with this apparent saddle focus. This subtle and intriguing

aspect in the global dynamics led to the investigation in more detail of the
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Fig. 13 Distribution of spikes in the R� B0 plane as a function of the six dynamical vari-
ables used to count the spikes in one period of (a) x1(t), (b) x2(t), (c) x3(t), (d) x4(t), (e) x5(t),
and (f ) x6(t). Black represents chaos (ie, nonperiodic spiking). White marks a region of
constant but nonzero continuous wave laser intensities. In (a), the small white rectangle
at the center of the black boxmarks the region enlarged in Fig. 1. Chaotic laser spiking is
confined to comparatively small regions. Note the similarity of (a) and Fig. 7a obtained
for the much simpler three-dimensional model. On the bottom row, the two rightmost
panels show magnifications of the regions delimited by the two largest boxes inside the
leftmost panel. The two additional smaller boxes contained in the leftmost panel are
shown magnified in Fig. 12.
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Q-switching dynamics of the CO2 laser related to the build-up process of

the laser intensity originating from a spontaneous emission process when

the laser is below threshold. Such analysis revealed that the two-level model

is not adequate to fit experimental observations. To overcome this difficulty,

a four-level model was introduced. Such model accounts for nonradiative

couplings of the two resonant levels of the vibrational bands to which they

belong. A precise description of the passive Q-switching in a CO2 laser with

intracavity saturable absorbers was given in Dupr�e et al. (1975), Arimondo

et al. (1983), and Asquini and Casagrande (1983). Such a configuration also

led to the observation of homoclinic chaos (Alcantara et al., 1995; Dangoisse

et al., 1988; Erneux and Glorieux, 2010; Liu et al., 1994; Tachikawa et al.,

1988; Zeni et al., 1993). The CO2 laser with saturable absorber is equivalent

to the CO2 laser with feedback in the sense that homoclinic chaos is

observed in both of them.

The transient behavior in CO2 lasers with slowly swept parameters

around the laser threshold was later explained by the four-level model with

equal relaxation rates for the two vibrational bands (Arecchi et al., 1988). In

this experiment, the features of the relaxation oscillations affecting the laser

intensity after the crossing of the laser threshold have been characterized

depending on the sweep rate of the cavity losses. Exploring laser dynamics

near the laser threshold, another feature appears when the pump parameter

is slowly swept, that is, the presence of a delayed bifurcation. Such a phe-

nomenon, theoretically foreseen by Mandel and Erneux (2003), was exper-

imentally observed and correctly explained by the four-level model for the

CO2 laser (Arecchi et al., 1989).

The analysis of the dynamical behavior of a Q-switched CO2 laser rev-

ealed that the laser intensity in the nonlinear amplification regime and the

long time relaxation process to the steady state are correctly explained only

by using the four-level model with different relaxation rates of the two

vibrational bands (Meucci et al., 1992). On the other hand, in the linear

amplification regime both models produce the same result. In the case of

chaotic dynamics obtained by means of sinusoidal modulation of cavity

losses or by optoelectronic feedback the same considerations are still valid

reinforcing the adequacy of the four-level model. The four-level model

for the CO2 laser consists of five differential equations involving the laser

intensity I, the population of the lasing levelsN1 andN2, and the global pop-

ulation of the rotational manifolds M1 and M2. Consequently the dynamics

of a CO2 laser with electro-optic feedback is ruled by a set of six differential

equations (six-dimensional model). From a theoretical point of view, the
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validity of the four-level model was demonstrated by a global application of

center manifold theory allowing the reduction of the number of variables

from six to four (Varone et al., 1995).

Successive experimental confirmations of the adequacy of the six-

dimensional model are reported in Meucci et al. (1997), where evidence

of stabilization of periodic solutions embedded in the chaotic attractor of this

system is provided. The adopted strategy to control chaos is based on the

introduction of an additional feedback loop where a selective filtering of

the subharmonic components present in the chaotic laser intensity signal is

performed. The final result of this filtering process is the rejection of the

undesired subharmonic components responsible for chaos and the enhance-

ment of the fundamental frequency component associated with the limit

cycle stabilized in the phase space. This control method has been demon-

strated particularly suitable for low-dimensional chaotic systems where it is

possible, from a preliminary learning session, to extract the information nec-

essary for selective filtering in the frequency domain. The six-dimensional

model not only yields the unperturbed chaotic dynamics, but it is also crucial

to describe its control. Control is implemented by adding the extra degrees of

freedom related to the selective filtering. Although in this experiment one

only considers local dynamical aspects of chaos, the six-dimensional model

maintains its validity also when homoclinic chaos is directed to the fixed

point (saddle focus) in the phase space (Ciofini et al., 1999).

Another class of experiments, exploring the role of chaotic synchroniza-

tion induced by a sinusoidal forcing or by noise added in the feedback loop,

drew attention to the high susceptibility of the system in the vicinity of the

saddle focus (Allaria et al., 2001). As a small perturbation, including noise, is

able to modify the global dynamics from chaos to periodicity and vice versa,

synchronization can be easily obtained in a chain of CO2 lasers in the

homoclinic regime with nearest neighbor coupling (Arecchi et al., 2003;

Leyva et al., 2003). For further details, see Freire et al. (2015).

3.3.2 Stability Charts
We start by comparing in Fig. 12 two types of stability diagrams for the

six-dimensional model: the standard Lyapunov stability diagram and the

isospike stability diagram based on counting the number of spikes per period

(Freire and Gallas, 2011a,b; Freire et al., 2012; Gallas et al., 2014; Hauser and

Gallas, 2014; Hoff et al., 2014; Sack et al., 2013). They are plotted as a

function of the parameters studied most frequently in the literature, namely

as a function of the feedback gain R and the bias voltage B0. The Lyapunov
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diagram is shown on the leftmost top panel of Fig. 12. Gray shadings rep-

resent periodic oscillations (ie, negative exponents), while the colors denote

chaos (ie, positive values of the exponents). A similar Lyapunov stability

diagram showing a smaller stability region and slightly distinct parameter

values was given in figure 5c of Bonatto and Gallas (2008a). In contrast,

the rightmost panel shows the corresponding isospike diagram, which con-

tains much more information, While both diagrams clearly discriminate

regular from chaotic oscillations, the isospike diagram also informs how

and where the complexification of the laser signal occurs, ie, it shows

how to tune parameters in order to obtain more and more spikes in the laser

oscillation via continuous deformations that create and destroy peaks, as

described in the previous section for the three-dimensional model of a

CO2 laser with feedback ( Junges and Gallas, 2012a), and also for the infinite-

dimensional Mackey–Glass delayed feedback system ( Junges and Gallas,

2012b).

