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Abstract. We discuss the transition probability between en- 
ergy eigenstates of two displaced "irrigation canal" poten- 
tials in its dependence on final state energy and wall steep- 
ness. We relate the probability caught underneath the Franck- 
Condon maximum to the missing probability in the corre- 
sponding problem of two displaced infinitely steep and in- 
finitely high potential wells. 

PACS: 03.65.Sq 

The listener at a concert marvels at the smoothly flowing 
harmony that issues from instruments with sharp corners 
and mechanical keys. One magic key almost suffices to ex- 
plain how these devices work: The wave analysis of Wentzel, 
Kramers and Brillouin (WKB) [1], when supplemented by 
three appropriate facilitators: 

(i) Attention to the demand for conservation of probability 
during every change of conditions, that is in space and 
time illustrated below by waves constrained between the 
two walls of an "irrigation canal" whose separation sud- 
denly changes in time; 

(ii) Reflections arising from sudden changes in conditions of 
propagation; 

(iii) Corrections to the WKB-smooth propagation history 
arising from scattering at sharp corners. 

In the present paper, we focus on the first point (i) and 
illustrate the demand for conservation of probability under 
sudden changes of the potential using two well-known and 
frequently used "Lehrbeispiele" of quantum mechanics: the 
potential well [2] and the irrigation canal [3] shown in Figs. 1 
and 2, respectively. 

The importance of this demand stands in sharp contrast 
to the apparent non-conservation of the transition probability 

/ ~  Um (X)V n (X) ~2 W (°°) d x  (~)  (~ )  ,,__~ = (1) 

between the energy wave functions u ~  ~ = u ~ ( x )  and 
v(,~ ~ = v ~ ( x )  of two slightly displaced potential wells of 
infinite height [4]. On the other hand, when we displace 
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Fig. 1. Sudden displacement of an infinitely high and infinitely steep po- 
tential well by an amount x0. The abruptness of this process is illustrated 
here by the impact of an ICE train in full speed on the well. This sudden 
displacement induces sudden transitions between the n-th energy level of 
the original potential well of width b and the m-th level of the final well. 
To bring out the displacement most clearly in this figure we have rounded 
off the sharp comers and slightly curved the bottoms of these rectangular 
potentials 

two irrigation canals as indicated in Fig. 3, the probability 
is conserved for every wall steepness t¢ (Fig. 4). Whereas 
in the present paper, we concentrate on the problem of the 
non-conservation of probability, the following paper [5] ad- 
dresses in more detail points (ii) and (iii), that is, the phe- 
nomenon o f  WKB waves created at sharp corners of the 
potential which, in the present paper, makes its appearance 
(Fig. 5) as a modulation of the transition probability above 
the upper maximum. 

In order to focus on the essential points, we have ban- 
ished all lengthy calculations to Appendices. In Appendix 
A, we calculate the transition probabilities between the en- 
ergy eigenstates of two shifted potential wells, whereas 
in Appendix B we derive the stationary wave functions, 
u~, ~ = u"~(x) ,  of the irrigation-canal potential. We devote 
Appendix C to the evaluation of the integral over two dis- 
placed Airy functions [6] which arises in the evaluation of 
the transition probability between the energy eigenstates of 
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Fig. 2. The irrigation canal, V = V ( x )  depicted here for a wall steepness, re; = 1 and width b = 2, allows an analytical evaluation of the stationary wave 
functions u ~  ) = u~)(x) .  We only show the first seven states. The scale for the amplitudes of u ~  ) is identical in all examples and is indicated for m = 6, 
only. The numerical value of the exact eigenenergies r;m - -  shown by straight lines in the potential - -  can be read off the scale for the potential energy 
on the left side of the figure 
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Fig. 3. A sudden displacement of the original irrigation canal keeping the 
wall steepness e; and the width of the canal constant populates the energy 
levels of the final canal. The reason and requirement for a high transition 
probability, that is, large occupation probability is identity of classical turn- 
ing points for the motions in initial and final states as indicated by the 
vertical lines, 71(m i )  = r;n 4- ecxo. Thus, the Franck-Condon principle favors 
transitions between enei'gies r/n and r/~ ). As in Fig. 1, we have rounded off 
the sharp corners and have slightly curved the bottoms of these irrigation 
canals in order to bring out clearly the displacement of the potentials. (For 
this particular example, we have chosen n = 10, b = 2, xo = 1 and e; = 5) 

two shifted irr igation canals  performed in Appendix  D. Ap- 
pendix E offers physical  insight  into the dependence  of the 
transi t ion probabil i t ies  on the quan tum state of the post-canal 
us ing the concept  of  area of overlap and interference in phase 
space [7]. 

1 The  case  of  the  m i s s i n g  probabi l i ty  

The old warning that the l imit  of  a sum is not necessarily 
the sum of a l imit  is usual ly volant  in physics only in such 
sophisticated contexts that it is often the practice to disregard 
it. However,  there are familiar  domains  where this warning  
is well-taken. We here present  the idealized problem of the 
displacement  of a rectangular  potential  well that illustrates 
in sharp form this old point  of calculus.  The central issue 
manifests itself here in an apparent "non-conservat ion  of 
probabili ty".  

Take two displaced infinitely high and infinitely steep 
potential wells of width b as shown in Fig. 1; calculate, by 
fol lowing Appendix  A, the corresponding F ranck-Condon  
probabili t ies W ~ )  of (1), for a transi t ion from the n- th  7n.~n ~ 
vibratory level of one potential  to the m- th  level of the other; 
recognize that, in the semi-classical  l imit  [8], the occupat ion 
probabili t ies of the m- th  level, summed  over all m levels do 
not add to unity. Indeed, if the pre-canal  and the post-canal  
overlap by x0, then 

~::of u~(z)vn (z)2 W .  ( ~ )  = d x  (oo) ( ~ )  T/Z e--n  

m=O = 

1 - x o / b  • (2) 

On the other hand, we recognize that the potential  well of  
Fig. 1 grows out of the irrigation canal  of Fig. 2 in the l imit  
of  infinite wall steepness ~. Consider  therefore the transi- 
tions caused by the sudden displacement  of  two irrigation 
canals of identical steepness as shown in Fig. 3. Calculate,  
by fol lowing the Appendices  B, C and D, the correspond- 
ing transition probabili ty I/V,~~,,. displayed in Fig. 4 as level 
occupation for several values of wall steepness t~. Note that 
for any (finite) value of the wall steepness the sum of these 
occupation probabil i t ies over all m- leve ls  does add to unity, 
that is, 
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Fig.  4. Level occupation, that is, transition probability Wm~__n=lO , in the post-canal after a sudden displacement of the pre-canal with initially only the state 
n = 10 being populated, for increasing steepness n, but with identical width, b = 2, and displacement, :c o = 1. The scale for W(mn~n=m on the horizontal 
axis is the same in all five examples. The location of the m-th energy level in the post-canal is indicated for each steepness n by the nonlinear m-scale on 
the left-hand side of the potential. The energy scales~m on the left-hand side of the figure apply to all figures in each row. For increasing n, the (classical) 
Franck-Condon maxima, approximately located at rl~ ) = rM=lo ± nXo climb higher in the canal, that is, shift towards higher energies while their separation, 
2nxo, grows. Moreover, the occupation probability at the Franck-Condon energies ~7(,~ ) increases with increasing steepness 
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Fig. 5. The probability, W(r,~n=m, for a transition to occur between the 
state n = 10 and the m-th  state of excitation in two displaced irrigation 
canals is non-vanishing for energies ~m beyond the upper Franck-Condon 
energy. (Quasi-)periodical recurrences, that is, revivals of the probability, 
shown in detail in the insert, result from secondary waves created by scatter- 
ing WKB waves off the sharp corners of the canal. (Here, we have chosen 
for the displacement xo = 1, b = 2 and a wall steepness ~ = 20) 

~ f u.~(x)vn (x) 2 Z w : : 1 
m=0 ra=0 

Nowhere clearer do we see that the limit of a sum is not 
necessarily the sum of limits, that is, 

2 

lira x u~ (x)v~ (x) 
~ ' - - * O O  m = 0  i I 

OO 

-'/ ~ / dx lim u (~)t-'~,(~)'~12 
,~--*~ ~ + J ~ ' ~  ~+JI ' (4) 

m = 0  I 

But where is the missing probability and what happened to 
it? These are the questions we address in the next section. 

2 Case  s o l v e d  

In order to answer the questions raised in the previous sec- 
tion, we now return to the dependence (Fig. 4) of  the tran- 
sition probability W(~ , .  between the energy eigenstates of 
two irrigation canals on the steepness n of the walls. In 
this way, we relate the missing probability to the probabil- 
ity caught underneath the upper Franck-Condon maximum 
moving to higher and higher energies. 

Let us start discussing first the qualitative behavior of  
W~2~, in its dependence on the quantum number m of the 
post-canal, that is, the occupation probability of  the m-th 
level of the final canal. For the sake of simplicity, we do 
not alter the steepness, e;, or the width, b, during the dis- 
placement process. Figure 3 displays the situation for the 
n = 10-th energy eigenstate of an irrigation canal o f  width 
b = 2 and steepness e; = 5 displaced by an amount x0 = 1. 