On the top row of Fig. 12, both panels contain triplets of dots labeled

(A, B, C), (D, E, F), and (G, H, I). Such points are the first ones of an infinite

sequence of analogous points lying inside certain complex structures,

denoted shrimps (Bonatto and Gallas, 2008a; Bonatto et al., 2005; Gallas,

1993, 1994; Gallas et al., 2014; Lorenz, 2008). These sequences of points

accumulate toward a large region on the right-hand-side containing the

number 3 (rightmost diagram on the top row) and representing periodic

laser oscillations with 3-spikes per period. Panels (a)–(i) on the bottom of

Fig. 12 show how the laser signal dependent on time changes along the first

three of the infinite sequences of points. The period T‘ (arbitrary units)

seems to grow continuously

ðTA,TB,TC,… Þ¼ ð213:57, 300:32, 386:03, … Þ, (18)

ðTD,TE,TF,… Þ¼ ð242:70, 327:61, 411:98, … Þ, (19)

ðTG,TH,TI,… Þ¼ ð245:91, 329:97, 414:10, … Þ: (20)

But the number of spikes shows a remarkable behavior: While the number

of spikes covers uniformly the main body of the shrimps forming the se-

quence A, B, C, … , the main body of the sequences D, E, F, … and

G,H,I, … are split into two separate domains characterized by distinct

number of spikes. Uniform accumulations of spikes were observed before

(Bonatto and Gallas, 2008a). But, as far as we know, shrimps contain-

ing double accumulations like the sequences D, E, F, … and G, H, I, …

have not been observed before. Note that all the three spike-adding
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accumulations involve the addition of three spikes, which is the number of

spikes of the domain toward which they accumulate very fast.

The time evolutions in Fig. 12a–i suggest regularities in the steady

complexification of laser patterns: Each family seems to be a concatenation

of a few fixed combinations of quasi-identical patterns where the rightmost

end of the wave pattern gets more and more extra spikes as one moves

toward the accumulation boundary. This situation is reminiscent of behav-

ior found recently in the Mackey–Glass delayed feedback system ( Junges

and Gallas, 2012b), a mathematically more complicated system, involving

an infinite-dimensional set of equations.

Since we consider a six-dimensional model for the laser, a natural question

to ask is whether or not the distribution of spikes depends on the specific

dynamical variable used to count them. To check this, Fig. 13 presents six

stability diagrams, one for each variable x‘. This figure shows unambiguously

that the recorded spikes distribution depends strongly on the variable used. It

is also clear that the boundaries of the spiking phases lie in different positions.

Curiously, the spiking phases seem to roughly organize themselves into three

similarity classes, in the sense that each pair of variables (x1, x6), (x2, x4), and

(x3, x5) produces a somewhat similar distribution of spikes. It is also manifest

that the diagrams obtained for the variables (x2, x4) somewhat interpolate the

diagrams obtained for the pairs (x1, x6) and (x3, x5). It is noteworthy here

that while x1 (the laser output), x2 (the population inversion), and x6 (the

feedback voltage) are more easy to be accessed experimentally, the remaining

triplet x3, x4, x5, accounting for exchanges between the molecular levels

resonant with the radiation and other rotational levels within the same vibra-

tional band, is not directly accessible to experimentation.

Fig. 13 depicts a much larger region of the laser control space than the

one shown in Fig. 12 and shows that the complexification of the laser inten-

sity occurs via nonchaos-mediated mixed-mode oscillations (Hauser and Gallas,

2014). Another important piece of information provided by Fig. 2 is that

periodic spiking (represented by nonblack phases) is by far the dominant

behavior in this control plane of the laser. In other words, the black color

representing chaos and seen extensively in Fig. 12, in fact exists only in com-

paratively small regions of this control space. As illustrated in Figs. 13 and 14

and in other similar figures below, this statement remains true for other

sections of the control space.

How does the distribution of spikes looks like when recorded in other

control parameter planes of the laser? This question is answered in the next

few figures, obtained by counting spikes of the laser intensity x1. Fig. 14
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shows a global view of the control plane defined by the pump parameter P0
and the bias voltage B0. As illustrated in Fig. 14a, this space is dominated by

large domains of zero and nonzero CW laser intensities. Separating these

two domains there is a stripe of parameters along which there is a plethora

of laser oscillations organized in a regular way. Similarly to what happens

in the plane R � B0 (Fig. 13), the plane P0 � B0 also shows that the

complexification of the laser intensity occurs via nonchaos-mediated

spike-adding mixed-mode oscillations. This is corroborated clearly by the

bifurcation diagrams in Fig. 14c and d. Such diagrams were drawn by tuning

P0 andB0 simultaneously along a portion of the black auxiliary line in (a) and (b).

The vertical lines in (c) and (d) indicate the position of the four representa-

tive points A, B, C, D marked in the stability diagrams (Fig. 14a and b).

Fig. 15 shows the distribution of laser phases recorded for the parameter

space defined by the control of the unperturbed cavity losses k0 vs the

modulation strength k1. This plane contains a remarkable feature, namely

the mosaic-like tiling that accumulates from right to left inside the vertical

rectangle seen on the left side of Fig. 15a. Such tiling consists of an appa-

rently infinite sequence of stability phases that arises from the regular way

that spikes are added to the laser intensity pulse when both parameter are

tuned. As may be seen from the figure, the mosaic consists of adjacent phases

characterized by waveforms where the number of spikes grows horizontally

from right to left as k0 decreases, and grows from bottom to top, as k1
increases. This type of change implies the existence of two types of param-

eter paths, one for “horizontal” nonchaos-mediated spike-adding sequences

of mixed-mode oscillations, and another one, transversal, for “vertical”

sequences. Note that observation of such mosaic requires tuning two param-

eters simultaneously, something not usually done in experiments. A similar

mosaic-like tiling was observed in a rather distinct system, a driven chemical

reaction known as the Brusselator, where the mosaic is found in the limit of

small driving frequencies and in a region where chaos is virtually absent

(Gallas, 2015).

The parameter region inside the rightmost rectangular box in Fig. 15a is

shown magnified in Fig. 15b, and the pair of boxes in it are enlarged in

Fig. 15c and d. Fig 15c and d illustrates regions where chaos is quite abun-

dant. Fig. 15c shows a typical configuration found in many places in control

space: oscillatory lasers modes emerge organized in very complicated ways

which are simply too complex to be described by other than graphical

means. In contrast to the strong phase entanglement seen in Fig. 15c,

Fig. 15d shows infinite sequences of phases displaying the same regular
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spike-adding systematics found previously in the upper panels in Fig. 12,

accumulating toward a large 3-spikes phase.

How similar are the mixed-mode oscillations observed in the CO2 laser

with feedback when parameters are tuned? The answer is given in Fig. 16

which illustrates the great similarity of mixed-mode oscillations typically

observed when tuning rather distinct control parameters of the laser. In the

top row of Fig. 16 we plot the first four of an apparently infinite sequence

of consecutive spike additions observed in the P0 � B0 control plane. These

four panels correspond to the points labeled A, B, C,D in Fig. 14a, with coor-

dinates (P0,B0) ¼ (0.0148,0.06), (0.0152,0.08), (0.0156,0.1), (0.016,0.12),

respectively. For comparison, the bottom row shows an analogous sequence,

but observed while tuning parameters in the k0� k1 plane for pointsA
0,B0,C0,

D0 in Fig. 15a, with coordinates (k0,k1) ¼ (48,2.6), (45,3.666), (41,5.088),

(37.3,6.404), respectively. Noteworthy is the fact that, although the periods

of both sequences of spikes are initially very different, after just four spike

additions they already are of the same order of magnitude, suggesting that

the growth of the period may not be unbounded.

Fig. 17a shows a global description of the spike unfolding recorded on the

R� P0 control plane. This plane also shows regular laser pulsations organized

according similar spike-adding scenarios as previously found in other control

planes. In contrast with previous situations, in this parameter plane it is quite

easy to follow spike-adding sequences by tuning just a single parameter, R,

instead of a pair of parameters, as before. Furthermore, as illustrated in

Fig. 17b and c, it is not any path across the control space that will reveal its

regular organization and mixed-mode oscillations. For instance, as depicted

in panels Fig. 17d–f, bifurcations along vertical one-parameter lines will

typically result in rather unusual series of spikes, mediated or not by chaos.

To uncover the mechanism responsible for such complex and apparently

nonsystematic spike unfoldings remains an open challenge.

The temporal evolutions in Fig. 17d–f show a close resemblance to

those in Fig. 16, despite the fact that they are obtained by sweeping rather

distinct parameters. The high number of parameters involved and the

great variety of spikes arrangements that were observed prevent one from

attempting a general classification. But such classification is obviously an

important and enticing problem that needs to be eventually addressed.

We now investigate what happens with the laser intensity in Fig. 18a,

a magnification of the leftmost (vertical) rectangle in Fig. 15a. As already

mentioned, this region contains large stability phases forming a mosaic-like

tiling that accumulates in Fig. 18a from right to left and from bottom to top.
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We consider the waveforms along two representative stripes of such tiling:

for the points A, B, C along the line k1 ¼ 8.5, and for points D, E, F along

k1 ¼ 6.5.

As evidenced by Fig. 18b–g, the complexification of the waveforms

underlying the mosaic-like tiling involves two concurrent mechanisms

which act on the large plateau contained in the periodic oscillations: when

parameters are tuned, the plateau develops more and more undulations on

both extremities. On the left-hand side of the plateau one finds a com-

plexification that unfolds in a similar way as already described in Fig. 16

for the mixed-mode oscillations. The novelty here is that, simultaneously,

there is a complexification at the right-hand-side extremity of the plateau,

also by the addition of spikes. Thus, the mosaic-like tiling accumulation

seems to originate from a double winding of the trajectories in phase space.While

double windings have certainly been described abundantly in connection

with homoclinic orbits and with other sophisticated forms of unstable

mathematical phenomena, we are not aware of the impact of any of these

phenomena being described in parameter space. In contrast with homo-

clinic phenomena, the double winding mentioned here (i) is manifestly

connected with stable trajectories and (ii) is clearly responsible for inducing

regularities in large portions of the control parameter space. Recall that,

while there is a profusion of studies dealing with the intricacies of com-

plex phenomena in phase space, most of them refer to systems whose

laboratory implementation is difficult. Our diagrams, however, display

the global organization of stability phases and, therefore, are directly mea-

surable with present-day technology. For instance, a recent comparison

between measurements and predictions for an electronic device found

them to be in rather good agreement over wide two-dimensional control

parameter windows (Sack et al., 2013).

Is the mosaic-like tiling a particularity of the k0 � k1 control plane

(Fig. 18), or is it a generic feature? To check this, we computed high-

resolution phase diagrams for the control plane defined by the bandwidth

α and amplification β of the laser, shown in Fig. 19. As it is evident from

Fig. 19a, this control plane displays also a mosaic-like tiling. As before, this

plane shows a large predominance of periodic over chaotic laser modes.

On the bottom of Fig. 19a one sees a thin rectangular box, shown mag-

nified in Fig. 19b. From this magnification one sees that chaos (represented

in black) arises from certain “wrinkles” that develop in the phases of regu-

larity that, for larger values of β, combine to form the mosaic-like tiling.

Although chaotic phases are quite small compared to the overwhelmingly
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of “wrinkles” (see text). (c) Magnification of the box in (b). (d) Magnification of the box in (c) illustrating an infinite hierarchy of nested spirals of
chaos and of regularity converging to the focal hub F near (α,β) ¼ (297.85,0.3431).