According to the Franck-Condon principle [9], the re- 
quirement for high transition probability is identity of  clas- 
sical turning points for the oscillatory motion in the initial 
and final states, as indicated in Fig. 3 by the vertical lines. 
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The energies, .c±> of these final states are then given geo- ' t r r ~  , 

metrically by 

r / ~ ) =  r/,~ + ~zo .  (5) 

Transition probabilities are not zero for states that fail the 
demand for identity of turning points. On the contrary, the 
probability W ~ oscillates as a function of m or r/,,~ due to 
interference in the phase space [7], as discussed in Appendix 
E. We note that the numerical evaluation of the transition 
probabilities W ~ L ,  shown in Fig. 4 confirms this qualitative 
behavior predicted by semi-classical quantum mechanics. 

We now turn to the discussion of the dependence of 
W ~ on the wall steepness. r r L ~ r L  

In Fig. 4, we depict the irrigation canal for several val- 
ues of wall-steepness e;. The energy scale, r/,~, shown on 
the leftmost side of the figure is the same for the exam- 
ples in each row. However, the location of the m-th energy 
level in these potentials, indicated on the left of each po- 
tential by the m-scale, is different for different n. In par- 
ticular, the ground state m = 0 is not located at the bottom 
of the canal. Moreover, the energy r/m, depends nonlinearly 
on the quantum number m, consequently the WKB energies 
(B 12) follow a highly nonlinear m-scale. When we consider 
a fixed quantum number, say m = 10, the energy, r/m=lO, of 
the corresponding level clearly increases for increasing wall 
steepness as shown in Fig. 4 and as indicated by (B 12). In 
the final stage of ~ --+ c<z however, the energy converges 
towards the n-independent energy .,,,°~0"(~ (A3) of the famil- 
iar rectangular potential well. We note, however, that for the 
~-values depicted in Fig. 4 this regime has not been reached. 

Horizontally, we depict the energy level occupation, 
W ~  for a sudden displacement of the irrigation canal ~ w = I 0 ~  

by an amount :Co = 1. For all examples, the scale on the 
horizontal axis is the same and the initial state is n = 10. 
We note two striking maxima of occupation probability at 
the Franck-Condon energies r /~  given by (4). The energy 
separation between the two maxima is approximately 2nx0, 
in accordance with the classical Franck-Condon principle 
stated by (5). 

For the depicted values of t~ both Franck-Condon max- 
ima ~cf~ move towards higher energies. This seems to be in 
contrast to (5), r/~Z ~ = r/~=,o - t~z0, which might seem to sug- 
gest a shift towards lower energies. However, in this regime, 
the energy r/~=lO itself is an increasing function of the wall 
steepness ~, as discussed above and thus r/n:10 increases 
faster than the decrease of r/~2 ) due to -t~:c0. In the final 
stage of the limit n --+ cxD, however, r/~=~o approaches the 
energy .c~> (A3) of the rectangular potential well and the 

" l r ~ , = l O  

decrease due to the -mc0 term can take over. 
Hence, the two maxima in W,~,~ corresponding to tran- 

sitions predicted by the classical Franck-Condon principle 
shift to higher and lower energies as n increases. The area 
underneath each peak, however, does not decrease. For each 
value of t~ the sum rule ~ m  W~,~L~ = 1 holds, that is, the 
probability is conserved. In the limit of n --* ~ both ir- 
rigation canals approach the case of infinitely high poten- 
tial wells separated by an amount :r0 < b, where b is the 
width of the potentials. However, here the corresponding 
probability, W ~ is not conserved, as shown in Sect. 1. 
The "missing" probability, xo/b,  represents the probability 
caught between the two infinitely steep wells, that is, the 

upper Franck-Condon maximum, which has gone to heaven, 
illustrating in a most vivid way that the limit of a sum is not 
necessarily the sum of the limit. 

3 Summary and outlook: Scattering from corners 

In the present paper we have illustrated a problem associ- 
ated with the most popular potential in quantum mechanics: 
Conditions where the potential well of infinite height seems 
to violate the demand of conservation of probability. This 
paradox stands out more clearly when we consider Franck- 
Condon transitions between two displaced potential wells of 
infinite height. The corresponding problem of transitions be- 
tween two irrigation canals provides the clue about the case 
of the missing probability: For every value of wall steepness, 
the probability is conserved. However, as we increase the 
wall steepness, the upper Franck-Condon maximum climbs 
higher and higher in energy while the area underneath this 
peak stays essentially constant. We miss this peak, and hence 
the probability associated with it, when we first let the wall 
steepness go to infinity and then calculate the transition prob- 
ability. 

We conclude this article by presenting another striking 
effect which comes to light in the context of the irrigation 
canal. In Fig. 5, we show the occupation probability W ~  .... 
for a wall steepness of ~ = 20. Apart from the two well- 
understood dominant Franck-Condon maxima and the oscil- 
latory behavior in between, we observe a regular modula- 
tion of the transition probabilities above the upper Franck- 
Condon maximum. Underneath this modulation (amplified 
in the inset) lies a rapid oscillation in probability between 
neighboring quantum states. This structure in the transition 
probability beyond the Franck-Condon energy lies outside 
of the approach [7] that focuses on the area of overlap and 
interference in phase space and does not follow from semi- 
classical considerations of this type. It results from the inter- 
ference of secondary WKB waves created by scattering the 
original WKB waves off the sharp corners of the irrigation 
canal. The treatment of sharp corners is the subject of the 
paper following this one [5]. 