Author's personal copy



large regular phases, they can be probed experimentally without problem

with modern technology. In fact, as discussed in Section 3.3.1, chaos in

CO2 lasers with feedback was already reported in many experiments. What

is still open is a systematic experimental scan of the control parameter

space, similar to what was done here numerically. Experimental scans can cor-

roborate or uncover shortcomings of themodel used in the numerical analysis.

The chaotic phases of the CO2 laser with feedback are full of rich dynam-

ics, also waiting for a systematic exploration. For instance, Fig. 19c shows a

magnification of the box in Fig. 19b. This figure illustrates once again the

complex alternation of chaotic and regular stability phases of the lasers, sim-

ilar to the situation described earlier for Fig. 15c. However, chaotic phases

also harbor wide regions of regularity, as exemplified by Fig. 19d, an

enlargement of the rectangle in Fig. 19c. Fig. 19d illustrates an infinite

sequence of spirals of chaos and spirals of regularity that arise around certain

exceptional points in control space, called periodicity hubs, well known to

organize the dynamics over extended parameter regions (Barrio et al.,

2011; Bonatto and Gallas, 2008b; Freire and Gallas, 2010; Gallas, 2010;

Gallas et al., 2014; Vitolo et al., 2011). The exceptional point responsible

for the large anticlockwise spiraling in Fig. 19d is located at the periodicity

hub F, numerically estimated to be near F ¼ (α, β) ¼ (297.85,0.3431).

An infinite quantity of similar hubs is known to exist in the vicinity of F,

as elaborated in Gallas (2010) and Vitolo et al. (2011). Summarizing, intri-

cate alternations of chaos and regularity can be observed abundantly in every

section of the control space.

3.3.3 Arborescent Structures Generated by Spikes Transitions
Several diagrams above, like, eg, Figs. 17 and 18, have shown that the number

of spikes evolves continuously, changing smoothly, and regularly in well-

localized regions of the control space. When moving along shrimp legs one

finds that they contain an infinite number of transition boundaries where

the number of spike changes and it is natural to ask how such transitions occur.

Two examples of such transitions are shown in Fig. 20a and b, where the

numbers refer to the number of spikes characterizing the region containing

them. One sees that spike-adding occurs longitudinally, ie, along shrimp legs,

while spike doubling occurs predominantly in the transverse direction.

This surprising and unexpected regularity underlying waveform com-

plexification by spike adding and doubling is summarized schematically in

Fig. 20c. In this figure, the two outermost horizontal stripes denote regions

confining a shrimp leg. The boundaries b0 and b1 on the top define the
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Fig. 20 The generic arborescent structures generated by spikes transitions when
moving along thin segments formed by periodic phases like the ones in Fig. 19c
and d. (a) Leftmost panel on the top: Arborescent structure generated by a 2 ! 3
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169Spiking Systematics in Some CO2 Laser Models

Author's personal copy



horizontal stripe s0� b1� b0 alongwhich somemain spike number p changes

to p + 1 along a smooth boundary. In each subsequent stripe sk � bk+1 � bk,

for k¼ 1,2,3,…,1, the number of spikes grows from 2kp to 2k(p + 1)

by acquiring additional spikes through smooth wave-pattern deformations

similar to the ones observed in infinite-dimensional systems involving

delayed feedback ( Junges and Gallas, 2012a,b; Junges et al., 2013). The

spike unfolding illustrated in Fig. 7 is organized in a characteristic tree resem-

bling a bifurcation diagram. This arborescent organization may be observed

profusely in other regions of the control space, independent of the variable

used to count the spikes. This same organization was also observed it in other

familiar flows like, eg, in a tritrophic food chain model, in the Hindmarsh–
Rosemodel, in amodel of neocortical neurons, in amodel of a vertical-cavity

surface-emitting laser (VCSEL), in a semiconductor laser with injection, in

R€ossler’s oscillator, and in the self-pulsations of a CO2 laser with feedback

(see, for instance, figure 1b in Junges and Gallas, 2012a). Therefore, the

arborescent trees in Fig. 20 should be a robust property of flows, a signature

of a systematic wave-pattern complexification mechanism acting through a

simultaneous spike adding and doubling continuous deformations of periodic

oscillations in dissipative nonlinear systems. The mathematical mechanism

generating these arborescent trees is not known yet.

3.4 Delayed Feedback, Infinite Dimension
3.4.1 The General Model
Section 3.2 considered the three-dimensional model of the CO2 laser under

the assumption that the feedback occurred instantaneously. A natural ques-

tion to ask is what happens for the more realistic situation when the feedback

occurs after some finite delay τ of arbitrary duration. In the literature one

finds studies for very large or small delays. However, the impact of delays with

arbitrary duration is not yet known. The aim of this section is to consider

feedback delays of arbitrary duration, following Junges and Gallas (2016).

Delayed feedback is simulated using the same standard model defined in

Eqs. (5)–(7) (Arecchi et al., 1991; Junges and Gallas, 2012a) but including

now the delay τ:

_x¼ kx y�1�α sin2ðzðt� τÞÞ� 	
, (21)

_y¼ γ A�y�xyð Þ, (22)

_z¼ β B� rx�zð Þ: (23)

As before, k stands for unmodulated cavity losses, γ for the population

decay rate, β for the damping rate of the feedback loop, r is the feedback
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gain, B is the bias voltage applied to an electro-optic modulator, A is the

normalized pump parameter, and α is the amplitude of the modulation

(Wang et al., 1990). As usual (Arecchi et al., 1986; Junges and Gallas,

2012a; Wang et al., 1990), B is normalized to 1/π times the half wavelength

voltage of the modulator. Following the literature, we fixA¼ 1.66, α¼ 5.8,

k ¼ 9.6 � 106 s�1, γ ¼ 0.03 � 106 s�1, β ¼ 0.5 � 106 s�1. The main goal

is to describe how the stability domains in the r � B control plane change

when tuning τ. The stability diagrams obtained Section 3.2 for τ¼ 0 serve as

reference against which to compare the changes induced by the delay.

Eqs. (21)–(23) are also numerically integrated with the standard fixed-

step fourth-order Runge–Kutta algorithm, over a mesh of equally spaced

points. For each pair of parameters, integrations started always from the same

initial conditions x(0) ¼ y(0) ¼ 1 and the same initial history z(�τ,0) ¼ 1.

Figure 21 displays a series of snapshots for the values of τ indicated. From
this figure, one can recognize the sizable changes undergone by the stability

islands when the delay increases from τ ¼ 0 up to τ ¼ 30, in units of 10�6 s.

For τ¼ 0 (no delay), the top leftmost panel in Fig. 21 coincides with Fig. 7a,

as expected. The remaining panels illustrate what happens as τ grows. Recall

that for τ 6¼ 0 the dimensionality (number of degrees of freedom) of the laser

equations jumps abruptly and discontinuously from three to infinity.

As the delay increases, the region of complex periodic and nonperiodic

oscillatory solutions displaying more than one peak per period shrinks fast,

until τ � 0.5 μs, when only a large domain of 1-spike pulsations survives.

This large 1-spike region persists up to about τ� 1.5 μs, when a green (light
gray in the print version) region associated to solutions with two spikes per

period returns. Further increase of the delay time makes this two-peak

region to grow steadily. Additionally, some complicated arrangements of

“islands” of solutions with different number of peaks start to develop. Some

of these islands lie inside the boxes contained in the stability diagrams from

τ ¼ 2.7 μs to τ ¼ 4 μs. As these islands grow, additional islands proliferate
inside of them, revealing nested series of peak-doubling and peak-adding

cascades that lead to a region of chaotic oscillations inside these concentric

islands. By further increasing the delay (τ > 4 μs), the region of chaotic

solutions grows and develops accumulations of shrimps inside them. At

this stage, the dynamics is very complex and rich as shown in the diagrams

with delay time τ > 5 μs. The narrow white horizontal stripes on the top of

the diagrams in Fig. 21 represent parameter values for which the laser output

is identically zero. Below such white stripes, the narrow black phases rep-

resent solutions with a period too big to be ascertained without much
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numerical effort. For a detailed description of the divergence of the period in

this region, see Junges and Gallas (2012a) and Yang et al. (1997).

An important point to note is the relative invariance of the large 1-spike

phase observed for 0:5≲τ≲1:0 μs that separates two regimes where rich

dynamical activity is observed when tuning τ. The differences in the qual-

itative behavior observed before and after this rather bulky invariant interval

of τ emphasize the importance of the numerical calculation presented here.
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Fig. 21 Evolution of the laser stability diagram when the delay τ (in μs) increases.
For τ ¼ 0 μs there is a horizontal spike-adding cascading of pulses: pulses in adjacent
windows differ by one spike. Between τ¼ 0.1 μs and τ¼ 1 μs the region containing such
windows is strongly reduced, with one-peak oscillations dominating. Then, complex
phases emerge again, with rather intricate distributions of pulses as τ grows. The panel
for τ ¼ 3 μs shows a horizontal line for 0 < r < 0.27 at B ¼ 0.25. A bifurcation diagram
along this line is discussed in Fig. 22. Each panel depicts full phase-space analysis
performed for 400 � 400 ¼ 1.6 � 105 parameter points.
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Most analytical work done in the context of delay-differential equations is

valid only as small-delay approximations (Erneux and Glorieux, 2010). The

intricate dynamical organization of stability phases described here is well

beyond reach of analytical approximations.

The complexities associated with nonzero delay times were described

recently in a video ( Junges and Gallas, 2016) showing the evolution of

the r � B stability chart like in Fig. 21, but varying the delay more finely,

namely for 200 equally spaced snapshots covering the interval τ 2 [0,10]μs.
Such video provides an animation of what happens when the delay is varied

continuously. For instance, it allows one to identify more precisely the

three regimes discussed earlier, in connection with Fig. 21. Initially, for

τ 2 [0,0.55]μs, parameter phases depicting oscillations having more than

one peak per period shrink in size until they disappear completely. Then,

for τ 2 [0.55,1.1]μs only a big phase corresponding to one-peak modes is

present. Along both intervals, [0,0.55] and [0.55,1.1], the lower part of the

stability charts, initially orange (representing constant nonzero laser ampli-

tudes), becomes more and more dominated by one-peak laser modes. The

sequential emergence of islands related to more complex periodic and chaotic

oscillations (described in Fig. 21) becomes clearly discernible. The video pro-

vides a clear view of the complicated drift of stability domains in the r � B

diagram, specially about the speed of changes, showing how the domains

reshape themselves and collide to form new complicated structures. For

instance, the contraction rate of complex periodic and chaotic phases over

the range τ 2 [0,0.55]μs seems to be greater than the growth rate of such com-

plex phases after the “invariance” period (τ > 1.1μs). This suggests that to
operate the laser on a given specific complex oscillation can be experimentally

more challenging at relatively small delays, due to the greater sensibility of the

stability domains to the delay. Despite the high computational cost, the video

provides unique and useful informations about the laser, informations that

are virtually impossible to obtain by other means.

3.4.2 Bifurcations by Waveform Deformation
As described earlier, an increase of τ tends to change the diagrams of Fig. 21

in a suchway that islands of periodic solutions emerge embedded inside wide

regions associated to solutions with a specific number of peaks, or inside

regions of nonperiodic (chaotic) behavior. The dynamical features observed

inside these islands get more complex as τ evolves. To clarify how the laser

output generates such structures, the bifurcation diagram shown on the top

row of Fig. 22 was computed along the black horizontal line in the panel for
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τ ¼ 3.0 μs in Fig. 21, for parameters values along the concentric islands

located inside the green (light gray in the print version) region (2 peaks).