Appendix A 

Transition probabilities between two shifted potential wells 

In this Appendix, we discuss the probability, w~)_ , , .- , ,  for a 
transition to occur from the n-th level of an infinitely high 
potential well of width b to the m-th level of an identical 
potential shifted by an amount :to, where 0 _ z0 < b, as 
shown in Fig. 1. In particular, we focus on the problem of 
non-conservation of the probability, that is, we show that in 
the semi-classical limit, that is, for m, n >> 1 

OO 

X - - ' W  (~) ~ 1 - xo/b. (A1) Tr'b 6- -  n 

m = 0  

The wave functions u(~ ) of an infinitely high potential well 
read [2] 

u (~) = (2/b) 1/2 cos[(r/(m~))l/2x + mTr/2], (A2) 



where 

r/(~ °°~ = [rc(m + 1)/b] 2 (13) 

is the energy of the m-th level. 
The transition probability, W~°°~m-,., is given by 

[/? ]' 
W~e-n : -b/2+xo 

= (2/b) 2 rT(c,~)l 2 (A4) 
t ~ m , n  a 

where, for 0 < Xo < b, the quantity I~2':~ following from 
(D3) reads 

= , 7 + (  _ 

7r  
+ c~;(oo)COS{ [(@moo))l/2 _ ( r l  ~(oo)) ,/212~,, + (m - n )~}  , (15) 

where 

U;(oo) = sin{ [(rl(m°°)) I/2 ± (r/~°°))V2](b - x0)/2 } 
(V(oo))l/2 ± (V(oo))1/2 (A6) 

In the limit of large quantum numbers m and n, that is, 
in the semi-classical limit [8], the non-resonant contribution 
of I ~'~ is of the order of (1 /m  ~ l / n )  << 1, that is, small 

r n , , n  

compared to the resonant term W'2~ in (A5), and we neglect 
it. This reduces (A4) to 

W~(~°)m~n '~ 4"-'*~m,n cOs2 Cm,n , (A7) 

where 

sin2[(m - n)Tr(b - xo)/2b] 
.... Nrn,n =-- ,rc2(m _ n) 2 , (18) 

and 

rr x0 n] . (A9) ¢,~,,~ = ~ [ ( m + n + 2 )  T + m -  

In the last step, we have used (A3). From (A8), we imme- 
diately note that the main transition will occur for m = n. 

We now test the conservation of probability. From (A7), 
we find 

OO OO 
1 

V" W(oo) = 4 ~¢'-"~m,n ~-[1 + cos(2¢m ~)] 
m--O m--O 

oo 1 

rr~=0 

~"= ~52 ~u£°° dm sin2[(m -(_rr7 ---n) 5-n)rr(b - xo)/2b] 

In the third step, we have neglected the second contribution 
due to the rapid variation of cos(2¢ra,n). When we now 
introduce the variable A = (m - n){(1  - ~ )  and extend the 
integral to minus infinity since n > >  l, we arrive at 

m ~ - - - n  71" /~2 (A10) 
m--0 oo 

which, when integrated [11], gives (A1). Thus, the proba- 
bility is not conserved. 

We can easily identify the "missing probability", xo/b, 
when we recall that according to (A2), the average proba- 
bility density of the m-th state is 
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1 2 cos2[(r/~oo)),/2 z + mTr/2] = ~. ( ~ ) 2  = 

The missing probability, xo/b, is thus the probability caught 
between the right wall of the pre-well located at x = b/2 + 
x0, and the right wall of the post-well at x = b/2, that is, 
(b/2 + xo - b/2) . l ib  = xo/b. 

We conclude this Appendix with a mathematical argu- 
ment explaining the missing probability. When we calculate 
the transition probability W ~.~_,, , we expand the wave func- 
tion, v~T~)(x) = u~) (x  - Zo), of the pre-well in terms of 
eigenfunctions, u ~  ~, of the post-well. However, the wave 
functions u~7 ) are identically zero in the interval b/2 < x < 
b/2 + xo, whereas the function vC7 ~ is not. In this region, 
it is therefore impossible to represent v¢~ ~ by a combina- 
tion of the u ~  ~. As a result, this contribution of v ~  ~ to the 
probability density, namely precisely xo/b, is missing. 

Appendix B 

Wave functions and energy levels in an irrigation canal 

In this Appendix, we derive the stationary wave functions, 
u~. ~ = u~(x) ,  of the irrigation-canal potential (Fig. 2). For 
the sake of simplicity, we suppress throughout this Appendix 
the superscript (~c), indicating the dependence of the wave 
function on the wall steepness t~. 

The stationary solutions Um with eigenenergies r/m of 
the time- independent SchrSdinger equation [4] 

d 2 
dx 2 Um(X ) 4- [~'lrn -- V(x)]Um(X) = 0 (B1) 

for the irrigation canal potential 

{ - n ( x  + b/2), for x < - b / 2  
V ( x ) =  0, for Ix I << b/2 , (B2) 

n ( x -  b/2), for z > b/2 

with steepness n and width b, shown in Fig. 2, can be given 
in closed form. In the linear regime of V, that is, for Ixl > 
b/2, the solution of (B1) satisfying the boundary condition, 
um(x --+ 4-00) = 0, is the Airy function [6], Ai, of the 
appropriate argument [10]. For I< < b/2, the solutions u ~  
consist of sine and .cosine functions. Due to the symmetry 
of the potential V, um is either symmetric or ant±symmetric 
around x = 0 - -  depending on the quantum number m being 
even or odd. We are therefore led to the Ansatz 

) f ( -  1)mAi[-~-2/3r/m - ~1/3(x + b/2)] 

- ~ "y.~ cos(r/r~ x + m~r/2) , (B3) 
'~ Ai[-~-2/3r /m + ~1/3(x - b/2)] 

where the x domains of validity for each one of the three 
parts of u,~(x) are the same respective ones appearing in the 
definition of V(x)  above. The coefficients Nm and 7m and 
the energy eigenvalue r/,,~ follow from the requirement of 

(i) continuity of the wave function um at x = ±b/2,  that is, 

lim Um(±b/2 - s) = lim r Um( ib /2  + e), (B4) 
e----~0 e 0 
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(ii) continuity of the first derivative of Ur~ at z = +b/2, that 
is, 

lim u~(+b/2  - c) = lim u~(±b /2  + e), (B5) 
e---+0 c---*0 

and 
(iii) normalization of the wave function, that is, 

S d x  = (B6) U 2 ( X )  1. 
OO 

Due to the symmetry already built into the Ansatz, (B3), 
the continuity conditions at x = +b/2 and x = - b / 2  are 
identical. 

From (B3) and (B4), we find immediately 

Ai(-~-2/3r/m) 
7 m  "= , 1/2 ' (B7) 

costrl~ b/2 + mTr/2) 

which, together with (B3) and (B5), yields the energy eigen- 
value equation 

cos(r/~2b/2 + mTr /2 )Ai' ( - t~-  2/3rlm) + 

sin(~Im/2b/2 + mTc/2)(t~-2/3~m)1/2Ai(-t~-2/STlm) = O. 

(B8) 

This highly transcendental equation has to be solved numeri- 
cally. However, for large quantum numbers m, that is, in the 
semi-classical limit, or more precisely, for z ~ ~-~/3z]~, >> 1, 
the Airy function, Ai, and its derivative, Ai ~, allow the 
asymptotic expansions [6] 

Ai(-Iz[) ~ 71-1/21z1-1/4 sin(~ Iz[ 3/2 + 7r/4) (B9) 

and 

Ai'(-Iz I) ~ -Tr-1/ZlzlX/Zcos(~lzl3/2+Tr/4). (B10) 

Equations (B9) and (B 10) reduce (B8) to the cubic equation 

1/2 3 + 3r/~2 b~ _ _ ~  1 (r/m ) ~ - + 2 (  ) (m+ ~) = O, (Bll)  

which possesses only one real solution, namely [11], 

T](m W K B) 

2 1 1/2 3/2 =b~sinh{~arcsinh[~-  37rb- ( re+l /2)]} .  (B12) 

The approximate eigenvalue equation (B11) is identical to 
the one obtained from the semi-classical quantization con- 
dition [1] 

/ dz pro(z) = 27r(ra + ~), (B13) 

where 

pro(z) =- [~(m WKB) -- V(z)] 1/2 (B 14) 

with the potential V(z)  (B1). 
It is well-known that the quantization condition (B12) 

provides an excellent approximation of the energies for large 
quantum numbers, whereas for low lying energy levels some 
disagreement might arise. Moreover, when we increase the 
steepness, t% of the potential, the range of energies for which 

(B 12) is a good approximation shifts to higher quantum num- 
bers, as is also indicated by the condition ~-:/3r/,r~ >> 1 nec- 
essary for the applicability of the expansions (B9) and (B 10). 
This behavior is closely related to the fact that in the case 
of an extremely steep irrigation wall (t~ ~ 20) the lowest 
quantum states feel essentially an infinitely steep potential 
well with an eigenvalue spectrum [2] 

~/(m °e) = (Tr/b) 2 (m + 1) 2. (B15) 

This spectrum follows also from (B8) in the limit ec-2/3~,, 
<< 1. This condition is, of course, in contrast to the limit 
~-2/3rb, >> 1 employed in the derivation of (Bll),  which 
for ~ ~ ec yields 

~(WKB) (Tr/b) 2 (m + 1/2) 2. (B 16) 
m 

The difference between (B15) and (B16) in the factor 1/2 
is due to the fact, that for an infinitely high potential well 
the factor 1/2 in the Kramers quantization condition has to 
be replaced by unity [1]. 