Such diagram displays a clear peak-doubling bifurcations combined with

the abrupt appearance and disappearance of isolated branches, resulting

from peak-generation by continuous deformation of the laser signal as the

parameter is varied (the “peak-adding phenomenon” ( Junges and Gallas,

2012a,b)). Fig. 22a–h shows the temporal evolution of the laser intensity

x (in arbitrary units) for selected values of r, indicated by vertical lines in

the bifurcation diagram. Fig. 22a shows peak A corresponding to branch

A of the bifurcation diagram. The arrow in Fig. 22b indicates a deformation

in the laser pulse that, upon further increase of r, gives origin to a new peak

B, associated with branch B. Initially, the amplitude of peak B is smaller than
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Fig. 22 Top panel: bifurcation diagram for 0 < r < 0.27, B ¼ 0.25, and τ ¼ 3 μs
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A, but as r increases, its amplitude grows fast so that, eventually, B becomes

larger than A. This unfolding can be followed in Fig. 22b–d. As r further
increases past a bifurcation which occurs for r � 0.146, peaks A and

B split into doublets (A,A0) and (B,B0), as shown in Fig. 22e. This happens

such that peak A0, born smaller than B, grows faster than B, overtaking it at

r ¼ 0.179 and remaining so until r ¼ 0.199, when peak B becomes bigger

again. The curious fact observed here is that in the range of r where A0

remains bigger than B, the peak A disappears, turning to appear just

when B becomes bigger than A0 again. This phenomenon is clearly seen

in Fig. 22f–h and following the evolution of the branches B, A0, and A in

the bifurcation diagram. Note that peak A disappears smaller and reappears

larger than B0.
In addition to the remarkable large-peak dynamics described earlier,

Fig. 22 also contains a series of nonlabeled small peaks, visible at the bottom

of the bifurcation diagram and immediately after the peak B0 in Fig. 22e–g.
The unfolding of these smaller peaks is shown magnified in Fig. 23. The

branches resulting from these small peaks are located inside the green (gray

in the print version) box on the bifurcation diagram in the leftmost panel on

the top row of Fig. 23. The rightmost panel shows a magnification of the

green (gray in the print version) box. Initially (low values of r), Fig. 23a

shows peak C and the deformation (indicated by the arrow) that gives birth

to peak D seen in Fig. 23b. Similarly, Fig. 23b shows peaks C and D and the

new deformation responsible for the birth of peak E in Fig. 23c. Fig. 23c and

d shows three peaks C, D, and E whose amplitudes start to decrease when

r further increases. Eventually, peaks E and D disappear as illustrated in

Fig. 23e and f, respectively. This sequence indicates that the peak-adding

mechanism also operates on a smaller scale in the system.

To complement the information extracted from the temporal evolution

of the laser intensity x, we apply the tools used in Junges and Gallas (2012a)

to analyze how the system behaves in the y� zτ plane, where zτ � z(t� τ).
Distinctly from what was done in that papers, instead of z the variable zτ
is considered here because, as seen in Eq. (21), the time derivative of the

intensity depends of the delayed value of the feedback voltage, ie,

dx

dt
¼ kxðf ðy,zτÞÞ¼ kx y�1�α sin2ðzτÞ

� 	
: (24)

Fig. 24 shows two curves on the y � zt plane: the first one, represented as a

light parabolic arc, marks the solution of f(y, zτ) ¼ 0 (nullcline). The other

curve records the locus (y, zτ) obtained by integration of Eqs. (21)–(23),
where the black segments represent solutions with x ¼ 0 and the red
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(gray in the print version) segments represent x 6¼ 0. The characteristic sig-

nature of the birth of a new isolated branch in the bifurcation diagram is the

occurrence of intersection points between the nullcline and the red (gray in the

print version) part of the locus.

Fig. 24a–c shows the complicated phase-space trajectories associated

with the temporal evolutions presented in Fig. 22f–h. The green (gray in

the print version) boxes inside them are magnified in Fig. 24d–f, respec-
tively. In Fig. 24d, all the intersections related to local maxima are indicated

by blue (dark gray in the print version) dots and labeled according to the

associated peak. Nonlabeled intersections are related to local minima.When

the bifurcation parameter is increased to r ¼ 0.182, Fig. 24e shows that the

trajectory is modified such that the intersections associated with peaks A and

E disappear. The regions where these intersections disappear are indicated by

black arrows. A further increase in r brings back the intersection associated

with A, as shown in Fig. 24f, and a different type of behavior observed in

phase space makes peak C to disappear. In the analysis of phase-space

trajectories shown in Junges and Gallas (2012a,b), the death of a peak was

associated with the deformation of the trajectory, in a way that the intersec-

tion of this trajectory with the nullcline no longer exists. However, from

Eq. (24), one sees that there is another possibility to “undo” a peak: the solu-

tion may deform such that x becomes null in that segment. This can be rec-

ognized as follows. In Fig. 24e, the segment of the locus that intersects the

nullcline at C is red (gray in the print version) (ie, x 6¼ 0) and, accordingly,

point C corresponds to a peak in the temporal evolution. On the other hand,

although in Fig. 24f the intersection between the nullcline and the locus still

exists at C, it is no longer relevant because x¼ 0 in that segment of the locus

(the segment is black, as indicated by the arrow). This means that peak C is

no longer present in the temporal evolution, which is null. In other words,

although the intersection associated with peak C is still present in the y� zτ
plane, the laser intensity vanishes in that segment.

3.4.3 Regularities in the τ × r and τ × B Control Planes
Next, the above analysis is extended by considering the modal structure of

the laser in two additional control planes: τ � r and τ � B. The main moti-

vation is to learn what sort of changes modes undergo as a function of the

feedback gain r and the bias voltage B applied to the electro-optic modulator

when the delay τ is increased.
Fig. 25a represents stability domains (laser phases) over an extended

portion of the τ � r plane, computed for B ¼ 0.25, the same value used
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in Fig. 21. Fig. 25a reveals a number of remarkable facts concerning the self-

organization of laser pulsations. For r≲0:15 one essentially finds pulses with
either a nonzero constant amplitude or simple periodic oscillations with one

peak per period. For r small enough, the laser does not oscillate, independent

of the value of the delay. Above r ’ 0.15, complex oscillatory modes

become possible, first in small domains for relatively large values of τ, of
the order of τ ≳ 7μs.

As r grows, a conspicuous feature observed in Fig. 25a is the large green

(gray in the print version) phase which denotes oscillations with two peaks per

period. This phase dominates the left side of the stability diagram, together

with the black domain representing nonperiodic, “chaotic,” laser modes.