We conclude this Appendix by deriving the normaliza- 
tion constant Am. When we substitute (B3) and (B7) into 
(B6) we find 

2 I ' -b /2  
1 = NC {J_  & Ai2[-~-2/3~m - -  / I/3(X + b/2)] 

f _b / 2 7r d z  COS2(T]Im/2Z 4- 

b/2 

f + dz Ai2[-t~-2/3rlm + t~1/3(:c - b/2)] } 
/2 

= N~{2t~ -1/3 dA Ai2(A) 
.J -- ~-2/3r/m 

• 1 / 2  k S l n ( ~ m  b 4- Tt~7"f). 
+72 2 [ 1 + r/~2~--£_ I }. (B 17) 

We evaluate the integral of the square of an Airy function 
with the help of (C18), that is, 

/_ ~ d.~ Ai2()~) 
rN- -2 /3~hr  ~ 

= [Aff(-n-2/37]m)] 2 + t~-2/3~Tm[Ai(-n-2/3~Tm)]2 

and finally arrive at 

2[Aff(_n-2/3r/m)]2 [ ]2, 
N r ~ 2  = /~1/3 4- K Ai(-~-Z/3r/m) (B18) 

where 
1 /2  b . 1/2 2r/m b ,Ira + sln('r/m b + mTr) 

K - - -  + (B19) 2 1/2 z 1/2 r/,~ bcos (r/m b/2 + mTr/2) 

The exact wave functions, Um= urn(x), for the irrigation 
canal of (B2) are thus determined by (B3), (B7), (B18), 
(B19) and the solution of the energy eigenvalue equation 
(B8). 
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Appendix C 

Integration of  the product o f  shifted Airy functions 

In view of the discussion of the transition probabilities be- 
tween two displaced irrigation canals, we evaluate in this 
Appendix the integral 

/7 A(~; y) = dx Ai(x)Ai(x + y). (C1) 

The integral 

A(~; y = 0) = dx Ai2(x) (C2) 

governing the normalization of the wave function u~,  (B 17), 
is thus a special case of A. 

We evaluate A by deriving a differential equation of 
fourth order for the integrand 

f ( x )  = Ai(x)Ai(x + y) (C3) 

which enables us to express f ( x )  in terms of its derivatives. 
This expression is then straightforward to integrate. 

We start by differentiating (C3), that is, 

i f ( x )  = A{(x)Ai(x + y) + Ai(x)Ai'(x + y), (C4) 

and 

f " ( x )  = Ai"(x)Ai(x + y) + 2Ai'(x)Ai'(x + y) 

+Ai(x)Ai"(x + y) , (C5) 

where prime denotes differentiation with respect to x. With 
the help of the differential equation for the Airy function [6] 

Ai"(x) - xAi(x) = 0, (C6) 

we find 

f " ( x )  = (y + 2 x ) f  + 2Ai'(x)Ai'(x + y), (C7) 

where we have used again the definition (C3). One more 
differentiation 

f ' "  = 2 f  + (y + 2 x ) f f  + 2Ai"(x)Ai'(x + y) 

+2Ai'(x)Ai"(x + y) (C8) 

together with (C6) yields 

f ' "  = 2 f  + (y + 2 x ) f '  + 2x[Ai ' ( x )A i (x  + y) 

+Ai(x)Ai'(x + y)] + 2yAi ' ( x )A i ( x  + y), (C9) 

and (C4) leads to 

f ' " ( x )  = 2 f  + (y + 4 x ) f '  + 2yA i ' ( x )A i ( x  + y). (C10) 

The forth derivative reads 

f " "  = 6 f '  + (y + 4 x ) f "  

+2y[Ai" (x )Ai (x  + y) + Ai'(x)Ai'(x + y)] (Cl 1) 

or  

f ' " '  = 6 f '  + (y + 4 x ) f "  

+ 2 y x f  + 2 y A i ' ( x ) A { ( x  + y), (C12) 

and with the help of (C7), we finally arrive at 

f ' " '  = 6 f '  + (2y + 4 x ) f "  - y2f .  (C13) 

From (C13), we find 

f ( x )  = ~Z [6f '  + (2y + 4 x ) f "  - f '" ' ] ,  

which, when substituted into (C1), yields 

1 
A(~; y) = ~5 [ - 6f(~) - 2yf '(~) - 4~f'(~) 

+ 4f(~) + f" '(~) ] ,  (C14) 

where we have also used the fact that 

f ( x  ---+ oo) = f ' ( x  --+ oc) = f ' " ( x  --+ oo) = O. 

With the help of (Cl0), (C14) reduces to 

1 
A(~; y) = ~-g [ -y f ' (~ )  + 2yAi'(~)Ai(~ + y)] (C15) 

and we arrive with (C4) at 

/7 A(~; y) = dx Ai(x)Ai(x + y) 

1 [Ai'(~)Ai(~ + y) - Ai(#)Ai'(~ + y)]. (C 16) 
Y 

In the limit y ---+ 0 we find 

A(~; y = 0) = lira -1 {Ai'(~)[Ai(~) + Ai'(~)y] 
y--+0 y 

-Ai(~)[Ai'(~) + Ai"(~)y] } (C 17) 

and, therefore, using (C6), 

/7 A(~; y = 0) = dx  Ai2(x) 

= [Ai'(~)] 2 - ~[Ai(~)] 2, (C18) 

a known result [12]. 

Appendix D 

Overlap between the wave functions of  two displaced 
irrigation canals 

In this Appendix, we calculate the overlap 

5 u('~) u('~) 
w,~,,~ = dx ,~ (x) n (x - xo) 

O<3 

between the wave functions u¢: ~ and u~ ~ for two shifted 
irrigation canals. 

We can perform the integration over the real line most 
easily by decomposing the range of integration into the do- 
mains in which the wave functions u,~ and vn - u n ( x -  xo) 
have been written down in Appendix B. These intervals are 

dx = dx + dx + dx 
oc a --oz J -b/2 J -b/2+Xo 

{b/2+Xo fbbOO + dx + dx. 
J b/2 /2+xo 

Making use of (B3), we arrive at 

c7//,~,~ = N.~N~ [(-1)m+'~I(~ -) + ( - 1 ) ~ % J ~ : ~  ) 

+'Tm%I~',~ + 7nI~;~  + I~;+)] • (DI) 
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m~ 16- 

[ 10- 

5- 

I x  = 22 5) 
- -Wm~n= lO ~ 

(b) 'l 

i 

(a) 

~ ~ . ~  rn = 16 

~ J  
~n=lu 

Fig. 6a,b. The Planck-Bohr-Sommerfeld bands, (El) and (E3), corresponding to the energy eigenstates of the pre-canal with center at x0, steepness ~ = 22.5, 
and width b = 2, take the shape of a race track as exemplified in (a) by the dark n = 10 band. According to the area-of-overlap concept, the probability, 
W 2 ) n =  m, for a transition from the n = 10 state of the pre-canal to any m state of the post-canal with center at the origin and identical steepness ec 
and width b is governed by the overlap of the m-th race track whose edges are shown in (a) by so l id  l ines,  with the dark n = 10 band. The m = 5 and 
ra = 16 bands have an unusually large area in common with n = 10 thus giving rise to a large transition probability. Bands corresponding to m values 
between these critical quantum numbers cross the n band in two interfering diamond-shaped areas creating an oscillatory transition probability. The area of 
cross-over of the other m bands with n = 10 is small, thus furnishing negligible values of W ~ , ~ = H  ). These striking features of the transition probability 
brought to light by the area-of-overlap-plus-interference-in-phase-space concept are in complete accordance with the exact quantum-mechanical calculation 
of Appendix D, shown in (b). In order to relate horizontally the quantum number m to the m-th Planck band and its overlap with the n = 10 race track 
shown in (a), we use a highly nonlinear scale for the vertical m-axis 

The integrals I ~-,-) I C~,°} I C+,+), are defined by 

l 
- b ~ 2  

I (m;n ) = d x  Ai{-/ 'c-2/3[r/m + ~(x + b/2)]} 
J - o o  

xAi{-n-2 /3[~ ln  + t~(x - xo + b/2)]} 

/5 = ~-~/? dAAi(A) 
N--2/37~rr~ 

xAi{A + t;-a/3[~?.~ - 01~ - ecxo)]} 

= ./t/_'{ A i ~ ( - ~ - 2 / 3 r l m ) A i [ - t ; - 2 / 3 ( q n  - t;xo)] 

- - A i t [ - - l ~ - 2 / 3 ( ? ] n  - -  t ; x o ) l A i ( - t ; - 2 / 3 r l m )  }, 

where 

./I/_;= 
Kl/3 

r/~ - (r~,~ - ~zo) '  

Ira(e, c) = ~r~ 

where 

f 
b / 2  

d x  c o s [ , ~ 2 x  + m 21 
d -- b~ 2+xo 

x c o ~ [ , ' / ~ ( x -  ~o) + n-~] 

+ - 

Z 

+ ~ ; c o s [ ~ ( ~  2 '/~ z - . n  )zo + (m - n ) ~ ] ,  

sin [ [ t/2 i/2"~ 

(D2) 