Oscillations with larger number of spikes per period become also abundant

for r ≳ 1:5 and τ ≳ 3μs. As indicated in the figure, when r grows in that region
one sees what appears to be an abrupt transition from two to five pulses per

period. Under further magnification it is possible to realize the existence of a

2! 4 peak-doubling, then a 4! 5 adding. The right-hand-side boundary of

the 2 peaks green (gray in the print version) phase displays a peak-doubling

cascade, as can be seen more clearly from Fig. 25b. Following this doubling

cascade there is an alignment of shrimps, namely a sequence of self-similar

periodic phases, with complex internal distribution of modes and with num-

ber of peaks that grow apparently without bound. Such sequence is shown

magnified in Fig. 25c, where a line segment indicates the direction along

which the phases accumulate upward when r grows.

The three shrimps inside the boxes in Fig. 25c are magnified in the

bottom row. Each panel in Fig. 25d–f displays the number of peaks of

the three largest of the infinite number of phases belonging to the shrimps:

(6, 12, 7), (8, 16, 9), and (10, 20, 11), respectively. In each shrimp, the num-

ber of peaks of the largest region grows by two from shrimp to shrimpwhen r

grows toward the green (gray in the print version) accumulation boundary

of two-peaked oscillations. The next two largest regions reveal a remarkable

mode unfolding: laser oscillations in the upper regions follow a peak-doubling

cascade, while oscillations in the lower regions follow a peak-adding cascade

Junges and Gallas (2012a,b). More complex mode subdivisions are clearly

visible, but they are harder to characterize systematically bymeans other than

graphically.

Fig. 26 shows results similar to Fig. 25, but for the τ � B control plane.

Mutatis mutandis, it is not difficult to realize that laser modes self-organize

here quite similarly as in the τ � r plane. In particular, cascades of peak dou-

blings and addings together, with their accumulations, can be followed with
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no difficulty by suitably tuning parameters along the white line in Fig. 26d

(from top to bottom), as indicated in the figure.

Fig. 27 presents additional informations concerning the unfolding

of oscillatory modes observed along the white lines in Figs. 25c and 26d.

In the top row of Fig. 27 one sees bifurcation diagrams depicting local max-

ima of the laser intensity x recorded along the pair of white lines, defined by

the equations
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r ¼�0:005705+ 0:073480 τ, τ2 ½4:0992,5:2287�, (25)

B¼ 0:485214�0:055952 τ, τ2 ½4:1300,4:6330�: (26)

Note that to be able to follow the accumulation cascade one must tune two

parameters simultaneously. Inside each window of constant number of

peaks, the bifurcation diagrams look quite similar in their ordering as well

as in the unfolding of the cascade.

Fig. 25d–f manifested clearly the self-similar shrimp nature inside

which one finds cascades of peak-doubling and peak-adding. Further,

Figs. 25 and 26 revealed that the number of peaks of the phases with largest

“volume” increases by two units from shrimp to shrimp. So, a natural ques-

tion to ask is what sort of changes can laser modes undergo when one

proceeds along the cascades? The answer is provided in Fig. 27 which

shows the mode evolution along both accumulation cascades. The left

column of Fig. 27 refers to the march along the white line in Fig. 25c,

namely the line in Eq. (25), while the right column refers to Fig. 26d and

to Eq. (26). The top panels in Fig. 27 show bifurcation diagrams for the

intervals defined in Eqs. (25) and (26). The bifurcation diagrams contain

five vertical lines labeled from (a) to (e), on the left panel, and from (f ) to

(j), on the right. The parameters corresponding to these vertical lines are

located at the center of the shrimps discussed earlier. The temporal evolution

for the selected parameters is displayed on the several panels below the

bifurcation diagrams.

Fig. 27a–e shows the temporal evolution along the cascade on the

τ � r control plane. Fig. 27a refers to the first shrimp, where the oscil-

lation shows six peaks per period. This pattern consists of a periodic rep-

etition of three pairs of pulses, indicated by blue (dark gray in the print

version), red (gray in the print version), and green (light gray in the print

version) dots, each doublet having a small and a big pulse. For conve-

nience, colored dots are also used to identify the branches that they

produce in the bifurcation diagram when τ is tuned. The oscillations

of the next shrimp, Fig. 27b, have eight peaks per period: the three dou-

blets observed before plus a new doublet marked with yellow (light gray

in the print version) dots. Next, Fig. 27c shows 10 peaks per period: the

four previous doublets plus a new doublet, marked in violet (light gray in

the print version). This addition of peak doublets persists for subsequent

shrimps, a new doublet being added to the large peak on the left when

moving from shrimp to shrimp. This is illustrated for two additional

steps in Fig. 27d and e.
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The period T of the oscillations is also recorded in Fig. 27a–e. From
them, we obtain a roughly constant increase of the period growthΔTiwhen

moving from shrimp to shrimp:

ΔT1¼ 262:84�194:51¼ 68:33,
ΔT2¼ 330:53�262:84¼ 67:69,
ΔT3¼ 398:00�330:53¼ 67:47,
ΔT4¼ 465:73�398:00¼ 67:73:

The temporal evolutions in Fig. 27f–j show that the doublet-adding

mechanism is also at work on the τ � B control plane. First, note that

in Fig. 27d the white line misses the parabolic 7-peaks arc. Thus, generic

accumulations occur along slightly curved paths which, however, may be

well approximated by straight lines. It also explains why the doublet-

adding mechanism starts from Fig. 27g (not from Fig. 27f). More specif-

ically, the difference between the two sequences of temporal evolutions

in Fig. 27 is that a new and very small peak appears in Fig. 27g–j, indicated
by a light blue (light gray in the print version) dot, due to the fact that,

differently from the white line in Fig. 26c, the white line in Fig. 26d

now crosses the corresponding shrimps over the region of peak-adding,

near the top arm of such structures. Apart from small differences due to

the curved path, the unfolding in both columns is the same. On the right

column, the increments of the periods are ΔT1 ¼ 257.13�225.42 ¼
31.71,ΔT2 ¼ 295.57�257.13 ¼ 38.44,ΔT3 ¼ 338.03�295.57 ¼ 42.46.

In this case the period is also increasing, but the increments get bigger

from shrimp to shrimp. This marked difference should not be difficult

to observe in experiments.