(D3) 

and 

/2 I~:+~ ) = d x  ai{-t ;-2/3[~].~ - t;(x - b/2)]} 
/2+xo 

xAi{-t~-2/3[r]n - t;(x - x0 - b/2)]} 

/5 = ec -1/3 d~Ai()0 
~--2/37]n 

xAi{A - ec-2/3[r~m - ( ~  + KXo)]} 

= , / ] / + ' { A i ' ( - t ; - 2 / 3 r l n ) A i [ - K - 2 / 3 ( ~ m  - / ' ;Xo)]  

-A i ' [ -K-2 /3 ( r lm  - ~zo)lAi(-t~-a/3~?n) }, (D4) 

where 
t;'/3 

~.~ - (r~,~ + ~xo)" 
In obtaining (D2) and (D4) we have used (C16). Note that 
the denominators of  the function .//~ vanish for the Franck- 
Condon energies r/~ ~ (5). However at these energies also the 
numerators of (D2) and (D4) vanish, giving rise to maxima 
in I {±'±) the classical Franck-Condon maxima. 

We have not been able to express the remaining integrals 

= / - b / 2 + m o  
d z  cos(T]lrn/2X + mTr/2 )  

x A i { - s - 2 / ? [ r / ~  + t;(x - Xo + b/2]} (D5) 

and 

f 
b/2+Xo 

I(+m',~ ) --  dx A i { - / ~ - 2 / 3 [ r l m  - e c ( x  - b/2)]} 
Jb/2 

x cos[@/2(x - xo) + n'n-/2] (D6) ~q- = 1 / 2  1/2 
,t in ± qn 
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in c losed analytical  fo rm and have  therefore  evaluated them 

numerical ly  for var ious parameters  of  interest. 
The  over lap Wr~,~ is thus g iven  by (D1-D6) ,  where  the 

coeff icients  7 j  and N j  and the energies  r/j for j = m,  n 
fo l low f rom (B7), (B18) and (B8), respect ively.  

Appendix E 

Transition probabili t ies between two shifted irrigation canals 
via interference in phase  space 

Deeper  insight  into the behavior  of  the transition probabil-  
ity W ~ 2 ~  be tween  the n- th  level  of  the irrigation canal o f  
steepness ec and centered  at x0 to the m- th  level  of  the iden- 
tical canal  centered at x = O springs f rom the concepts  o f  
area o f  over lap  and of  interference in phase space - -  the 
topic of  the present  Appendix .  

This  concept  associates  with the transition probabil i ty 

W (~) = dx  u .~ ( x ) v~ ( z )  , 

the overlap in phase  space be tween  the two quantum states 
Urn and Vn. But how to represent  the two states? Let  us 
consider  the P l anck -Bohr -Sommer fe ld  bands defined [7] in 
the x - p  phase space by their inner edge  

.](in) = (f~(in)]2 .~ ,~m . + V ( x  - xo), ( E l )  

where  r/(~2 ) is de te rmined  f rom the quant izat ion condi t ion 

J dx  p ~ ) ( x )  = 27rm. (E2) 

Their  outer  edge  

flOUt) (out) 2 = ( P r o )  + V ( x  - Xo), (E3) 

fo l lows  f rom the quant izat ion condi t ion 

dx  = 27r(m + 1). (E4) p~Ut)(x) 

Thus,  each band takes up an area of  27r and the Kramers  
trajectory [7], governed  by (B12) and (B13), runs in the 
middle  o f  the band. The  bands for the irrigation canal with 
center  at x = 0 fo l low f rom ( E l - E 4 )  by replacing V ( x -  xo) 
by V(x ) .  

In Fig. 6a, we  show the n = 10-th band of  the pre- 
canal by the solid race  track. For  this specific example,  we 
have  chosen the wall  s teepness ec = 22.5. The  m- th  track 
of  the post-canal ,  whose  edges  are indicated in Fig. 6a by 
the solid lines, ei ther does not  over lap  the n = 10 band (for 
m < 4 and m > 16), or  gives  rise to one unusually large 
tangential  over lap  (for m = 4 , 5  or  m = 16) or has two 
distinct d iamond-shaped  zones in c o m m o n  with the n = 10 
band (for 5 < m < 16). Hence ,  the transition probabil-  
ity W{2~,~o,, governed  by this area-of-over lap,  is essential ly 
zero for m < 4 and m > 16, but  has max ima  at m = 5 and 
m = 16. For  in termedia te  quantum numbers ,  5 < m < 16, 

the two d iamond-shaped  areas interfere in phase space [7], 

result ing in an osci l latory transition probabil i ty  W~22~=,o in 
comple te  agreement  with the exact  quan tum-mechan ica l  cal- 
culation shown in Fig. 6b. 
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