It is interesting to note that the above doublet-adding mechanism

displayed by the laser mimics a similar mechanism observed by Junges

and Gallas (2012b) in a much simpler scenario, involving a single delay-

differential equation of a physiological delayed system, the prototypical

feedback system introduced by Mackey and Glass to describe a host of

physiological disorders, called dynamical diseases.

4. CONCLUSIONS AND OUTLOOK

This review described novel and unanticipated physics arising from

numerical simulations of a few CO2 lasers, based on their rate-equation

models. We surveyed dynamical features present in two-parameter sections
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of their control space and described some of the major regularities observed

in them. However, as it is clear from the stability charts presented, the con-

trol space is riddled with innumerous features that seem to defy a general

classification. The availability of numerically obtained stability charts calls

for experiments that should either corroborate them or reveal differences,

thereby exposing shortcomings due to the models being used. Knowledge

about dynamically rich parameter combinations seen in the stability charts

present excellent opportunities for harnessing them into new explorations

and applications. The control space of CO2 lasers remains a very fruitful

and convenient test-bed for exploring a plethora of fundamental aspects

of nonlinear and chaotic dynamics that only recently became within reach

of simulations, thanks to more powerful computer clusters.

We described global regularities of self-pulsations, focusing on the

systematic organization of stability domains observed in CO2 lasers with

feedback. Self-pulsations display continuous waveforms deformations as

parameters are varied. Such deformations create and destroy spikes in oscil-

latory patterns. Peak creation and destruction result in rich and intricate

isolated branches appearing and disappearing in bifurcation cascades, a

possibility not considered before. As a result of the added flexibility of

incorporating an odd number of branches, sequences of branching cascades

may emerge in rich combinations of the familiar adding and doubling

bifurcations, something that still needs to be better investigated. Branching

cascades of spikes result in highly intricate mosaics of periodicity domains in

control parameter space as seen, for example, in Figs. 18a and 19.

As may be observed from the bifurcation diagrams in Fig. 27, pulses that

form new branches do not show up in a discontinuous manner but arise from

peaks that seem to originate from specific bifurcations in windows for lower

values of r and that evolve continuously, crossing through domains where

chaos predominates, until eventually emerging as extra branches at higher

values of r. Furthermore, note that in Fig. 27 the vertical lines were chosen

mainly before the amplitude where two peaks coincide. By selecting param-

eters after such coincidences, one simply interchanges the order of maxima

and minima of the doublets present in Fig. 27a–j.
The dynamics of small pulses following large spikes presents also a num-

ber of interesting characteristics worth exploring. For instance, note that the

sequence of small pulses following the fundamental one in figures such as

Fig. 8b–d decays with a decreasing rate as the coupling r is increased, but

the separation between the pulses has roughly the same duration. A simple

calculation of the solitary laser equations with zero feedback shows that
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the period of the relaxation frequency is of the order of 6 μs and, indeed,
corresponds to the period of the decaying relaxation oscillations that

follow the main peak. Additionally, as r is increased, it affects the damping

of the laser, which decreases. Therefore, the pulsations following the main

one are sustained longer. In this context, an interesting open problem is to

compute some of the spectra of the time series to characterize the fundamen-

tal frequency structures with and without feedback.

We hope that peak-adding cascades not mediated by chaos as well as the

discontinuities in the frequency and laser intensity reported here may moti-

vate their experimental corroboration in the near future. A few simple ways

of recording experimentally novel phenomena in laser stability diagrams

were discussed recently for a semiconductor laser with optoelectronic feed-

back (Freire and Gallas, 2010; Kovanis et al., 2010). For electronic circuits,

some phenomena have already been observed in the laboratory with high

resolution (Sack et al., 2013). An interesting related problem with poten-

tially many applications is to investigate systematically the distribution of

self-pulsing for laser diodes when acted by delayed feedback and in delay-

coupled semiconductor lasers ( Junges and Gallas, 2015).

In 1676, Leibniz introduced the expression æquatio differentialis to denote

a relationship between the two differentials dx and dy associated with a pair

of variables x and y. According to Hoffmann (1974), differential equations

were at the very origin of Leibniz’s work on calculus and were already used

by him as early as 1663. Since then, theoretical models of natural phenomena

are routinely written in terms of differential equations. The immense utility

of differential equations in innumerable branches of natural sciences and its

extensive use for over 300 years notwithstanding, they still harbor unantic-

ipated regularities in their control parameter planes that just recently started

to be explored and understood. The reason for this immensely late start rests

on the proverbial difficulty of solving nonlinear equations analytically and,

perhaps more importantly, in the lack until recently of computer clusters

performing in the range of several petaflop combined with terabytes of

memory. As nicely put by Lorenz (1992), one of the great pioneers of chaos,

“Now that computers have become ubiquitous, carefully conceived numer-

ical experiments can enable us to explore a fascinating mathematical world

that has not yet opened its doors to classical analytical procedures.”

A recent article in Nature argues that energy-optimized hybrid com-

puters with a range of processor accuracies should be capable of advancing

modeling in fields from climate change to neurosciences (Palmer, 2015). It

also states that “high-performance computation is rapidly overtaking
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traditional experimentation in many scientific disciplines.” Our paper shows

that high-performance computation can considerably help laser optimiza-

tion in two important practical aspects: first, to pinpoint interesting param-

eter combinations for more efficient laser operation (chaotic or not) that

would be hard to locate by sweeping parameters experimentally and, second,

to expose inaccuracies in currently available laser models whenever exper-

imental stability charts are found not to match simulations.

Nowadays, numerical simulations have gone far beyond experiments in

parameter space of lasers. Experimental research is especially needed to test

the validity of assumptions behind the models in use. One of the appealing

features of experimentally determining stability charts is that they will bring a

realization of the factors, and of the ignorance we are in as to many of them,

needed to improve laser development. If what is predicted is not found in

Nature, it will still be possible possible to learn a great deal by asking why not.

A number of fruitful innovations resulted from the continued effort during

the last four decades to study chaos in lasers and other complex systems.

However, to understand and classify the organization of periodicity is as

important an issue as chaos. The technology needed to investigate laser

stability charts experimentally exists and the hope is that the younger gen-

eration of experimentalists will address such topics in a not so remote future.
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